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Abstract

This thesis is dedicated to the active research topic of generic Visual Object Cat-
egorization (VOC), which can be widely used in many applications such as video
indexation and retrieval, video monitoring, security access control, automobile driv-
ing support etc. Due to many realistic difficulties, it is still considered to be one of
the most challenging problems in computer vision and pattern recognition. In this
context, we have proposed in this thesis our contributions, especially concerning the
two main components of the methods addressing VOC problems, namely feature
selection and image representation.

Firstly, an Embedded Sequential Forward feature Selection algorithm (ESFS)
has been proposed for VOC. Its aim is to select the most discriminant features for
obtaining a good performance for the categorization. It is mainly based on the
commonly used sub-optimal search method Sequential Forward Selection (SFS),
which relies on the simple principle to add incrementally most relevant features.
However, ESFS not only adds incrementally most relevant features in each step
but also merges them in an embedded way thanks to the concept of combined
mass functions from the evidence theory which also offers the benefit of obtaining a
computational cost much lower than the one of original SFS.

Secondly, we have proposed novel image representations to model the visual
content of an image, namely Polynomial Modeling and Statistical Measures based
Image Representation, called PMIR and SMIR respectively. They allow to overcome
the main drawback of the popular "bag of features" method which is the difficulty
to fix the optimal size of the visual vocabulary. They have been tested along with
our proposed region based features and SIFT. Two different fusion strategies, early
and late, have also been considered to merge information from different "channels"
represented by the different types of features.

Thirdly, we have proposed two approaches for VOC relying on sparse represen-
tation, including a reconstructive method (R_SROC) as well as a reconstructive
and discriminative one (RD_SROC). Indeed, sparse representation model has been
originally used in signal processing as a powerful tool for acquiring, representing
and compressing the high-dimensional signals. Thus, we have proposed to adapt
these interesting principles to the VOC problem. R_SROC relies on the intuitive
assumption that an image can be represented by a linear combination of training
images from the same category. Therefore, the sparse representations of images are
first computed through solving the `1 norm minimization problem and then used
as new feature vectors for images to be classified by traditional classifiers such as
SVM. To improve the discrimination ability of the sparse representation to better
fit the classification problem, we have also proposed RD_SROC which includes a
discrimination term, such as Fisher discrimination measure or the output of a SVM
classifier, to the standard sparse representation objective function in order to learn
a reconstructive and discriminative dictionary. Moreover, we have also proposed
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to combine the reconstructive and discriminative dictionary and the adapted pure
reconstructive dictionary for a given category so that the discrimination power can
further be increased.

The efficiency of all the methods proposed in this thesis has been evaluated on
popular image datasets including SIMPLIcity, Caltech101 and Pascal2007.

Keywords: visual object categorization, feature selection, image representation,
sparse representation.

x



Résumé

Cette thèse de doctorat est consacrée à un sujet de recherche très porteur : la Caté-
gorisation générique d’Objets Visuels (VOC). En effet, les applications possibles sont
très nombreuses, incluant l’indexation d’images et de vidéos, la vidéo surveillance,
le contrôle d’accès de sécurité, le soutien à la conduite automobile, etc. En raison
de ses nombreux verrous scientifiques, ce sujet est encore considéré comme l’un des
problèmes les plus difficiles en vision par ordinateur et en reconnaissance de formes.
Dans ce contexte, nous avons proposé dans ce travail de thèse plusieurs contribu-
tions, en particulier concernant les deux principaux éléments des méthodes résolvant
les problèmes de VOC, notamment la sélection des descripteurs et la représentation
d’images.

Premièrement, un algorithme nommé "Embedded Sequential Forward feature Se-
lection" (ESFS) a été proposé pour VOC. Son but est de sélectionner les descripteurs
les plus discriminants afin d’obtenir une bonne performance pour la catégorisation.
Il est principalement basé sur la méthode de recherche sous-optimale couramment
utilisée "Sequential Forward Selection" (SFS), qui repose sur le principe simple
d’ajouter progressivement les descripteurs les plus pertinents. Cependant, ESFS
non seulement ajoute progressivement les descripteurs les plus pertinents à chaque
étape mais de plus les fusionne d’une manière intégrée grace à la notion de fonc-
tions de masses combinées empruntée à la théorie de l’évidence qui offre également
l’avantage d’obtenir un coût de calcul beaucoup plus faible que celui de SFS original.

Deuxièmement, nous avons proposé deux nouvelles représentations d’images
pour modéliser le contenu visuel d’une image : la Représentation d’Image basée
sur la Modélisation Polynomiale et les Mesures Statistiques, appelées respective-
ment PMIR et SMIR. Elles permettent de surmonter l’inconvénient principal de la
méthode populaire "bag of features" qui est la difficulté de fixer la taille optimale du
vocabulaire visuel. Elles ont été testées avec nos descripteurs basés région ainsi que
les descripteurs SIFT. Deux stratégies différentes de fusion, précoce et tardive, ont
également été considérées afin de fusionner les informations venant des "canaux"
différents représentés par les différents types de descripteurs.

Troisièmement, nous avons proposé deux approches pour VOC en s’appuyant
sur la représentation sparse. La première méthode est reconstructive (R_SROC)
alors que la deuxième est reconstructive et discriminative (RD_SROC). En effet,
le modèle de représentation sparse a été utilisé originalement dans le domaine du
traitement du signal comme un outil puissant pour acquérir, représenter et com-
presser des signaux de grande dimension. Ainsi, nous avons proposé une adaptation
de ces principes intéressants au problème de VOC. R_SROC repose sur l’hypothèse
intuitive que l’image peut être représentée par une combinaison linéaire des images
d’apprentissage de la même catégorie. Par conséquent, les représentations sparses
des images sont d’abord calculées par la résolution du problème de minimisation de
la norme `1 et sont ensuite utilisées en tant que nouveaux vecteurs de descripteur
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pour les images afin de permettre la classification de ces dernières par des classifi-
cateurs traditionnels tels que SVM. Afin d’améliorer la capacité de discrimination
de la représentation sparse pour mieux répondre au problème de classification, nous
avons également proposé RD_SROC qui inclue un terme de discrimination, comme
la mesure de discrimination Fisher ou la sortie d’un classificateur SVM, à la fonction
d’objectif de la représentation sparse standard afin d’entraîner un dictionnaire re-
constructif et discriminatif. De plus, nous avons proposé de combiner le dictionnaire
reconstructif et discriminatif avec le dictionnaire adapté purement reconstructif pour
une catégorie donnée de sorte que la capacité de discrimination puisse être augmen-
tée.

L’efficacité de toutes les méthodes proposées dans cette thèse a été évaluée sur
différentes bases populaires d’images comprenant SIMPLIcity, Caltech101 et Pas-
cal2007.

Mots clés: catégorisation d’objets visuels, sélection de descripteurs, représenta-
tion d’images, représentation sparse.
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1.1 Context

With the rapid development of new information technology and media, more and

more contents presented around us are nowadays changing from text based to mul-

timedia based, especially in the form of images and videos. For example, the famous

online photo sharing website Flickr (www.flickr.com) was hosting more than 5 billion

images on September 2010 with a growing speed of about 1 billion per year.

Facing such huge databases, the need for solutions to effectively manage them

and access to the appropriate content when needed becomes more and more urgent.

Basically, one would like to label an image manually using the keywords and then

search it according to the associated tags for a later use as it is proposed on Flickr

website. However, this method quickly becomes inconceivable for large amounts of

data. Moreover, many other problems can not be ignored: the database annotation

is only possible for a limited number of languages; when an annotation rule changes

for a certain application, the annotation process should be performed consequently

manually on the whole database; since the annotation can be subjective, there is no

guarantee that two different persons produce systematically the same label for one
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Figure 1.1: An example of generic visual object categorization

image, which is generally expected in most applications concerning the multimedia

data.

In such a context, the research topic of Generic Visual Object Categorization

has emerged and attracted more and more attentions in recent years.

1.2 Problems and objective

Generic Visual Object Categorization (VOC) aims at predicting whether at least one

or several objects of some given categories are present in an image. More precisely,

only categories of objects, or concepts, are taken into account, that is to say that

we want to detect any car or any people in an image, rather than a particular car

or a particular people which is the goal of object recognition systems. An example

is given in Figure 1.1, in which the image should be classified to the predefined

category "Person" and "Horse" at the same time as it contains these two objects.

In fact, VOC is a fundamental problem in computer vision and pattern recogni-

tion, and has become an important research topic due to the wide range of possible

applications such as video monitoring, video coding systems, security access control,

automobile driving support as well as automatic image and video indexation and

retrieval [Lew et al. 2006] [Sayad et al. 2010]. Until now, many VOC methods have

been proposed and applied to the classification of numerous objects categories like,

for example, cars, motorbikes, animals, people, furniture etc. Despite many efforts

and much progress that have been made during the past years, it remains an open

problem and is still considered as one of the most challenging topics in computer

2
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vision. The reason that it has to deal with problems inherent to object categories

like the wide variations of shape and appearance of objects inside a category, and

due to the representation of an object in an image, such as various scales and ori-

entations, as well as illumination and occlusion problems. To all these difficulties,

we also need to add the one induced by the large number of real world object types

that need to be discriminated.

In this context, the objective of our work can be summarized as to propose some

innovative contributions to the challenging generic visual object categorization task

in particular concerning image representation using either global and local features

or the fusion of them. These proposed approaches have been validated through

experiments driven on several popular datasets.

1.3 Our approaches and contributions

A typical VOC system is generally composed of two basic stages: one is the extrac-

tion of features from an image to represent its visual content and the other is the

image classification based on the information carried by these features, according to

the considered categories. However, only these two stages are far from enough to

construct a successful and efficient VOC system in the practice and supplemental

stages are often necessary, namely feature selection and image representation. The

former one intends to select the most important and non-redundant features to sim-

plify the classification model and to allow a better classification accuracy. The latter

one aims at finding a representation that is, in one hand, able to better model the

image visual content which is presented in the form of features extracted from the

image and that, in the other hand, gains more discrimination abilities to be easily

categorized by a certain classifier later. In the case of using local features, as the

number of them often varies from one image to another, image representation also

helps changing these original local features to the feature vector with fixed size as

usually required by classifiers. Our work mainly concerns these two indispensable

aspects and will be listed in the following.

Our first contribution consists in proposing an Embedded Sequential Forward
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feature Selection (ESFS) algorithm for VOC use. With the increasing trend of high

dimensional data processing, feature selection becomes more and more important

and indispensable in pattern recognition and machine learning problems, for the

purpose of selecting the most discriminant features. Its objective is three-fold: im-

proving the prediction performance of the predictors, providing faster and more cost-

effective predictors, and gaining a deeper insight into the underlying processes that

generated the data. In this context, we have implemented in our work a novel em-

bedded feature selection approach based on the commonly used sub-optimal search

method SFS [Whitney 1971], called ESFS, which relies on the simple principle to

add incrementally most relevant features. We have provided here two advantages

comparing to the classical classifier dependent sub-optimal selection method SFS.

Firstly, the range of subsets to be evaluated in the forward process is extended to

multiple subsets for each size, and the feature set is reduced according to a certain

threshold before the selection in order to decrease the computational burden caused

by the extension of the subsets in the evaluation. Secondly, we have made use of the

term of mass function to consider the feature as a classifier, which is introduced from

the evidence theory [Shafer 1976] allowing elegantly to merge feature information in

an embedded way, leading to a lower computational cost than original SFS.

Secondly, we have proposed novel image representations for modeling the image

visual content. Indeed, the most successful image representation to date is "bag of

features". Its main drawback lies in the difficulties one can have to fix the optimal

size of visual vocabulary. Moreover, when a GMM is used for a soft assignment,

the number of parameters along with the number of Gaussians can quickly lead to

the problem of "curse of dimensionality" [Bellman 1961]. Thus, we have proposed

novel image representations, namely through polynomial interpolation and statisti-

cal measures, for modeling the visual content of an image from another way. Their

interest is 3-fold. First, we can circumvent the difficulty of fixing the size of visual

vocabulary; secondly we can avoid the inaccurate assumption of Gaussian reparti-

tion of features which is not always the case when faced with numerous different

applications; finally we are able to cope with a smaller number of feature vectors

per image, a situation that can be often encountered.
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Our third contribution lies in the proposition of reconstructive and discriminative

image adapted sparse representations using classical sparse representation theory.

Sparse representation has been originally used in the domain of signal processing

as a powerful tool for acquiring, representing and compressing the high-dimensional

signals. Its goal is to obtain a compact high-fidelity representation of a given signal,

which can be considered as a linear combination of atoms from an overcomplete

dictionary. The property of sparsity in the representation of signals has also been

approved in human perception by some studies of human vision.

Recently techniques from this theory have significantly impacted the domain of

computer vision and pattern recognition [Wright et al. 2009a] [Wright et al. 2009b]

[Mairal et al. 2008a], in which we are often more interested in extracting the visual

content of an image rather than a compact high-fidelity representation. It has been

successfully applied to several vision tasks, including face recognition, image super-

resolution and classification, motion segmentation, and background modeling. Thus,

he have proposed to adapt the ideas of sparse representation to the problem of VOC.

Two innovations have been proposed in order to improve the classification ac-

curacy using sparse representation theory. Firstly, as the traditional sparse rep-

resentation is a purely reconstructive method which seems not to perfectly fit the

applications of classification, discrimination terms, namely Fisher’s discrimination

measure and the output of a classifier (in our case SVM), have been introduced

to enhance the discrimination ability of the obtained sparse image representation.

The dictionary which is initially a subset of training images is updated by K-SVD

algorithm [Aharon et al. 2006] at the same time. Secondly, inspired by the idea of

[Perronnin et al. 2006], we have considered first training a reconstructive and dis-

criminative dictionary using both positive training images and negative ones for each

category and then training an adapted purely reconstructive dictionary, using the

images from that category only. The final dictionary for each category is obtained by

combining its reconstructive and discriminative dictionary and the adapted purely

reconstructive dictionary. In this case, the assumption is that an image is more

appropriately described by the atoms in the adapted dictionary of category C if it

belongs to C and otherwise it is better described by the atoms in the reconstruc-
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tive and discriminative dictionary. The training of the dictionary is performed by

K-SVD algorithm.

1.4 Organization of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we first introduce our

feature selection method, namely Embedded Sequential Forward feature Selection

(ESFS) algorithm and its use in VOC. Our polynomial modeling and statistical

measures based image representations are then presented in the following as well as

our proposed region based features which are used in the previous representations.

Chapter 3 deals with sparse representations theory and focuses on the algo-

rithms we have proposed for constructing the reconstructive and discriminative im-

age adapted sparse representations.

Finally, we summarize our conclusions from the results of this work in Chapter

4 and propose some future directions at the same time.
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2.1 Introduction

Generally, within the VOC process, an image firstly passes through the feature ex-

traction stage to obtain a set of features, on which a possible selection procedure

may then be applied to select the most effective features. Then, the image represen-

tation for classification can intervene if necessary to model the image visual content

and satisfy the input requirement of a certain classifier, which will perform the final

classification task. So, feature extraction, selection and image representation are

considered to be three principal stages out of four for visual object categorization,

the last one being the classification. This chapter deals with these different aspects

and the approaches we have proposed for these purposes.
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2.2 VOC: a brief state of the art

Before entering the detailed main stages mentioned above, we would like to mention

here some representative methods and techniques concerning the visual object cat-

egorization, hoping to present an understanding brief overview about this domain.

2.2.1 Feature extraction

The role of feature extraction is to convert the only thing that can be read from

images, their colored pixels, to the "low-level" features for subsequent analysis of

image content, hoping that there are sufficiently discriminative, effective and with

reasonable size. This first step is very important for assuring the final good perfor-

mance of VOC system and can be considered as the basis of the whole work in some

sense. Indeed, after this step, the whole process will rely only on the information

given by the features extracted from the image and no longer on the image itself.

The first question that arises is to know where we will extract the effective

features for the characterization of image visual content. We can summarize the

existing approaches in the literature into two main categories: global feature and

local feature.

• Global feature. This approach is generally based on the statistical analysis

of the whole image pixel by pixel. It assumes implicitly that the searched

object occupies ideally the entire image. However, this assumption is so hard

to be satisfied in the reality, and the background introduces inevitably noise

particularly in the case where the object is very small compared to the size of

image. This limitation often justifies to pay more attention to local methods.

• Local feature. According to this approach, the feature is calculated from a

small neighborhood (called patch in the following) with a predefined size and

form around a particular point (pixel) of the image. In this case, the question

that arises is "how to detect the particular points (or equivalently patches)

around which the local features will be extracted?". In fact, there exist many

research works dealing with this problem, including:
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1. Interest points [Mikolajczyk et al. 2005]. Here, we would like to men-

tion the two commonly used local patch detectors: Laplacian detector

[Lindeberg 1998] which extracts blob-like patches and Harris-Laplace de-

tector [Mikolajczyk & Schmid 2001] which extracts corner-like patches

(see Figure 2.1 for the illustration of these two detectors on two natu-

ral images). The Laplacian detector is a scale invariant blob detector,

where a blob is defined by a maximum of the normalized Laplacian in

scale-space. The Harris-Laplace detector is an extension of the origi-

nal rotation-invariant Harris detector [Harris & Stephens 1988] by adding

the scale-invariant property.

2. Random sampling. As the name suggests, patches are selected randomly

in this case. It has shown its effectiveness in [Marée et al. 2005] and

[Nowak et al. 2006], where it performs better than interest points detec-

tors according to their experimentations.

3. Dense sampling. [Winn et al. 2005] and [Fei-Fei & Perona 2005] showed

experimentally that using regular grids to select patches could outper-

forms interest points detectors as well.

Of course, these different strategies can be combined together if necessary, with

the purpose of obtaining better performance than using each one separately.

When we known where to extract features, we then want to determine the nature

of features to be extracted. Generally, we can categorize them into 3 groups, listed

below with some representative features for each of them:

• Color features

– Color Histogram [Swain & Ballard 1991]: Histograms are the simplest

and most common way for expressing the color characteristics of an im-

age. They aim at modeling the color distribution of image pixels. Gen-

erally every channel of a color space, (RGB color space for example), is

quantified into "bins". The histogram is built by counting the number of

10



Chapter 2. Feature extraction, selection and image representation for
VOC

Figure 2.1: Illustration of Harris-Laplace detector and Laplacian detector on two
natural images. Left: original images; Middle: Harris-Laplace detector; Right:
Laplacian detector. Source: [Zhang et al. 2007]

pixels located in each bin. The three 1-D histograms are then concate-

nated to form the final color histogram. It is easy to compute but ignores

the spatial information between pixels.

– Color Coherence Vectors [Pass & R. Zabih 1997]: In order to integrate

the spatial information of color distribution, color coherence vectors pro-

pose to separate the coherent colors and incoherent colors. We say that a

color is coherent when its population of pixels located in a spatial neigh-

bor area is bigger than a predefined threshold, otherwise it is incoherent.

We thus find a characterization of color information by two histograms:

the population of coherent color cells and the populations of incoherent

color cells.

– Color Correlogram and Color Auto Correlogram [Huang et al. 1997]: As

another way to integrate the spatial information of colors, color correlo-

gram can be understood as a 3-dimensional matrix with size (n× n× r)

where n is the number of colors used and r is the maximal distance of the

neighborhood considered. In this matrix, the number of (i, j, k) denotes
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the probability of finding a pixel of color i at a distance k away from a

pixel of color j. The final feature vector is often obtained by concatenat-

ing the rows of the matrix. However, as the size of the color correlogram

is usually too large due to its three dimensions, color auto correlogram

have been proposed to count only the pair of pixels with the same color

i at a distance k, thus allowing to obtain more compact vectors.

– Color Moments [Stricker & Orengo 1995a]: Color moments represent the

color in a very compact way by a vector containing the mean, variance

and skewness (i.e. respectively the moments of order 1, 2 and 3 as shown

in (2.1), (2.2) and (2.3)) for each channel of a color space.

Ei =
1

N

N∑
j=1

pij (2.1)

σi =

√√√√ 1

N

N∑
j=1

(pij − Ei)2 (2.2)

Si = 3

√√√√ 1

N

N∑
j=1

(pij − Ei)3 (2.3)

where i is the index of channel, N is total number of pixels in the im-

age and pij is the j-th pixel value in channel i. One drawback of color

moments is that they are not exclusively representative of what they

characterize. Moreover, they are unable to carry the spatial information.

• Texture features

– Co-occurrence Texture [Tuceryan & Jain 1993]: Spatial gray level co-

occurrence estimates image properties related to second-order statistics.

Given a displacement vector d = (dx, dy), the gray level co-occurrence

matrix Pd of size N × N for d is calculated in such a way that the en-

try (i, j) of Pd is the number of occurrences of the pair of gray levels

i and j which are a distance d apart. Here, N denotes the number of

gray levels considered. Usually, the matrix Pd is not directly used in
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Table 2.1: Some examples of texture features extracted from gray level co-occurrence
matrices.

Texture feature Formula

Energy
∑

i

∑
j P

2
d (i, j)

Entropy −
∑

i

∑
j Pd(i, j) logPd(i, j)

Contrast
∑

i

∑
j(i− j)2Pd(i, j)

Homogeneity
∑

i

∑
j
Pd(i,j)
1+|i−j|

an application and a set of more compact features are computed instead

from this matrix, such as in Table 2.1. The main problem of gray level

co-occurrence matrices is that there is no well established method for se-

lecting the optimal displacement vector d while computing co-occurrence

matrices for different values of d is not feasible. In the practice, four dis-

placement vectors are commonly used: d = (1, 0), d = (0, 1), d = (1, 1)

and d = (1,−1).

– Texture Auto-correlation [Tuceryan & Jain 1993]: The basic principle of

texture auto-correlation is to compare the original image with a shifted

one. Suppose that we consider the displacements according to each axis

dx and dy, then the auto-correlation function can be defined as follows:

f(dx, dy) =
MN

(M − dx)(N − dy)

∑M−dx
i=1

∑N−dy
j=1 I(i, j)I(i+ dx, j + dy)∑M
i=1

∑N
j=1 I

2(i, j)

(2.4)

where we consider an image with size M ×N and I(i, j) is the gray level

of the pixel in the position (i, j). It measures the coarseness of an image

by evaluating the linear spatial relationships between texture primitives.

Large primitives give rise to coarse texture (e.g. rock surface) and small

primitives give rise to fine texture (e.g. silk surface). If the primitives

are large, it decreases slowly while increasing the distance whereas it

decreases rapidly if texture consists of small primitives. However, if the
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primitives are periodic, then the auto-correlation function increases and

decreases periodically with the distance.

– Local Binary Patterns [Takala et al. 2005]: Local binary patterns (LBP)

are defined as a gray-scale invariant texture measure, derived from a

general definition of texture in a local neighborhood. Let gc be the gray

level value of a center pixel (xc, yc). We consider a circularly symmetric

set of its neighbors gp, p = 0, 1, ..., P − 1. Then a P -bit binary number

for the center pixel (xc, yc) can be computed as follows:

(f(g0 − gc), f(g1 − gc), ..., f(gP−1 − gc)) (2.5)

where

f(x) =


1 x ≥ 0

0 x ≤ 0
(2.6)

Now, a binomial weight 2p is assigned to each sign f(gp−gc), transforming

the differences in a neighborhood into a unique LBP code. The code

characterizes the local image texture around (xc, yc):

LBP (xc, yc) =
P−1∑
p=0

2pf(gp − gc) (2.7)

After calculating the LBP code for each pixel of an image, we can finally

compute a histogram with 2P bins for the whole image. A typical value

of P is 8, meaning that the 8 direct neighbor pixels around the center

pixel are considered. Moreover, multiple scales LBP can be obtained by

enlarging the radius of the neighbor circle.

– Gabor [Manjunath & Ma 1996]: Gabor filter (or Gabor wavelet) is widely

adopted to extract texture features from the images for image anal-

ysis and has been shown to be very efficient [Manjunath & Ma 1996]

[Zhang et al. 2000]. Basically, Gabor filters are a group of wavelets, with

each wavelet capturing energy at a specific frequency and a specific direc-

tion. Expanding a signal using this basis provides a localized frequency
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description, therefore capturing local features/energy of the signal. Tex-

ture features can then be extracted from this group of energy distribu-

tions. The scale (frequency) and orientation tunable property of Gabor

filter makes it especially useful for texture analysis. Experimental evi-

dence on human and mammalian vision supports the notion of spatial-

frequency (multi-scale) analysis that maximizes the simultaneous local-

ization of energy in both spatial and frequency domains [Daugman 1985].

• Shape features

– Edge Histogram [Won 2004]: The edge histogram descriptor describes

edge distribution with a histogram based on local edge distribution in an

image. It basically represents the distribution of 5 types of edges (namely

vertical, horizontal, 45-degree diagonal, 135-degree diagonal and non-

directional edges) in each local area called a sub-image, which is defined

by dividing the image space into 4× 4 nonoverlapping blocks. Thus, the

image partition always yields 16 equal-sized sub-images regardless of the

size of the original image. In each of them a histogram of edge distribution

with 5 bins corresponding to the 5 types of edges is computed, leading

to a final histogram with 16 × 5 = 80 bins after concatenation. An

extended version of edge histogram is also proposed by the same authors

to partition the image into 4× 1, 1× 4 and 2× 2 sub-images in order to

include the information about edge distribution in different scales.

– Histogram of Oriented Gradients [Dalal & Triggs 2005]: Histogram of

oriented gradients is based on evaluating well-normalized local histograms

of image gradient orientations in a dense grid. The main idea is that local

object appearance and shape can often be characterized rather well by

the distribution of local intensity gradients or edge directions, even with-

out precise knowledge of the corresponding gradient or edge positions.

In practice this is implemented by dividing the whole image into small

sub-images, for each one accumulating a local 1-D histogram of gradient

directions or edge orientations over the pixels of the sub-image. The com-
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Figure 2.2: The extraction of SIFT feature

bined histogram entries form the representation. For better invariance

to illumination and shadowing, it is also useful to contrast-normalize the

local responses before using them. This can be done by accumulating a

measure of local histogram "energy" over somewhat larger spatial blocks

and using the results to normalize all of the sub-images in the block.

In addition to all these features, we would like to mention an extremely powerful

and widely used feature: Scale Invariant Feature Transform (SIFT), proposed by

David G. Lowe [Lowe 2004]. SIFT is invariant to image scale and rotation, and is

shown to provide robust matching across a substantial range of affine distortion,

change in 3D viewpoint, addition of noise, and change in illumination. Moreover it

is highly distinctive, in the sense that a single feature can be correctly matched with

high probability against a large database of features from many images. All these

properties ensure its universal success in computer vision and pattern recognition,

especially for visual object categorization tasks, such as in the Pascal challenge

[Everingham et al. 2007].

A typical SIFT descriptor, as presented in [Lowe 2004], is obtained by dividing

the local patch into 4×4 = 16 subregions and then by computing a histogram with 8

orientation bins of local oriented gradients in each of these subregions, thus forming

a 16 × 8 = 128 dimensional vector. Its extraction principle is illustrated in Figure

2.2.
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Although the original SIFT is dedicated to gray-level images, recently, it has

been naturally extended to color spaces by running SIFT extraction algorithm

in each color channel respectively and then by concatenating the obtained vec-

tors. A series of color SIFT descriptors has been evaluated for object recognition

[van de Sande et al. 2008] and some of them have been used to construct the win-

ning VOC system in [Everingham et al. 2007]. Some examples are listed below:

• RGB-SIFT: SIFT descriptors are extracted over all three channels of RGB

color space and then concatenate them to form the final representation.

• HSV-SIFT: HSV stands for Hue, Saturation, and Value, and is also often

called HSB (B for Brightness). It is a cylindrical-coordinate representation

of points in a RGB color space and can be transformed from RGB using the

following formulae. Let consider M = max(R,G,B), m = min(R,G,B) and

C = M −m, then

H =



0 if C = 0

(60◦ × G−B
C

+ 360◦) mod 360◦ if M = R

60◦ × B −R
C

+ 120◦ if M = G

60◦ × R−G
C

+ 240◦ if M = B

(2.8)

S =


0 if M = 0

1− m

M
otherwise

(2.9)

V = M (2.10)

The same feature extraction technique as RGB-SIFT is applied on HSV color

space to generate HSV-SIFT.

• Opponent SIFT (O-SIFT): O-SIFT describes all the channels using SIFT

descriptors in the opponent color space, which is transformed from RGB as

O1 =
R−G√

2
(2.11)
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O2 =
R+G− 2B√

6
(2.12)

O3 =
R+G+B√

3
(2.13)

The information in the O3 channel is equal to the intensity information, while

the other channels describe the color information in the image.

• C-SIFT: C-SIFT can be seen as a normalized version of O-SIFT, which works

in the normalized opponent color space (O1
O3
, O2
O3
, O3), eliminating the remaining

intensity information from O1 and O2 channel thus being invariant to intensity

changes.

2.2.2 Classification strategies

2.2.2.1 Global appearance and sliding window

The earliest works concerning visual object categorization have mainly fo-

cused on the global description of images by using color or texture histogram

[Niblack et al. 1993] [Schiele & Crowley 2000] for example, which is generally based

on the statistical analysis of the whole image (or image regions) pixel by pixel.

This representation can cooperate with the so-called "sliding window" technique

[Papageorgiou & Poggio 2000] [Viola & Jones 2001] to perform generic object cate-

gorization. As the principle of this technique is to slide a window across the image

at different scales and to classify each such sub-window as containing the target

object or not, its advantages are that it can find the localization of the object at

the same time and is easy to implement because of its simple detection protocol.

However, it often fails to detect non-rigid deformable objects or the objects that

can not be shaped by a rectangular. In practice, it usually needs a large dataset of

cropped images for training and thus requires a high computational cost. All these

limitations have encouraged researchers to pay more attention to the part-based

methods.
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2.2.2.2 Part-based models

One theory of biological vision [Palmer 1977] [Logothetis & Sheinberg. 1996]

gives a theoretical support for such part-based methods [Agarwal & Roth 2002]

[Mohan et al. 2001] [Weber et al. 2000] [Felzenszwalb & Huttenlocher 2005]

[Ullman et al. 2001]. According to this theory, the representation used by humans

for identifying an object consists of the parts that constitute the object, together

with structural relations over these parts that define the global geometry of the

object.

In this category of methods, images are represented by a set of object parts and

their spatial connectivity in the image. [Mohan et al. 2001] considers distinctive

higher-level parts that are rich in information content for a specific class of interest,

namely person. It uses separate classifiers to detect different parts of person in the

image, such as heads, arms and legs, and then train a final classifier to give the final

decision. But the fact that it requires the object parts to be manually defined and

separated for training the individual part classifiers makes it difficult to be used with

other object classes. So [Weber et al. 2000] tries to automatically identify distinctive

parts in the training set by applying a clustering algorithm to patterns selected by

an interest operator and the objects are represented as flexible constellations of

rigid parts. Then a generative probabilistic model is learned over these parts to

get the final result. [Agarwal & Roth 2002] follows globally the same approach as

[Weber et al. 2000], but in this case, a classifier is learned over parts instead of

using a probabilistic model. Other approaches, including [Ullman et al. 2001] in

which objects within a class are represented in terms of common image fragments

and [Felzenszwalb & Huttenlocher 2005] which represent an object by a collection of

parts arranged in a deformable configuration (spring-like connections between pairs

parts) using the pictorial structure, have also shown to be effective.

However, all those methods are not designed to handle large viewpoint variations

or severe object deformations. Moreover, learning and inference problems for spatial

relations remain very complex and computationally expensive.
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2.2.2.3 Bag of features models

Recently, most works in the literature make use of a "bag of features" kind of ap-

proach [Dance et al. 2004] [Rothganger et al. 2006] and has shown its effectiveness,

obtaining the best performance in Pascal VOC contest [Everingham et al. 2007]

[Everingham et al. 2008]. Its general principle is to adapt the "bag of words" repre-

sentation for text categorization [Salton & McGill 1983] to VOC problem and has

first been applied on images on texture recognition [Leung & Malik 2001]. In fact,

this kind of models can be seen in some sense as a special part-based model, without

considering the spatial connectivity between parts.

These methods view images as an orderless distribution of local image features,

typically using the popular SIFT features [Lowe 2004] extracted from salient im-

age regions, called "interest points" [Lowe 2004] [Mikolajczyk & Schmid 2004] or

more simply from points extracted using a grid [Fei-Fei & Perona 2005]. The set

of these local features is then characterized by a histogram of "visual keywords"

from a visual vocabulary which is learned from the training set by a hard assign-

ment (quantization) or a soft assignment through Gaussian Mixture Model (GMM).

These distributions can thus be compared to estimate the similarities between im-

ages and categorized through a machine learning process, for instance SVM.

Although the "bag of features" approach has achieved the best perfor-

mance in the last Pascal VOC contests, the overall performance, with an av-

erage precision around 60% over 20 classes achieved by the best classifier in

[Everingham et al. 2007], is still far from real application-oriented requirements.

Moreover, the size of visual vocabulary which is the basis of this approach is hard to

be fixed as there are no evident similar concepts in images as compared to a textual

document.

2.2.3 Generative and discriminative methods

There exist generally two main kinds of approaches in the literature for making

the final decision of classification: generative method and discriminative method.

Suppose x being the set of data representing an image to be classified and Cm, m =
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1, ...,M being a set of class labels in consideration, the generative model will estimate

the posterior probability p(Cm|x) in the probabilistic framework, according to which

x will be classified into the target class (for instance, if we wish to minimize the

number of misclassifications, we assign x to the class having the largest posterior

probability). In the case of discriminative models, the objective is to learn the precise

boundaries between the different classes of samples in a multi-dimensional space

(often the feature space) so that the classification can be performed by considering

the position of the image projection in this space.

2.2.3.1 Generative method

Using Bayes theorem, the posterior probability p(Cm|x) can be expressed in the

following form:

p(Cm|x) =
p(x|Cm)p(Cm)

p(x)
(2.14)

where p(Cm) is the prior probability of the class Cm and p(x|Cm) is probability

density of class Cm, called likelihood. p(x) is the probability density over all the

classes. As it is constant when considering the posterior probability for each class,

its computation is not necessary. Moreover, if we know that the prior probabilities

are equal, or if we make this assumption, the decision can be realized only depending

on the likelihood function p(x|Cm) for each class.

A typical generative method relies on a Gaussian Mixture Model (GMM)

[Bishop 2007] to model the distribution of the training samples. The set of a GMM

parameters can be efficiently learned by using Expectation Maximization algorithm

(EM) [Dellaert 2002]. Recall the a GMM distribution in the form:

p(x) =

K∑
k=1

πkN (x|µk,Σk)

=
K∑
k=1

πk
1

(2π)
D
2 |Σk|

1
2

exp[−1

2
(x− µk)TΣ−1

k (x− µk)]

(2.15)

where µk and Σk are respectively mean and covariance of the k-th gaussian (k-

th component of a GMM which contains a total of K gaussians) and D is the
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Figure 2.3: A graphical example of a 2-components GMM

dimensionality of data. The parameters πk are called mixing coefficients and must

satisfy

0 ≤ πk ≤ 1 together with
K∑
k=1

πk = 1 (2.16)

Figure 2.3 shows graphically an example of a 2-components GMM.

If we consider a GMM for modeling the specific class Cm, then the log of the

likelihood function is given by:

ln(p(x|Cm)) = ln(p(x|µ,Σ, π)) = ln

N∏
n=1

{
K∑
k=1

πkN (xn|µk,Σk)}

=
N∑
n=1

ln{
K∑
k=1

πkN (xn|µk,Σk)}

(2.17)

where N is the number of feature vectors in x. Then, we can employ the EM

algorithm to maximize the likelihood function for class Cm with respect to the pa-

rameters of the GMM, according to the following steps (see details in [Bishop 2007]):

1. Initialize all the parameters and evaluate the initial value of the log likelihood.
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2. E step. Evaluate the responsibilities using the current parameter values:

γkn =
πkN (xn|µk,Σk)∑K
j=1 πkN (xn|µj ,Σj)

(2.18)

3. M step. Re-estimate the parameters using the current responsibilities

µnewk =
1

Nk

N∑
n=1

γknxn (2.19)

Σnew
k =

1

Nk

N∑
n=1

γkn(xn − µnewk )(xn − µnewk )T (2.20)

πnewk =
Nk

N
(2.21)

where Nk =
∑N

n=1 γ
k
n.

4. Evaluate the log likelihood ln(p(x|µ,Σ, π)) and check for convergence of ei-

ther the parameters or the log likelihood. If the convergence criterion is not

satisfied, return to step 2

After having obtained the optimized GMMs for all the classes, a new sample xnew

is assigned to the class having the largest value of the log likelihood function given

this xnew.

The generative method offers the advantage to easily handle adding new classes

or new data for a certain class by training the model only for the concerned class

rather than for all the classes. However, the discriminative method has been shown

to be more efficient for the classification problems, especially with a relatively large

number of training samples [Bouchard & Triggs 2004].

2.2.3.2 Discriminative method

Discriminative method directly estimates the posterior probabilities without at-

tempting to model the underlying probability distributions. Many discriminative

classifiers are reported in the literature. Some of the most representative ones are

presented below.
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Support vector machines Among all the kernel-based discriminative classifiers,

Support Vector Machines (SVM) proposed by Vanpik [Cortes & Vapnik 1995] based

on his statistical learning theory [Vapnik 1995] is the most famous and popular one

[Cortes & Vapnik 2005] [Cristianini & Shawe-Taylor 2000] [Ruan et al. 2010]. Let

consider a set of N labeled training samples (xi, yi) i = 1, ...N where xi ∈ RD

is the feature vector representing an image with D dimension while yi ∈ {1,−1}

is the image label. SVM constructs a hyperplane with maximal margin in a high

or infinite dimensional space to linearly separate these samples into 2 predefined

categories respectively through solving the following optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

subject to yi(w
Tφ(xi)− b) ≥ 1− ξi, i = 1, ..., N

ξi ≥ 0.

(2.22)

Here training samples xi are mapped into a higher or infinite dimensional space by

the function φ, in which the separation of these training samples is presumably linear

and much easier than in the original finite dimensional space. Indeed, in most of

situations, classes are not linearly separable in the original space. C is the penalty

parameter of the error term which controls the penalty level of the misclassified

samples. Finally we can get the decision function in the form:

f(x) =

N∑
i=1

αiyiK(x, xi) + b (2.23)

where αi and b are obtained parameters in the solving procedure, x is a new sample

to be classified. Here we should especially mention the kernel function K as in

(2.24), which is extremely important to achieve a good performance using SVM for

classification. The choice of this kernel function and the tuning of its parameters

will directly impact the final result. We will introduce some basic and commonly

used kernel functions later.

K(x, xi) = φ(x)Tφ(xi) (2.24)
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The original SVM is binary classifier, whereas many image classification prob-

lems have multiple classes, much more than 2. Two common strategies are designed

to deal with this situation: one-against-all and one against-one. The former strat-

egy will construct one SVM binary classifier for each class taking the samples in

this considered class as the positive samples and all the other as the negative ones.

However, the latter strategy will construct one SVM binary classifier for each pair

of classes. Classification is done in a max-wins voting way, in which every classifier

assigns the sample to one of the two classes, then the vote for the assigned class is

increased by one vote, and finally the class with most votes determines the sample

classification, such as C-SVC in LIBSVM package [Chang & Lin 2001].

Multiple kernel learning SVM uses only one kernel for solving learning prob-

lems like classification or regression and thus is short of some flexibility. Therefore,

using multiple kernels instead of a single one is now largely researched and some

works have already demonstrated its ability of improving classification performance

[Lanckriet et al. 2004]. The combination of multiple kernels is defined as follows:

K(x, xi) =

M∑
m=1

βmKm(x, xi)

with βm ≥ 0,

M∑
m=1

βm = 1

(2.25)

where M is the total number of kernels, βm is kernel weight which is optimized

during training. Each basis kernel Km can either be different kernels with different

parameter configurations or use different subsets of the extracted features. So MKL

can also be interpreted as a fusion technique in some sense. The final decision

function of MKL can be in the following form, very similar to the one of SVM

except the combined kernels:

f(x) =

N∑
i=1

αiyi

M∑
m=1

βmKm(x, xi) + b (2.26)
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where αi and b are the obtained parameters after training, the same as in SVM

problem. Here αi and βm can be learned in a joint optimization problem as in

[Bach et al. 2004] [Rakotomamonjy et al. 2008].

A natural extension of the precedent Simple MKL, called Group-Sensitive MKL

(GS-MKL) by the authors, is presented in [Yang et al. 2009a]. An intermediate

notion "group" between object categories and individual images has been introduced

to MKL framework to seek a trade-off between capturing the diversity and keeping

the invariance for each class in training classifiers. In GS-MKL, the kernel weights

βm not only depend on the corresponding kernel functions, but also on the groups

that two compared images belong to. Thus, the combined kernel in (2.25) and the

decision function in (2.26) are respectively rewritten as

K(x, xi) =
M∑
m=1

βc(x)
m βc(xi)m Km(x, xi) (2.27)

f(x) =

N∑
i=1

αiyi

M∑
m=1

βc(x)
m βc(xi)m Km(x, xi) + b (2.28)

where c(x) and c(xi) are the group ids of image x and xi respectively. Although

GS-MKL is shown to be very efficient for image classification in the experiments

on several datasets, the optimal way to get group ids remains debatable. Actually,

the authors use some clustering methods, namely K-means [Gersho & Gray 1991]

and probabilistic Latent Semantic Analysis (pLSA) [Hofmann 1998], to get a set of

groups whose number is manually defined. However, there is no obvious proof which

can help to choose the optimal number of groups and the corresponding clustering

method.

Kernel functions The discriminative power of SVM depends for a large part on

the kernel selection. Thus, the choice for an appropriate kernel is of first impor-

tance. Unfortunately, to the best of our knowledge, until now, kernel selection for

a certain application is generally done empirically and experimentally, or in some

case accomplished by cross-validation. There exist many kernel functions in the

literature. The most representative ones are the followings:
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• Linear: K(x, xi) = xTxi

• Polynomial: K(x, xi) = (γxTxi + r)p, γ > 0

• Radial Basis Function (RBF): K(x, xi) = exp(−γ‖x− xi‖2), γ > 0

• Sigmoid: K(x, xi) = tanh(γxTxi + r)

• chi-square: K(x, xi) = 1−
∑n

j=1
(xj−xji )2

1
2

(xj+xji )

• Pyramid match [Grauman & Darrell 2005] : It works by placing a sequence of

increasingly coarser grids over the feature space and taking a weighted sum of

the number of matches that occur at each level of resolution. Suppose x and

xi have n dimensions and H l
x and H l

xi denote the histogram of x and xi at

the resolution l in which we have 2l bins along each dimension, l = 0, ..., L, so

that H l
x(j) and H l

xi(j) are the number of points from x and xi that fall into

the j-th bin of the grid. Then the number of matches at level l is given by the

histogram intersection function:

I(H l
x, H

l
xi) =

2nl∑
j=1

min(H l
x(j), H l

xi(j)) (2.29)

If we abbreviate I(H l
x, H

l
xi) to I l, finally we get the pyramid match kernel:

KL(x, xi) = IL +

L−1∑
l=0

1

2L−l
(I l − I l+1)

=
1

2L
I0 +

L∑
l=1

1

2L−l+1
I l

(2.30)

Here, the above γ, r, p and L are all kernel parameters.

Other typical discriminative classifiers We will briefly present here several

other typical discriminative classifiers, some of them being used later in our experi-

mentations.

• Multilayer perceptron [Rosenblatt 1962]: It is a feed forward artificial neural

network model that maps sets of input data onto a set of appropriate output. It
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consists of multiple layers of nodes in a directed graph which is fully connected

from one layer to the next. The back-propagation technique is usually used

for training the network.

• Decision tree: It is a classifier in the form of a tree structure, where each node

is either a leaf node which indicates the class of samples, or a decision node

which specifies some test to be carried out on a single attribute value, with

one branch and sub-tree for each possible outcome of the test. There are a

variety of algorithms for building decision trees, such as ID3 [Quinlan 1986]

and C4.5 [Quinlan 1993]

• K-nearest neighbor [Shakhnarovich et al. 2005]: It is an instance-based learn-

ing algorithm which classifies a sample by calculating the distances between

this sample and the samples in the training set. Then, it assigns this sample

to the class that is most common among its k-nearest neighbors.

• Adaboost: First introduced by Freund and Schapire [Freund & Schapire 1997],

it calls a weak classifier repeatedly in a series of rounds t = 1, ..., T . For each

round, the weak classifier is forced to focus on the samples incorrectly classified

by the previous weak classifier through increasing the weights for these hard

samples. Finally, a strong classifier can be created by linearly combining these

weak classifiers.

2.2.4 Fusion strategies

Fusion strategy is usually used in multimedia data analysis [Ayache et al. 2007a].

Indeed, generally three modalities have to be handled in videos, namely the auditory,

the textual, and the visual modality. Thus, a fusion step is necessary to combine the

results of the analysis of these modalities considered independently in a first step

[Snoek et al. 2005]. The same idea can be employed in visual object categorization,

since, in order to extract a visual information as exhaustive as possible, different

types of features from the same image can be computed to form several information

streams. These streams need to be fused in order to elaborate a single decision from
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several sources of information. This fusion of different types of features can follow

several strategies:

• Early fusion: An early fusion is obtained when grouping all the features to-

gether in order to build a single feature vector that will feed the classifier.

• Late fusion: A late fusion makes use of "channels" with a separate classifier

for each kind of features, the outputs of these classifiers being merged later

[Snoek et al. 2005] in a process similar to boosting [Freund & Schapire 1999].

Between these two strategies, numerous intermediate strategies can be conceivable

which consist in generating intermediate classes from different sources and to take

a final decision based on these intermediate classes [Ayache et al. 2007b]. If we

take our 3 types of feature which are used in our experimentation as an example,

namely SIFT, Region based Color Moments (RCM) and Region based Histogram of

Segments (RHS), the scheme of early fusion and late fusion can be illustrated as in

Figure 2.4

Figure 2.4: General scheme for early fusion (left) and late fusion (right)

2.3 Feature selection

With the increasing trend of high dimensional data processing, feature selection

becomes more and more important and even essential in most of pattern recogni-

tion and machine learning problems. Indeed, when a pattern classification problem

has to be solved, the common approach for the feature extraction is to compute a

wide variety of features that will carry as much as possible different information to

perform the classification of samples. Thus, numerous features are used whereas,
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generally, only a few of them are relevant for the considered classification task.

However, algorithms in these domains are often known to suffer from the so-called

"curse of dimensionality" [Bellman 1961] if too many input features extracted from

the samples are directly fed into the classifier without selection, especially when

these features are redundant and irrelevant to the considered problem. Concretely,

including these irrelevant features in the feature set used to represent the samples to

classify may lead to a slower execution of the classifier, less understandable results,

and much reduced accuracy [Hall & Smith 1997]. In this context, the aim of feature

selection is three-fold: improving the prediction performance of the predictors, pro-

viding faster and more cost-effective predictors, and gaining a deeper insight into

the underlying processes that generated the data.

With the objective of selecting the most discriminant features to improve the

classification accuracy with a low complexity, we present in this section a novel

embedded feature selection approach, called ESFS, based on the well-known search

method SFS [Whitney 1971]. It relies on the simple principle to add incrementally

most relevant features and merge them in an embedded way thanks to the concept

of combined mass functions from the evidence theory which also offers the benefit

of obtaining a computational cost much lower than the one of original SFS.

2.3.1 Literature review

There exist considerable works in the literature dealing with feature selec-

tion. Interesting overviews include [Kohavi & John 1997] [Guyon & Elisseff 2003]

[Combarro et al. 2005] [Liu & Yu 2005]. In recent studies, evaluation criterion and

search strategy are the two main aspects attracting attention and we will also follow

these two aspects to begin the presentation of related works.

2.3.1.1 Evaluation criterion

Indeed, the notion of "optimal" subset is always related to a certain evaluation

criterion and, generally, different evaluation criteria would give different "optimal"

subsets. Typically, the evaluation criterion is used to evaluate the efficiency of
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feature subsets selected from the original set within a particular feature selection

process. In other words, it is the indication of the discrimination ability of a feature

subset for classifying a sample into the corresponding class.

According to the evaluation criterion used and the dependence to the

classifier, feature selection methods can be categorized into three main cat-

egories: filter approaches, wrapper approaches and embedded approaches

[Kojadinovic & Wottka 2000].

Filter methods include Fisher filter [Narendra & Fukunaga 1977], Relief method

[Arauzo-Azofra et al. 2004], Focus algorithm [Almuallim & Dietterich 1991], Or-

thogonal Forward Selection [Mao 2004], etc. They generally evaluate the statistical

performance of the features over the data without considering the proper classifiers

and use their intrinsic properties as the evaluation criterion, such as class separabil-

ity measures. The irrelevant features are filtered out before the classification process

[Hall & Smith 1997]. Their main advantage is their low computational complexity

which makes them very fast. Their main drawback is that they are not optimized

to be used with a particular classifier as they are completely independent of the

classification stage.

Wrapper methods, on the contrary, evaluate feature subsets with the classifi-

cation algorithm in order to measure their efficiency according to the classifica-

tion results (the correct classification rate is usually used as the evaluation crite-

rion) [Kohavi & John 1997]. Thus, feature subsets are generated thanks to some

search strategy, and the feature subset which leads to the best correct classifica-

tion rate is kept. Among algorithms widely used, one can mention Genetic Algo-

rithm (GA) [Yang & Honavar 1998] [Huang et al. 2007], Sequential Forward Selec-

tion (SFS) [Whitney 1971], Plus l - Take away r algorithm [Stearns 1976], Sequen-

tial Floating Forward Selection (SFFS) [Pudil et al. 1994b] and Oscillating Selection

(OS) [Somol & Pudil 2000]. The computational complexity is higher than the one of

filter methods but selected subsets are generally more efficient, even if they remain

sub-optimal [Spence & Sajda 1998].

In embedded methods, similarly to wrapper methods, the feature selection is

linked to the classification stage and uses the classification result as the evaluation
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criterion. This link is in this case much stronger as the feature selection in em-

bedded methods is included into the classifier construction. Such methods include

recursive partitioning methods for decision trees such as ID3 [Quinlan 1986], C4.5

[Quinlan 1993] [Quinlan 1996] and CART [Breiman et al. 1984], or the recently pro-

posed Recursive Feature Elimination (RFE) approach, which is based on the support

vector machines (SVM) theory and has shown its good performance for the gene

selection [Guyon et al. 2002] [Rakotomamonjy 2003]. Embedded methods offer the

same advantages as wrapper methods concerning the interaction between the fea-

ture selection and the classification. Moreover, they present a better computational

complexity since the selection of features is directly included into the classifier con-

struction during the training process.

2.3.1.2 Search strategy

As mentioned previously, another important aspect concerning feature selection is

the search strategy, which aims at finding the best subset based on a given evaluation

criterion. Optimal search methods and Sub-optimal search methods are generally

considered as the two main strategies for this purpose [Pudil et al. 2002], and will

be detailed below.

Exhaustive search approach is intuitively the first choice when one hopes to

find an optimal subset. All the possible combinations of all candidate features

are thus evaluated. However, the combinatorial property of such methods re-

quires a large amount of computational effort, especially for large scale prob-

lems, which makes them unusable in most of practical applications. Some other

accelerated search approaches, such as the Branch and Bound (B&B) algorithm

[Narendra & Fukunaga 1977], also guarantee to find the optimal subset without ex-

haustive search. But the main drawback of B&B is that it requires the evaluation

criterion used in the procedure to be monotonic. Indeed, the evaluation criterion

value should not decrease when a new feature is added into the current subset. Obvi-

ously, this requirement has limited its range of applications since most of evaluation

criteria used for feature selection could not satisfy the monotonicity condition. More-

over, even if Monte Carlo methods based on simulated annealing [Doak 1992] and
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some genetic algorithms [Yang & Honavar 1998] can also reach global optimal solu-

tion, they are also computationally impractical if the number of potential features

is large.

Since it exists severe constraints on the computation for optimal search methods,

the mainstream of research on feature selection has thus been oriented to the nu-

merous sub-optimal search methods, among which the Sequential Feature Selection

is considered to be the basic one. SFS (or correspondingly Sequential Backward Se-

lection, SBS) starts with the empty feature set (full feature set) and incrementally

add (delete) the most effective (irrelevant) feature at each stage until reaching the

desired number of features. However, once a feature is selected in SFS (removed

in SBS), it can not be deleted (re-selected) in the following stages. Thus, these

methods suffer from the so-called "nesting problem" and may fail in some situations

(fall into local minima). In order to overcome this drawback, the plus l - take away

r algorithm [Stearns 1976] and SFFS [Pudil et al. 1994b] [Pudil et al. 1994a] have

been proposed by combining SFS and SBS together.

The plus l - take away r method consists in applying SFS l times followed by r

steps of SBS with this fixed cycle of forward and backward selection repeated until

the required number of features is reached. Consequently, SFS and SBS can be

seen as the special plus l - take away r method in which (l, r) equals (1, 0) and (0, 1)

respectively. But here a new question arises: how can (l, r) be set to the appropriate

values? Actually, there does not exist an explicit way of predicting the best values

of l and r to obtain good enough solutions with a moderate amount of computation.

This has motivated researchers to consider the conditional inclusion and exclusion

of features controlled by the value of the evaluation criterion itself which is key idea

of SFFS. It consists in applying after each forward step several backward steps, the

number of which is automatically determined according to the rule that the resulting

subsets are better than the previously evaluated ones at that level. As a result, there

is no parameter tuning needed for SFFS and it can make more than one sweep to

obtain good performance compared to plus l - take away r algorithm. Jain and

Zongker’s study [Jain & Zongker 1997] has demonstrated the effectiveness of SFFS

through a comparison with other search strategies of feature selection. Unlike the
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two methods presented above, OS [Somol & Pudil 2000] directly works on the subset

with a desired size and repeatedly modifies it by applying oscillation cycle composed

of a down-swing for removing worst features followed by a up-swing for adding best

features. Depending on the way the initial subset is built, OS may be looked upon

as a universal tuning mechanism to improve solutions obtained beforehand by any

other methods, or can be treated as a traditional feature selection method if a

random initialization is used. Furthermore, OS algorithm can be stop after running

for a predefined time and still allows to obtain a reasonable solution. Thanks to this

property, it can be used in both of the quality first and speed first applications.

2.3.2 ESFS: an Embedded Sequential Forward Selection

Since an exhaustive search for the best subset of features, leading to explore a space

of 2n subsets (n being the number of candidate features), is not feasible in most

of practical applications, we have turned to a heuristic approach for the feature

selection. In this section, we propose a new embedded feature selection method

called ESFS [Fu et al. 2009a], inspired from the wrapper method SFS since it relies

on the simple principle to add incrementally most relevant features. Moreover, we

have provided here two innovations compared to the classical classifier dependent

sub-optimal selection method SFS. Firstly, the range of subsets to be evaluated in

the forward process is extended to multiple subsets for each size in order to improve

the search quality. The computational cost increase is compensated by considering

at each step only a subset composed of the best individual features. Secondly, we

make use of the concept of mass function from the evidence theory which allows to

elegantly merge feature information and process classification in an embedded way,

leading to a lower computational cost than original SFS.

In our feature selection scheme, the concept of "belief mass" from the evidence

theory is introduced into the processing of features and plays an important role. In

order to better understand this notion and how it is integrated into our approach,

we would like first of all to present a brief overview of the evidence theory before

going deeper into ESFS scheme.
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2.3.2.1 Overview of the evidence theory

The evidence theory introduced by Dempster [Dempster 1968] and completed by

Shafer [Shafer 1976] offers a framework allowing the reasoning on knowledge that

can be uncertain, incomplete, ambiguous and leading to conflicts. This theory relies

on belief mass functions which are a generalization of probability and possibility

measures.

To do this, a set of definition Ω is defined as a set of n hypotheses Hi that are

mutually exclusive:

Ω = {H1, H2, . . . ,Hn} (2.31)

The reasoning does not only concern hypotheses of Ω but is much richer as

it allows to consider all possible combinations of the hypotheses in Ω which are

contained in the set of discernment 2Ω:

2Ω = {A/A ⊆ Ω}

= {∅, {H1}, {H2}, . . . , {Hn}, {H1, H2}, . . . ,Ω}

The confidence, or belief, we can have in a proposition A ⊆ Ω considering a

given source of information is provided by the mass function associated with this

source of information. A mass function is defined as follows:

mΩ : 2Ω → [0, 1] (2.32)

A → mΩ(A) (2.33)

where:

mΩ(∅) = 0 (2.34)∑
A⊆Ω

mΩ(A) = 1 (2.35)

Focal elements are propositions A such that mΩ(A) > 0. Thus, mΩ(A) expresses
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the confidence we have in proposition A according to the source of information

modelled by mΩ. If mΩ(Ω) = 1, then the source is completely uncertain whereas if

mΩ(Hi) = 1, then the source is perfect for hypothesis Hi.

One of the most interesting feature of the evidence theory is its ability to combine

different mass functions from several sources of information. The most commonly

used fusion operator is a conjunctive orthogonal sum called TBM (Transferable

Belief Model). Let mΩ
S1 and mΩ

S1 be two mass functions from two independent

sources of information S1 and S2. Then, the TBM combined mass function mΩ
S1∩S2

is given by:

mΩ
S1∩S2(A) =

∑
B∩C=A

mΩ
S1(B).mΩ

S2(C) (2.36)

where A, B and C are subsets of Ω.

A conflict can appear if mΩ
S1∩S2(∅) 6= 0. This indicates that the two sources

of information S1 and S2 lead to contradictory propositions. Thus, checking the

conflict value allows to determine if measures are reliable and coherent.

The previous combination rule does not make use of any possible conflict. So

other rules has been defined to overcome this drawback and we would like to mention

the Dempster’s combination rule and the Yager’s combination rule here for examples.

LetmΩ
S1 andm

Ω
S1 be two mass functions from two independent sources of information

S1 and S2. Then, the Dempster’s combined mass function mΩ
S1⊕S2 is computed for

a proposition A ⊆ Ω \ ∅ as follows:

mΩ
S1⊕S2(A) =

∑
B∩C=Am

Ω
S1(B).mΩ

S2(C)

1−mΩ
S1⊕S2(∅)

(2.37)

where

mΩ
S1⊕S2(∅) =

∑
B∩C=∅

mΩ
S1(B).mΩ

S2(C) (2.38)

With this rule, the conflict mΩ
S1⊕S2(∅) is used to weigh the masses of the mass

function after combination. However, the Yager’s rule treats the conflict in another
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way and reassigns it to the whole set of definition Ω whose formula is as follows:

∀A ⊆ Ω \ {∅,Ω}, mΩ
S1,S2(A) =

∑
B∩C=A

mΩ
S1(B).mΩ

S2(C) (2.39)

mΩ
S1,S2(∅) = 0 (2.40)

mΩ
S1,S2(Ω) =

∑
B∩C=Ω

mΩ
S1(B).mΩ

S2(C) +
∑

B∩C=∅

mΩ
S1(B).mΩ

S2(C) (2.41)

Once mass functions from the different sources of information at our disposal

have been combined into a single mass function, using one of the previous rules,

a final decision should be taken regarding the choice of a proposition. To do this,

several decision measures can be used based on the evidence mass function, the

belief, the plausibility or the pignistic probability. In each case, the proposition

having the highest value will be chosen. The belief (credibility) of a proposition A

is given by:

∀A ⊆ Ω, bel(A) =
∑
∅6=B⊆A

mΩ(B) (2.42)

The plausibility of a proposition A is given by:

∀A ⊆ Ω, pl(A) =
∑

A∩B 6=∅

mΩ(B) (2.43)

The plausibility verifies pl(A) = 1 − bel(Ā) and bel(A) ≤ P (A) ≤ pl(A) where

P (A) is the probability of the proposition A.

At last, the pignistic probability is given by:

BetP (A) =
∑
B⊆Ω

‖A ∩B‖
‖B‖

m∗Ω(B) (2.44)

where ‖A‖ is the cardinal of A and m∗Ω(A) = mΩ(A)
1−mΩ(∅) .

This definition of mass functions from the evidence is used in our model in order

to represent the source of information given by each feature, to combine them easily

and to provide a decision values which allows to use them as embedded classifiers.
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2.3.2.2 ESFS scheme

A heuristic feature selection algorithm can be characterized by its stance on four

basic issues that determine the nature of the heuristic search process. First, one

must determine the starting point in the space of feature subsets, which influences

the direction of search and operators used to generate successor states. The second

decision involves the organization of the search. As an exhaustive search in a space

of 2n feature subsets is impractical, one needs to rely on a more realistic approach

such as greedy methods to traverse the space. At each point of the search, one

considers local changes to the current state of the features, selects one and iterates.

The third issue concerns the strategy used to evaluate alternative subsets of features.

Finally, one must decide on some criterion for halting the search. In the following,

we bring our answers to the previous four questions.

As we have mentioned previously, the SFS algorithm starts with an empty subset

of features. The new subset Sk with k features is obtained by adding a single new

feature to the subset Sk−1 which performs the best among the subsets with k − 1

features. The correct classification rate achieved by the selected feature subset is

used as the selection criterion. In the original algorithm of SFS, there are totally

n(n+1)/2 subsets which need to be evaluated and unfortunately the optimal subset

may not be reached.

In order to avoid departure too far from the optimal performance, we proposed an

improvement of the original SFS method by extending the subsets to be evaluated.

At each step of forward selection, instead of keeping only one subset for each size

of subsets, several good quality subsets (performance above a given threshold) are

considered to be evaluated during the next step. Since remaining multiple subsets

at each step may lead to heavy computational burden, only the features selected

during the first step (subsets with a single feature), thus having the best abilities

to discriminate among classes that occur in the training data, are used for the

evaluation in posterior steps. As the features are added to the potential subsets one

by one in the SFS process, the forward process of creating a feature subset with size

k can be seen as a combination between two elements: a subset with size k− 1 and
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a single feature.

A wrapper feature selection scheme such as SFS relies on a classifier in order

to evaluate the improvement of classification accuracy as feature selection criterion.

This classifier needs to be trained and then tested at each step for each possible

feature subset. We propose to improve this process and make it less time consuming

by embedding the feature selection into the classifier construction. This is realized

by representing each feature thanks to a mass function (introduced in section 2.3.2.1)

obtained from its distribution for each class in the training data. This representation

allows not only to easily combine features (and thus to built feature subsets at each

iteration of the search process) thanks to the fusion of their corresponding mass

function, but also to make use of the combined mass function as a decision value for

classification. Thus, each subset can be considered as a new feature resulting from

the combination of a feature obtained from the previous step with a single feature

from the original selected feature set.

This procedure is detailed in the following.

Feature selection procedure The feature selection procedure by ESFS consists

of four stages that are detailed below.

Stage 1: Computation of the belief masses for the single features.

Since the features may have very different domains of variation, they are first of

all normalized into [0, 1]. Let Fn represents the n-th feature with n ∈ 1, ..., N where

N is the total number of features. Then, the normalization is performed according

to following equation:

fn =
fn0 −min(Fn)

max(Fn)−min(Fn)
(2.45)

where fn0 is the original value of the feature Fn, whereas fn is its normalized value.

The belief mass which is associated to a source of information and represents

the belief we have in a statement to be true can be obtained by different ways. In

this paper, we have considered each single feature as a source of information, and

the corresponding mass function is computed from their PDF (Probability Density

Functions). To do so, the distribution of each feature over all classes is calculated
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from the training data. Their PDF is then obtained by approximating the distribu-

tion thanks to a polynomial interpolation.

Taking the case of a 2-class classifier as an example, the classes are defined

as subset A and its complement subset AC in Ω. First, the probability densities

of the features in each of the 2 subsets are estimated from the training samples.

We define the probability density of the feature Fn in subset A as Pn(A, fn) and

the probability density in subset AC as Pn(AC , fn). According to the probability

densities, the masses of feature Fn on these two subsets can be defined as

mn(A, fn) =
Pn(A, fn)

Pn(A, fn) + Pn(AC , fn)
(2.46)

mn(AC , fn) =
Pn(AC , fn)

Pn(A, fn) + Pn(AC , fn)
(2.47)

where at any possible value of the n-th feature fn, mn(A, fn) +mn(AC , fn) = 1.

In the case of M classes, the classes are defined as A1, A2, ..., AM . The masses

of feature Fn of the i-th class Ai can be obtained as

mn(Ai, f
n) =

Pn(Ai, f
n)∑M

j=1 P
n(Aj , fn)

(2.48)

which satisfies
M∑
j=1

mn(Aj , f
n) = 1 (2.49)

For convenience, we will simplify mn(Ai, f
n) as mn(Ai).

Stage 2: Evaluation of the single features and selection of the initial set of

discriminative features.

Once the belief masses for the single features among the different classes have

been extracted from the training data, it is possible to evaluate the discriminative

power of the single features. Indeed, the mass function for a given feature can be

considered as a decision value for the classification, as mentioned in section 2.3.2.1.

Thus, each sample of a validation set is considered and the corresponding belief

over the different classes is computed from the mass function. The sample is then

assigned to the class having the highest belief. Performing this for all available
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samples in the validation set allows to compute the correct classification rate, and

thus the discriminative power, for a given single feature.

Since our goal at that step is to select the best single features, they are ordered

in descending order according to their correct classification rates Rsingle(Fn) as

F 1
s , F

2
s , ..., F

N
s , where N is the total number of features in the whole feature set.

In order to reduce the computational burden during the feature selection, an

initial feature set FSini is built of the L best features in the re-ordered feature set

according to a certain threshold for classification rates as FSini = {F 1
s , F

2
s , ..., F

L
s }.

The threshold is obtained according to the best classification rate as:

Rsingle(F
L
s ) ≥ thres1 ∗Rbest1 (2.50)

where Rbest1 = Rsingle(F
1
s ). The value of thres1 in this formula may vary for

different problems in order to reach a balance between the overall performance

and the calculation time for experiments. For example, in our work, thres1 is

experimentally set to 0.7 and around 100 features are kept above this value in our

application of image categorization.

Only the features selected in the set FSini will attend in the latter steps of

feature selection process. The elements (features) in FSini are considered as subsets

of size 1.

Stage 3: Combination of features for the generation of the feature subsets.

For iterations dealing with subsets of size k with k ≥ 2, the generation of a

new feature subset consists in the creation of a new feature by the fusion of two

original features (more precisely, their mass function) thanks to the application of

an operator of combination. Then, the resulting subsets are re-ordered and selected

according to their discriminative power as in the case of single features in stage 2.

Let note the set of all the feature subsets of size k as FSk and the set of the

selected subsets of size k as FS′k. Thus, FS1 corresponds to the original whole

feature set, and FS′1 = FSini. For k ≥ 2, the set of the feature subsets FSk is noted
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as:

FSk = Combine(FS′k−1, FSini)

= {F 1
ck, F

2
ck, ..., F

Nk
ck } (2.51)

where the operator "Combine" represents the generation of new features by

combining features from each of the two sets FS′k−1 and FSini with all the possible

combinations except those in which the elements from FSini appear in the original

features during the generation process leading to the elements of FS′k−1. F
n
ck rep-

resents the n-th generated new feature and Nk is the number of elements in the set

FSk.

Assume that M classes are considered in the classification problem. For the i-th

class Ai, the mass mn
ck for the new feature Fnck, which is generated from F uck−1 of

FS′k−1 and F vs of FSini is computed as

mn
ck(Ai) = Comb(mu

ck−1(Ai),m
v
s(Ai)) (2.52)

where mu
ck−1(Ai) and mv

s(Ai) are mass functions associated respectively with fea-

tures F uck−1 and F vs . Comb(x, y) is one of the possible combination operators (TBM

for example).

The correct classification rates of the combined new features can be obtained

from their belief masses, considered as decision values. Indeed, the class with the

highest belief mass is assigned to the data samples. The combined new features can

then be ordered in descending order according to the correct classification rates as

for FSini.

Let note the best feature from FSk as F bestck having the highest recognition rate

Rbestk .

Following the same process as the selection of FSini during the evaluation of

the single features, a threshold is set to select a certain number of subsets with size

k to take part into the next step of forward selection. The set of the best ordered
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features according to the recognition rate is noted as

FS′k = {F 1
ck
′
, F 2

ck
′
, ..., FLk

ck

′
} (2.53)

where F 1
ck
′

= F bestck and Lk is the size of FS′k set, being chosen so that R(FLk
ck

′
) ≥

thresk ∗ Rbestk . In order to simplify the selection, the threshold value thresk is set

to be the same value as thres1 (0.7) in every step without any adaptation.

Stage 4: Stop criterion and selection of the best feature subset.

The stop criterion of ESFS is reached when the best classification rate begins

to decrease while increasing the size of the feature subsets. In order to reduce the

sensitivity to local variations, the forward selection stops when the classification per-

formance continues to decrease during two steps, Rbestk < min(Rbestk−1
, Rbestk−2

).

2.3.3 Experimental results

For elaborating an image categorization system, efficient classifier need to be trained

using pertinent information in the image carried by features. As generally numerous

features are extracted, a selection of the most discriminative ones is often essential

in order to simplify the models and allow a better efficiency both in terms of com-

putational cost and recognition ability.

To evaluate our feature selection method within this context, four configura-

tions of experiments have been driven on an image dataset: one with all the fea-

tures without selection; the second with features selected by filter methods, such as

Fisher filter [Narendra & Fukunaga 1977] and Principal Component Analysis (PCA)

[Jolliffe 2002]; the third with features selected using a wrapper method, such as SFS

[Whitney 1971], SFFS [Pudil et al. 1994b] and OS [Somol & Pudil 2000]; the last

one with the best features selected by ESFS. As numerous combination rules exist

for combining different mass functions from several sources of information in ESFS,

we have tested the TBM rule, Dempster’s rule and Yager’s rule. Besides all these

three rules, one triangular norm (T-norm) [Schweizer & Sklar 1983] has been also

43



Chapter 2. Feature extraction, selection and image representation for
VOC

Figure 2.5: Some sample images from SIMPLIcity dataset (from top to bottom, from
left to right, they belong to Beach, Building, Bus, Flower, Horse and Mountain).

considered here for comparison purpose, whose formulae is as follows:

∀A ⊆ Ω mΩ
S1,S2(A) = max{1− [(1−mΩ

S1(A))p + (1−mΩ
S2(A))p]

1
p , 0} (2.54)

where p > 0 is a parameter.

Moreover, four types of one step global classifiers have been considered: Mul-

tilayer Perceptron (Neural Network, denoted as MP in the following text), De-

cision Tree (C4.5), K-Nearest Neighbors (K-NN), and multi-class SVM (C-SVC).

Each classifier has been tested with several parameter configurations, and only the

best results are kept. The experiments are carried out on TANAGRA platform

[Rakotomalala 2005] with 4-fold cross-validation. The detailed experiments are pre-

sented in the following subsections.

2.3.3.1 Dataset

Our experiments dealing with image classification have been performed on the SIM-

PLIcity dataset [Wang et al. 2001a]. It is a subset of the COREL database, consist-

ing of 10 image categories, each containing 100 images. For the purpose of evaluating

our ESFS based feature selection for image categorization, 6 categories containing

totally 600 images have been chosen in our experiments: Beach, Building, Bus,

Flower, Horse, and Mountain. Some sample images are presented in Figure 2.5.
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2.3.3.2 Feature extraction

In order to carry visual information according to color, texture and shape, a

total number of 1056 features have been computed to represent each image

sample from SIMPLIcity dataset. The corresponding feature set thus includes

Color Coherence Vectors (CCV) [Pass & R. Zabih 1997], Color Auto Correlogram

(CAC) [Huang et al. 1997], Color Moments (CM) [Stricker & Orengo 1995a], Tex-

ture Auto-Correlation (TAC) [Tuceryan & Jain 1993], Grey Level Co-occurrence

Matrix (GLCM) [Tuceryan & Jain 1993] and Edge Histogram (EH) [Won 2004].

The high number of features compared to the relatively low number of samples avail-

able for training classifiers strongly suggests the use of a feature selection method

to decrease the classification models complexity and thus to improve classification

accuracy.

2.3.3.3 Results

Table 2.2 presents the mean correct classification rates (or classification accuracy)

for all the classifiers tested in this experiment.

ESFS_filter indicates that the embedded feature selection method ESFS has

been used in a filter way to provide discriminative features used in a second step by

the classifiers. Moreover, as it has been mentioned in the previous section, ESFS

can also be used as a classifier, which is denoted in Table 2.2 as ESFS_cls. The

difference of combination rules used for ESFS is furthermore marked by _TBM,

_Dempster, _Yager and _T-norm following ESFS_filter or ESFS_cls in the ta-

ble, representing respectively TBM rule, Dempster’s rule, Yager’s rule and T-norm

presented previously.

Let us first of all focus on the different combination rules in the category of

ESFS_filter. We can note that TBM, Dempster and T-norm give almost the same

performance, with a little advantage for TBM used with K-NN, MP, C-SVC and

for T-norm in C4.5. However, Yager failed to get the results in the same level as

other combination rules. This means that reassigning the conflict to the whole set

of definition when it is detected during the combination might not be a reasonable
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Table 2.2: Comparison between the classification accuracy without feature selection
and with the features selected by different methods for image categorization.

Classification rate C4.5 K-NN MP C-SVC

No Selection 69.4% 80.0% 79.7% 87.3%

Fisher Filter 68.9% 79.8% 83.2% 82.9%

PCA 68.3% 52.1% 80.5% 51.9%

SFS 69.4% 79.5% 80.6% 81.2%

SFFS 71.7% 44.2% 79.5% 86.9%

OS 71.8% 77.9% 83.8% 86.4%

ESFS_filter_TBM 69.6% 83.9% 87.1% 87.7%

ESFS_filter_Dempster 69.2% 83.1% 87.0% 87.4%

ESFS_filter_Yager 65.1% 68.2% 70.8% 70.4%

ESFS_filter_T-norm 70.8% 83.0% 87.1% 87.3%

ESFS_cls_TBM 60.0%

ESFS_cls_Dempster 63.3%

ESFS_cls_Yager 61.7%

ESFS_cls_T-norm 71.0%
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choice in our case. Moreover, we find that T-norm also provides good results in

spite of its simpler principle for computation.

Now let us move to the comparison between ESFS_filter and other feature selec-

tion methods. The results show that for all of the classifiers tested in this experiment,

the features selected by ESFS used in a filter way offer better classification results

than both the original features without selection and the features selected by other

methods, with the exception of C4.5. Since C4.5 can also be itself considered as

an embedded feature selection method, the performances of all the feature selection

methods associated to it are very close and are not improved so much. We can also

observe from the table that for some classifiers, such as K-NN and MP, the superi-

ority of ESFS_filter is obvious and presents an improvement from 4% to 8% in the

classification rate compared to other methods. Moreover, focusing on C-SVC, we

find that the classification rate using the feature selection methods decreased com-

pared to that of "No Selection" except in the case of ESFS_filter, which performed

the same as "No Selection". This phenomenon is probably due to the high ability of

SVM to handle small datasets, high dimensional pattern recognition problems and

even in this case, our ESFS_filter approach has still maintained the highest perfor-

mance. Thus, these experimental results have shown that ESFS has been the most

efficient to select the discriminative features for this image categorization problem.

Finally, if we turn to ESFS_cls in which ESFS is also used to classify the test

samples, we found regrettably that the best rate of 71.0% obtained with T-norm is

worse than other approaches and is only comparable to the one of C4.5. The results

of other combination rules are even much worse than T-norm, which suggests that

ESFS_cls is not suitable to this image categorization task.

Besides the classification performance, another essential criterion for a classifica-

tion system is its computational complexity. If we compare the computational cost

between original SFS and ESFS, as the first one works as a wrapper feature selec-

tion method, a training of the classifier (MP for example) needs to be performed

for each possible combination of features, at each step of the SFS process, whereas

ESFS carries its own classifier thanks to mass functions which are used both for fea-

ture combination and as decision value, and thus does not need any training during
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the selection process. So, the computational cost of ESFS is much lower than the

one of SFS. Moreover, as SFFS and OS are also wrapper methods, they are compu-

tationally very expensive and in some cases even more expensive than SFS. Taking

the comparison of ESFS and SFS as an example, experiments presented previously

have been realized on a PC computer equipped with Intel Core Duo T7200/2GHz

and 2GB memory using Windows XP system. In this case, the selection process

with ESFS takes around 50 minutes whereas the selection by SFS lasts from 8 hours

for C-SVC to two weeks for MP.

2.3.4 Conclusion on feature selection

ESFS has been presented in this section as a novel feature selection method, which

relies on the simple principle to add incrementally most relevant features. For this

purpose, each feature is represented by a mass function from the evidence theory,

which allows to merge the information carried by features in an embedded way, and

so leading to a lower computational cost than wrapper method. Being evaluated in

the visual object categorization, the obtained results shown that selecting relevant

features improves the classification accuracy, and for this purpose, ESFS, used as a

filter selection method, performs better than the traditional filter method, namely

Fisher and PCA algorithm, and wrapper method, namely SFS, SFFS and OS. As

different combination rules are available to merge the information carried by features

within ESFS, we have also tested 4 rules here, namely TBM, Dempster, Yager and T-

norm. We can see from the results that Dempster, Yager and T-norm give us almost

the same performance whereas Yager seriously hurts it, suggesting us to integrate

the conflict information in a more efficient way in future. Finally, although ESFS

can also be directly used a classifier, it failed to obtain comparable results as other

classifiers in our experiments.

2.4 Image representation

The aim of the image representation for classification is to construct a discriminative

representation which models the distribution of the extracted local features, with
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the purpose of being efficiently classified by a certain classifier later. Recently, the

most successful approach for this topic is called "bag of features", which has been

largely used in Pascal challenge [Everingham et al. 2007] [Everingham et al. 2008]

and many other works. In this section, we will first give a literature review about

this approach and its variations and extensions, and then present our proper solution

for image representation, as well as our proposed region based features to be used

with our image representations.

2.4.1 Literature review

The term "bag of features" comes from the "bag of words", firstly introduced for the

analysis of text documents [Salton & McGill 1983] [McCallum & Nigam 1998]. In

such a representation, a text document is encoded as a histogram of the number of

occurrences of each word. Similarly, one can characterize an image by a histogram

of visual words count. It effectively provides a mid-level representation which helps

to bridge the semantic gap between the low-level features extracted from an image

and the high-level concepts to be categorized.

A typical "bag of features" approach consists of two main stages: vocabulary

construction and histogram computation. Visual vocabulary is usually learned from

the training local features extracted from the training set of images using unsu-

pervised or supervised methods. The histogram computation aims at computing a

discriminative histogram representing an image given a learned visual vocabulary.

We introduce in the following some representative methods for each of these two

stages. As the traditional "bag of features" discards all spatial information be-

tween the extracted local features, some methods aiming at reusing this precious

information are also presented.

2.4.1.1 Vocabulary construction

The k-means algorithm has been originally employed to cluster the local features into

k bins with k predefined empirically, thus constructing a visual vocabulary in which

each centroid corresponds to a visual word [Dance et al. 2004] [Lazebnik et al. 2006].
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This algorithm proceeds by iterated assignments of points to their closest clus-

ter centers and re-computation of the cluster centers, and is known for its simple

and efficient implementation. However, it has the defect that cluster centers are

drawn irresistibly towards denser regions of the sample distribution which do not

necessarily corresponds to discriminative patches. [Jurie & Triggs 2005] proposed

a radius-based clustering, which avoids setting all clusters into high density ar-

eas and assigns all features within a fixed radius of r to one cluster. Another

approach developed in Xerox Research Center Europe (XRCE) consists in using

GMM to model the distribution of the local features extracted from the training

images [Perronnin & Dance 2007] [Perronnin et al. 2006]. The optimized GMM is

then considered as a visual vocabulary where each gaussian (with its parameters:

weight π, mean µ, co-variance Σ) corresponds to a visual word.

As proven in most of the articles presented in the previous paragraph, the best

performance is always obtained using a vocabulary with large size, ranging from sev-

eral hundreds to several thousands. But considering the computational cost of the

following histogram computation stage which directly depends on the number of vi-

sual words, one may prefer to get a more compact vocabulary. In [Winn et al. 2005],

the initial visual vocabulary with several thousands of words is further compressed to

its optimal size (approximatively 200 words), without any loss of its discriminative

ability, through a supervised iterative merging technique inspired by the information

bottleneck principle [Tishby et al. 1999]. Another interesting work in the direction

of reducing the computational cost is [Moosmann et al. 2007], which organizes the

vocabulary in a tree structure using randomized clustering forests. However, the

obtained vocabulary in both cases has been fitted to the set of categories under

consideration and should be retrained when some new category appears.

Some researchers have departed from the idea of having one univer-

sal vocabulary for all the training images from the whole set of cate-

gories, such as [Zhang et al. 2007] [Perronnin et al. 2006] [Farquhar et al. 2005].

[Zhang et al. 2007] uses k-means to cluster the local features of each image to a

vocabulary (called signature in the paper) with a fixed number of words, and then

measures the similarity between each pair of signatures using Earth Mover’s Distance
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(EMD) [Rubner et al. 2000] or χ2 distance which will be used later by kernel-based

classifier to perform the classification, such as SVM. However, the use of per image

vocabulary in such approach requires online learning for the image vocabulary, which

may lead to a high computational cost. [Farquhar et al. 2005] proposes to train one

vocabulary for each category and then merges these category specific vocabularies

together to build the final single vocabulary. Despite the promising results they

have obtained, it is not practical face to the problem with large number of cate-

gories. Indeed, the size of the merged vocabulary and the corresponding histogram

representation grows linearly with the number of categories, thus quickly leading to

the "curse of dimensionality" problem and increasing the histogram computation

cost. In [Perronnin et al. 2006], a universal vocabulary, which describes the visual

content of all the considered categories, and a series of category specific vocabular-

ies, which are obtained through the adaptation of the universal vocabulary using

category specific data, are trained consecutively. Then an image is represented by

a set of histograms of size 2 × K (K is the size of the vocabulary), one per cate-

gory. Each histogram describes whether an image is more suitably modeled by the

universal vocabulary or the corresponding adapted vocabulary.

Another group of methods claimed that semantic relation between the features

is useful for image categorization and attempted to bring the semantic informa-

tion into visual vocabulary construction [Vogel & Schiele 2004] [Yang et al. 2008b]

[Liu et al. 2009]. A semantic vocabulary is constructed by manually associating the

local patches to certain semantic concepts such as "stone", "sky", "grass" etc in

[Vogel & Schiele 2004]. But the fact that it requires huge manual labor for labeling

the local patches when large amount of training data should be treated make it im-

practical in such cases. [Yang et al. 2008b] proposes to unify the visual vocabulary

generation and classifier training processes, and then encoding an image by a a se-

quence of visual bits which capture different aspects of image feature and constitute

the semantic vocabulary. The method of [Liu et al. 2009] can automatically learn

a semantic visual vocabulary using diffusion maps which capture the semantic and

geometric relations of the feature space.
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2.4.1.2 Histogram computation

Once the visual vocabulary determined, it is now to characterize the visual content

of an image by a histogram of visual words frequencies. In the literature, two

strategies have been commonly used for histogram computation: hard assignment

and soft assignment.

Hard assignment simply assigns the feature vectors extracted from an image to

their nearest visual words respectively, according to a certain distance measure, as

shown in (2.55):

HA(w) =
1

N

N∑
n=1


1 if w = arg min

v∈V
(D(v, rn))

0 otherwise
(2.55)

where w is a visual word in the vocabulary V , N is the number of local patches

in an image, rn is the feature vector extracted from the n-th local patch, and

D(v, rn) is the distance between v and rn. However, problems occur for feature

vectors that are located in the ambiguous areas. [van Gemert et al. 2008] and

[van Gemert et al. 2010] propose to distinguish two different issues associated with

hard assignment: word uncertainty and word plausibility. Word uncertainty refers

to the problem of selecting the correct visual word out of two or more relevant candi-

dates while code plausibility denotes the problem of selecting a visual word without

a suitable candidate in the vocabulary. An illustration of these two issues is shown

in Figure 2.6.

Concerning the soft assignment, there are basically two approaches. The first

one consists in performing probabilistic clustering, namely GMM, and then each

image feature vector contributes to multiple visual words according to its posterior

probability given the visual word [Farquhar et al. 2005] [Perronnin et al. 2006] (see

2.2.3.1 for more details). Although these works are able to deal with word uncer-

tainty by considering multiple visual words, they ignore the word plausibility. On

the contrary, [Boiman et al. 2008] copes with the word plausibility by using the dis-

tance to the single best neighbor in feature space without taking into account the

word uncertainty. In [van Gemert et al. 2008] and [van Gemert et al. 2010], they
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Figure 2.6: Illustration of visual word uncertainty and plausibility. The small dots
represent image features, the labeled red circles are visual words found by unsu-
pervised clustering. The triangle represents a data sample that is well suited to
hard assignment approach. The difficulty with word uncertainty is shown by the
square, and the problem of word plausibility is illustrated by the diamond. Source:
[van Gemert et al. 2008]

make the assignment a decreasing function of the Euclidean distance between the

feature vector and the word centroid, paired with a gaussian kernel:

Gσ(x) =
1√
2πσ

exp(−1

2

x2

σ2
) (2.56)

where σ is the smoothing parameter of kernel G. Thus they propose three different

formula to cope with word uncertainty (UNC), word plausibility (PLA) and both

of them (KCB) respectively:

UNC(w) =
1

N

N∑
n=1

Gσ(D(w, rn))∑|V |
k=1Gσ(D(vk, rn))

(2.57)

PLA(w) =
1

N

N∑
n=1


Gσ(D(w, rn)) if w = arg min

v∈V
(D(v, rn))

0 otherwise
(2.58)
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KCB(w) =
1

N

N∑
n=1

Gσ(D(w, rn)) (2.59)

2.4.1.3 Spatial information

The "bag of features" approach views images as an orderless distribution of local im-

age features, thus losing at the same time all the spatial relationships between these

local features. However, we know intuitively that spatial information is important

for image classification.

Therefore, [Lazebnik et al. 2006] proposes the spatial pyramid method in order

to take into account the spatial information of local features, inspired by pyramid

match kernels introduced in [Grauman & Darrell 2005] which build pyramid in fea-

ture space while discarding the spatial information (see 2.2.3.2 for more details). The

spatial pyramid consists in performing pyramid matching in the two-dimensional im-

age space, and uses traditional clustering techniques in feature space. Suppose we

have M types of features and each of them provides two sets of two-dimensional

vectors, xm and ym, representing the coordinates of features of type m found in the

respective image. Then the final kernel is the sum of the separate channel kernels:

κL(x, y) =
M∑
m=1

KL(xm, ym) (2.60)

where KL(xm, ym) is the pyramid match kernel. This approach has the advantage

of maintaining continuity with the "bag of features" paradigm. In fact, it reduces to

a standard bag of features when L = 0. Figure 2.7 shows an example of constructing

a three-level spatial pyramid.

The winning system of image classification session in [Everingham et al. 2008]

provides some improvements on the spatial pyramid method in order to adapt it

more appropriately to the VOC use. They first of all divide the image into 2 × 2

and 1 × 3 level, as shown in Figure 2.8. Then one unique vocabulary is trained

for the whole image and the histograms are computed on this vocabulary for each

subregion, which are later fused using the extended gaussian kernel.

Another work [Marszalek & Schmid 2006] exploits spatial relations between fea-
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Figure 2.7: An example of constructing a three-level spatial pyramid. The image
has three feature types, indicated by circles, diamonds, and crosses. At the top, the
image is subdivided at three different levels of resolution. Next, for each level of
resolution and each channel, the features that fall in each spatial bin are counted.
Finally, each spatial histogram is weighted according to equation (2.30). Source:
[Lazebnik et al. 2006]

Figure 2.8: The spatial pyramid used in the winning system of image classification
session in [Everingham et al. 2008]
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tures by making use of object boundaries provided during supervised training. They

boost the weights of features that agree on the position and shape of the object and

reduce the weights of background features, thus suitable to solve the problem of

background clutter.

2.4.2 PMIR: a Polynomial Modeling based Image Representation

Once having extracted a set of local feature vectors from an image, an efficient

characterization of the visual content represented by this information needs to be

elaborated. A simple approach would be to concatenate these feature vectors to

build a huge single vector. However, the number of local feature vectors extracted

can vary from one image to another. Since machine-based learning schemes require

input data to have a constant size, a solution is to model the distribution of fea-

ture vectors and to use the parameters of this distribution as new features for the

classification. The popular "bag of features" approach follows this strategy: the

distribution of original features is modeled thanks to a histogram for each image on

the basis of a "visual vocabulary", which can be built either by using a clustering

algorithm or by using a parametric distribution such as GMM.

The basic problem is that the "bag of features" approach, while adapting the

best practice from text categorization, does not necessarily correspond to a human

visual perception process which seems to be ruled by some Gestalt principles ac-

cording to several studies on visual perception [Kaniza 1997] [Wertheirmer 1923]

and supposed to perform a holistic analysis combined with a local one through a

fusion process. Moreover, the optimal size of this visual vocabulary is hard to be

fixed as there is no easy intuitive counterpart in image compared to keywords in text

document. Regarding GMM as an example, if the number of gaussians is too small

then it can not supply enough normal distributions for a large amount of diversified

feature vectors to be modeled, while a too high number of gaussians suffers from an

insufficient number of training feature vectors to optimize the model parameters.

Therefore, we first propose to make use of some region-based meaningful features

extracted from visual regions with neighborhood information, in addition to the pop-

ular SIFT feature. These region based features result from perceptually significant
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"Gestalts" segmented according to some basic Gestalt grouping laws. Secondly, we

present a novel image representation method, namely Polynomial Modeling based

Image Representation (PMIR), to cooperate with our proposed region-based features

and SIFT feature. Their interest is three-fold. First, we circumvent the difficulty

of fixing arbitrarily the size of visual vocabulary; secondly, we avoid the inaccurate

assumption of Gaussian distribution of feature vectors and thirdly we can cope with

a small number of feature vectors per image as it is particularly the case with our

region-based features.

2.4.2.1 Our proposed region-based features

Our basic hypothesis is that effective visual object classification or detection should

be inspired by some basic human image interpretation principles. Thus we make

use of some basic principles from the Gestalt theory for feature extraction, in par-

ticular the well known Gestalt laws of Perceptual Organization which suggest both

the grouping of pixels into homogeneous regions as well as the interaction between

regions.

Desolneux et al. have given in [Desolneux et al. 2008] a comprehensive intro-

duction to Gestalt theory in an image analysis perspective. Gestalt theory relies

on the assumption of active grouping laws in visual perception which recursively

cluster basic primitives into a new, larger visual object, called gestalt. These group-

ing laws follow criteria such as spatial proximity, color similarity. These laws also

highlight the interaction between regions. This interaction is confirmed by Navon

[Navon 1977] who showed the preponderance of global perception over local percep-

tion. Following these basic Gestalt perception laws, we also claims that an effective

description of the visual content of an image needs to model the partial gestalts

and their interactions. We feel that lacking these principles, the popular "bag of

features" approaches deprive themselves of meaningful information. One exception

is the work of Barnard et al. [Barnard et al. 2003] which is a region-based approach

where regions are labeled with probable categories. However, they don’t take into

account the interaction among regions.

As the regions resulted from a segmentation process may not be consistent
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with object boundaries, individual regions are not labeled as did Barnard et al.

[Barnard et al. 2003]. Regions produce a feature vector which is supposed to have

no meaning on its own but that can contribute to one or more classes. Regarding

features, we propose using visually meaningful features, such as color and line seg-

ment based features which we will extend to provide information from neighboring

regions. In the following, we first introduced our Gestalt-inspired region segmen-

tation scheme [Fu et al. 2008] and then the color and segment based features we

extract from the region map given by our segmentation scheme.

Region segmentation scheme As we have seen previously, studies on human

perception strongly hint at a region based approach. On the other hand, introducing

region segmentation brings about a host of new problems regarding segmentation

robustness and accuracy. Thus, while this approach suits human perception better,

we have no guarantees that its benefits will overcome its drawbacks. Here we specif-

ically designed a robust region segmentation method that aims at automatically

producing coarse regions from which we can consistently extract feature vectors

[Fu et al. 2008]. We will now briefly describe the outline of the algorithm.

The principle of our region segmentation algorithm is to segment an image into

partial gestalts for further visual object recognition. We thus made use of the

following Gestalt basic grouping laws in our gestalt construction process: the color

constancy law stating that connected regions where color does not vary strongly are

unified; the similarity law leading to group similar objects into higher scale object;

the vicinity law suggesting grouping close primitives with respect to the others; and

finally good continuation law saying that reconstructed amodal object, i.e partially

perceived physical structure which is reconstructed through understanding, should

be as homogenous as possible. Because those laws are defined between regions and

their context, at each step we assess the possibility to merge regions according to

global information.

The algorithm is based on color clustering but also includes an extra post-

processing step to ensure spatial consistency of the regions. In order to apply previ-

ously mentioned Gestalt laws, we defined a 3-step process: first we filter the image
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and reduce color depth, then we perform adaptive determination of the number of

clusters and cluster color data and finally we perform spatial processing to split

unconnected clusters and merge smaller regions.

Figure 2.9: Evolution of MSE between quantized and original colors.

Images are first filtered for robustness to noise; colors are then quantified by

following a first, fast color reduction scheme using an accumulator array in CIELab

color space to agglomerate colors that are perceptually similar. In the second step,

we use an iterative algorithm to determine a good color count which limits the

quantization error. Indeed, quantization error measured by MSE between original

and quantized colors evolves as per Figure 2.9 according to the number of clusters.

This clearly shows a threshold cluster number under which quantization MSE

begins to rise sharply. By performing several fast coarse clustering operations using

Neural Gas algorithm [Martinetz & Schulten 1991], which is fast and less sensitive

to initialization than its counterparts such as K-means, we are able to compute the

corresponding MSE values and generate a target cluster count. We then use hierar-

chical ascendant clustering which is more accurate but much slower thus executed

only once in our case, to achieve segmentation. The third step consists in splitting

spatially unconnected regions, merging similar regions and constraining segmenta-
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tion coarseness. Merging of similar regions is achieved through the use of the squared

Fisher’s distance as (2.61) (used for a similar task in [Zhu & Yuille 1996]). where ni,

µi, σ2
i are respectively the number of pixels, the average color and the variance of

colors within region i. This distance still stays independent towards image dynamics

as it involves intra-cluster distance vs. inter-cluster distance. Finally, regions which

are too small to provide significant features are discarded.

D(R1, R2) =
(n1 + n2)(µ1 − µ2)2

n1σ2
1n2σ2

2

(2.61)

Figure 2.10: Examples of segmented images.

With this algorithm we obtain consistent coarse regions that can be used for

our classification system. Sample segmentation results on Pascal challenge dataset

images are given in Figure 2.10. As we can see, our Gestalt-inspired segmentation

algorithm has automatically adapted its segmentation process to the color depth of

the images, producing significant partial gestalts.

Region-based feature extraction In order to represent the information car-

ried by regions, we make use of two kinds of features: color features and seg-

ment features. Region based color features aim at capturing a coarse perception
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of partial gestalts, in the form of color moments (mean, variance and skewness)

[Stricker & Orengo 1995b] for each color channel. These features are quite compact

and have proven as efficient as a high dimension histogram [Deng et al. 2001]. Var-

ious color spaces were experimented for the computation of these features and best

results were achieved in the CIELch color space which is derived from CIElab as in

(2.62) and best fits to the human perception [Trémeau et al. 2004].

LLch = LLab c =
√
a2 + b2 h = arctan

b

a
(2.62)

The segment features aim at capturing some textual and geometrical proper-

ties of partial gestalts. We thus developed segment based features relying on a

fast connective Hough transform [Ardabilian & Chen 2001] that performed well in

global image classification [Pujol & Chen 2007] and more specifically provided more

significant information than gradient based features. These features are relevant

regarding our approach of following human visual interpretation as, most of the

time, there are few segments within a region but, on the other hand, they represent

features that stand out visually and their simple presence is significant.

The principle of our segment based feature extractor is the following. As for

any other Hough transform, we start from an edge map of the processed image.

Because we wish to avoid problems related to edge thickness, we use a Canny Edge

Detector [Canny 1986] to process our image in order to ensure a one pixel thickness

for our edge map. For an edge point on the edge map, we examine its neighborhood

identified by its relative angular position (r, θ): each direction θ is processed while

a connected edge is found at distance r + 1, which gives us a list of segments by

orientation for this edge point. Once we have this list, we store the longest segment

and remove it from the edge map. To avoid hindering intersecting segment detec-

tion, we use two separate edge maps: one for segment source point detection and

one for connected points detection. Removed segments are only removed from the

source point map, which avoids detecting the same segment twice while preserv-

ing intersecting segments. These segment features are extracted once for the whole

image.
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During this extraction step, we can build a map from image coordinates to

the corresponding segments. Therefore, we can quickly detect segments within a

region. For validation purposes, our "segment" shape features are a simple histogram

combining length and orientation. In order to obtain scale invariant features, we

normalize lengths by dividing them by the longest segment length. We then obtain

rotation invariance by computing an average orientation in order to have a stable

average and by expressing all angles with respect to this average direction. We

therefore obtain a feature that is invariant to translation, scale as well as rotation.

The size of the histograms was experimentally determined and set to 6 bins for

orientation and 4 for length.

Finally, in order to include neighborhood information, our region based features

(color moments and Hough segment features), are expressed at four different levels:

original region, region + neighbors, region + neighbors + neighbor’s neighbors, etc.

Those levels are concatenated in the final feature vector. This is a basic way to

integrate spatial relationship but also to include global information in each feature

vector. On most images, the fourth level will represent features extracted over the

whole image. This process leads to our two final region-based features, that are

called in the subsequent Region based Color Moments (RCM) and Region based

Histogram of Segments (RHS).

2.4.2.2 PMIR principle

We now turn to the problem of image modeling and classification. Instead of building

a "visual vocabulary" as in the "bag of features" approach, we propose here a simple

polynomial modeling to characterize the visual content represented by the set of

feature vectors extracted in the previous section. The basic idea is to consider the

distribution of values in each component of these feature vectors and to model such a

distribution by a simple polynomial. The coefficients of these polynomials will then

be considered as the feature vector characterizing the visual content of an image.

The polynomial model for a given feature distribution is computed as follows.

Given the set D of the distribution values D = {(x1, y1), ..., (xM , yM )} (M is the

number of values), a polynomial f(x) of degree N , described by its set of coefficients

62



Chapter 2. Feature extraction, selection and image representation for
VOC

P = {p0, p1, ...pN}, is computed to interpolate the data, by fitting f(xi) to yi in

a least squares sense. Thus, vector P can be used to characterize the distribution

D. An example is given in Figure 2.11. Once the distribution of each component

from the feature set has been modeled thanks to a polynomial, a new image feature

vector Q is produced by concatenating the coefficients of all polynomials.

Figure 2.11: (Left) Distribution values for one component of the image feature set.
(Right) A polynomial curve for modeling the distribution in (Left). The horizontal
axis represents the values of bins equally partitioning the interval [0,1] while the
vertical axis is the number of data points located in the corresponding bin.

Assuming that our feature vector has L components and each component is

modeled by a polynomial of degree N , then the vector Q has a dimension of

(N + 1) ∗ L, which generally ranges from hundreds to thousands. A vector of

such high dimensionality used for classification can also lead to the "curse of di-

mensionality" [Bellman 1961]. Consequently, we further apply the dimensionality

reduction methods on this new vector. Several methods may be conceivable for this

purpose [Saeys et al. 2007], and some of them are presented in section 2.3. We have

chosen the Canonical Discriminant Analysis (CDA) [Fisher 1936] as it is fast and

generally enables a strong reduction of the feature vector dimensionality since the

new representation space which distinguishes the best the different classes contains

in most cases K − 1 axes, K being the number of classes. Thus with the help of

this method, the overall feature vector Q becomes a much more simplified vector

which is called in the subsequent Polynomial Modeling based Image Representation

(PMIR) [Fu et al. 2008].
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2.4.2.3 Experimental results

Given an image to classify, we first need to characterize its visual content by ex-

tracting a set of feature vectors as proposed in section 2.4.2.1. However, other

feature vectors, such as for instance SIFT, can also be used in our PMIR and the

following classification process. Our purpose is not only to compare the use of these

region based features with popular SIFT features but also to check the efficiency of

their combination. Upon these feature vectors, our proposed image representation,

PMIR, is computed, leading to a single global feature vector for the input image.

This new single global feature vector is then fed to a classifier beforehand trained to

judge whether this image contains a specified object. Any classifier, such as neural

networks or SVM, can be used for categorization of such an image representation.

We have used in our experiments the dataset of Pascal challenge 2007

[Everingham et al. 2007]. The goal of this challenge is to recognize objects from

a number of visual object categories in realistic scenes (i.e. not pre-segmented ob-

jects). It is fundamentally a supervised learning learning problem in that a training

set of labeled images is provided. More concretely, this dataset consists of 20 ob-

ject categories and contains 2501 images taken in real world provided for training,

2510 for validation and 4952 for testing. The 20 object categories are: Aeroplane,

Bicycle, Bird, Boat, Bottle, Bus, Car, Cat, Chair, Cow, Diningtable, Dog, Horse,

Motorbike, Person, Pottedplant, Sheep, Sofa, Train, Tvmonitor. One main char-

acteristic of this dataset is that multiple objects from multiple categories may be

present in the same image, which makes it more realistic and difficult. A total of

9 groups has participated in this challenge 2007 and they have submitted 17 dif-

ferent methods. There are two main competitions, and two smaller scale "taster"

competitions in the challenge:

• Main competitions

– Classification: for each of the 20 categories, predicting presence/absence

of an example of that category in the test image. This is just the target

task of this thesis.

– Detection: predicting the bounding box and label of each object from the
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20 target categories in the test image.

• Taster competitions

– Segmentation: generating pixel-wise segmentations giving the category

of the object visible at each pixel, or "background" otherwise.

– Person Layout: predicting the bounding box and label of each part of a

person (head, hands, feet).

For the purpose of evaluating our classification approaches, we have chosen 5

semantic representative classes namely aeroplane (238 images for training), bicycle

(243 images for training), bus (186 images for training), horse (287 images for train-

ing) and person (2008 images for training). Some image samples for these 5 classes

are given in Figure 2.12.

Figure 2.12: Some sample images of 5 representative classes from Pascal challenge
2007 dataset (from left to right: Aeroplane, Bicycle, Bus, Horse, Person)

As we have mentioned previously, our two region-based features, namely RCM

and RHS, as well as the popular SIFT features (computed using the C# "libsift"

implemented by Sebastian Nowozin [Nowozin 2005] for their extraction) have been

used in these experiments. Since they represent features of different natures, we

believe that these features can be considered as complementary modalities whose

fusion can lead to a better accuracy in a classification process. So we have also com-

pared two fusion strategies in our image categorization experiments, namely early

65



Chapter 2. Feature extraction, selection and image representation for
VOC

fusion strategy by grouping all the features together to fed a single classifier, and late

fusion strategy that makes use of "channels" with a separate classifier for each kind

of features, the outputs of these classifiers being merged later [Snoek et al. 2005].

RCM and RHS have first been merged by the strategies of Early Fusion and Late

Fusion, noted as EF(RCM+RHS) and LF(RCM+RHS), and then SIFT has been

combined to obtain EF(RCM+RHS+SIFT) and LF(RCM+RHS +SIFT).

Finally, one-against-all multilayer perceptron has been built on a balanced

dataset for each class with a 4-fold cross-validation, for its ability to draw com-

plex separating class borders. The structure of these perceptrons is composed of

one hidden layer for all the experiments, and the number of neurons in the hidden

layer that varies according to the number of inputs can have three different values:

5, 15, 2 for single channel, early fusion and late fusion respectively. The degree of

the polynomial for modeling the visual content of an image has been empirically

set to 8. The performance of the evaluated methods has been measured through

three classical rates, namely classification rate, recall rate and precision rate. The

detailed results are presented in Table 2.3, Table 2.4, Table 2.5 respectively.

Table 2.3: Classification rate obtained for 5 representative classes
Classification rate Plane Bicycle Bus Horse Person

SIFT 65.0% 55.2% 60.8% 65.5% 58.9%
RCM 72.7% 61.6% 67.9% 65.8% 62.8%
RHS 76.6% 62.0% 66.1% 62.6% 63.5%

EF(RCM+RHS) 80.3% 64.0% 70.8% 65.6% 65.2%
EF(RCM+RHS+SIFT) 81.5% 64.6% 69.3% 66.4% 65.5%

LF(RCM+RHS) 82.0% 71.0% 92.0% 79.7% 66.7%
LF(RCM+RHS+SIFT) 85.2% 72.7% 92.7% 81.5% 69.4%

In these result tables, experimented classifiers can be categorized into 3 classes:

Single Channel (SC) which means make use of only one kind of features, Early

Fusion (EF) and Late Fusion (LF). As we can see, our region-based features, RCM

and RHS, with an improvement of 5 points in average, perform better than SIFT

features. These results tend to show the effectiveness of our RCM and RHS features

using the polynomial modeling based image representation. Between RCM and
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Table 2.4: Recall rate obtained for 5 representative classes
Recall rate Plane Bicycle Bus Horse Person

SIFT 68.7% 57.9% 62.6% 71.6% 60.9%
RCM 73.5% 64.1% 68.1% 66.5% 67.3%
RHS 76.6% 68.3% 71.6% 67.1% 69.1%

EF(RCM+RHS) 80.2% 65.7% 70.9% 67.1% 68.4%
EF(RCM+RHS+SIFT) 81.4% 66.7% 70.5% 70.1% 68.6%

LF(RCM+RHS) 84.2% 73.9% 89.4% 79.5% 70.0%
LF(RCM+RHS+SIFT) 85.4% 74.9% 89.8% 83.9% 72.9%

Table 2.5: Precision rate obtained for 5 representative classes
Precision rate Plane Bicycle Bus Horse Person

SIFT 64.0% 54.9% 60.4% 63.8% 58.6%
RCM 72.4% 61.0% 67.9% 65.6% 61.7%
RHS 76.6% 60.6% 64.5% 61.5% 62.1%

EF(RCM+RHS) 80.4% 63.5% 70.7% 65.1% 64.2%
EF(RCM+RHS+SIFT) 81.5% 64.0% 68.8% 65.3% 64.6%

LF(RCM+RHS) 80.7% 69.8% 94.3% 79.7% 65.7%
LF(RCM+RHS+SIFT) 85.1% 71.8% 95.4% 80.1% 68.1%

RHS, we find that RHS is slightly better after comparing all 3 rates and RCM

tends to favor negative side. Now focusing on EF and LF, we can note that the

best classification rates are obtained when the 3 channels are merged using LF

strategy which performs much better than SC and EF. The classes bus and horse,

for instance, record a classification rate increase by about 22 points and 15 points

respectively compared to the second higher rate obtained with EF. This result seems

to suggest that the three different channels carry complementary visual information

to describe the image content and their fusion helps to improve the final classification

accuracy. Another reason might be that EF may suffer from conflicts between

different features, leading to a blurring of the boundary between classes. This can

also explain that why EF performs only slightly better than SC and much worse

than LF.

Encouraged by these promising results using PMIR, we have then evaluated its
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efficiency using the recommended evaluation criterion of Pascal challenge, i.e. Av-

erage Precision (AP). As a measure of classification efficiency, AP represents the

average of precisions over the entire range of recalls. A good score of AP requires

both high recall and high precision, which is particularly interesting for classifi-

cation problems. All the experimental configurations have been conserved except

the technique of cross-validation. This time, we have trained one-against-all multi-

layer perceptrons on the balanced dataset of each class, combined with late fusion

strategy for its effectiveness shown in the previous experiments, and then used this

trained classifier to classify the whole set of test images. Unfortunately, we have

obtained particularly low results compared to others reported in the challenge (see

Table 2.10), which are shown in Table 2.6. This has motivated us to propose another

image representation method which is presented in the next subsection.

Table 2.6: Average precision obtained for 5 representative classes using PMIR.
AP Plane Bicycle Bus Horse Person

PMIR 0.138 0.076 0.080 0.201 0.518

2.4.3 SMIR: a Statistical Measures based Image Representation

As PMIR failed to get reasonable results on Pascal 2007 dataset, we propose here

a simpler and more computational efficient image representation inspired by some

principles of PMIR, called Statistical Measures based Image Representation (SMIR)

[Fu et al. 2010]. Some dimensionality reduction methods as well as several classifi-

cation techniques have also been evaluated with SMIR in order to find a satisfying

combination of these different components allowing to achieve a good score in terms

of AP.

2.4.3.1 SMIR principle

The basic idea of SMIR is to model the distribution of values for each component

of the feature vectors by descriptive statistical measures instead of a polynomial

modeling as in PMIR, and then to concatenate these statistical measures into one
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new single feature vector that will characterize the visual content of an image and

will be used for object categorization in the next step.

Table 2.7: Descriptive statistical measures used in SMIR
Name of statistics Description or formula
Arithmetic average x̄ = 1

n

∑n
i=1 xi

Harmonic mean m = n/
∑n

i=1
1
xi

Trimmed mean mean of X excluding the highest and
lowest 10% of observations

Range max(X)-min(X)
Mean absolute deviation y = 1

n

∑n
i=1 |xi − x̄|

Standard deviation s = ( 1
n−1

∑n
i=1(xi − x̄)2)

1
2

Percentiles quantiles of X with orders that are
multiples of 0.25 (5 values obtained in
the interval [0, 1])

Totally 12 statistical measures have been used to describe the distribution of

data for each component, among which stands the number of zeros. Indeed, due to

the computation process of our visual features as well as the one of SIFT features,

the data contains a high number of zeros that may disturb the computation of the

data distribution. Thus, this information is carried in the feature called "number

of zeros" and then zeros are removed from the new data that is characterized by

the remaining 11 statistical measures which mainly belong to 3 groups: 1, Measures

of central tendency to locate a distribution of data along an appropriate scale; 2,

Measures of dispersion to find out how spread out the data values; 3, Percentiles

to provide information about the shape of data as well as its location and spread.

A detailed presentation of these 11 statistical measures is given in Table 2.7, where

X = {xi}, i = 1...n is a set of observations for one component.

After having modeled the distribution of each component of the feature set using

the statistical measures, they will be concatenated to form a new image feature vec-

tor Q, which we call Statistical Measures based Image Representation (SMIR). This

new vector may also lead to the "curse of dimensionality" problem [Bellman 1961]

because its length is in the same level as the one of PMIR. Therefore, a dimension-
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ality reduction method should be used. Several approaches have been evaluated for

this purpose in order to identify the most appropriate one for SMIR. This will be

discussed in next subsection.

2.4.3.2 Experimental results

The classification schemes proposed so far in the literature for automatic generic

visual object categorization often suffer from the problem due to a small and biased

training dataset, in particular with an unbalanced ratio of positive versus negative

samples. Thus, contrary to the limited experiments driven for PMIR where the

dataset is balanced and only one dimensionality reduction method is used, we would

like to evaluate in the experiments for SMIR various classification schemes as well

as different dimensionality reduction methods. These are presented in the following

section followed by the corresponding experimental results.

Classification schemes The classification process, in the context of visual ob-

ject categorization, aims at predicting whether at least one or several objects of

some given classes are present in an image. The elaboration of such classification

schemes is generally empirical as its efficiency will depend on numerous factors such

as the nature of visual features used to carry the information in images, the high

dimensionality of the distribution of these features and the complexity of the fron-

tiers between classes in the feature space. Thus, we present here several classification

schemes representing a general overview of conceivable classification techniques that

will be further evaluated for visual object categorization purposes.

Recall the general classification process: given an image to classify, we first de-

tect points of interest or regions from which the visual features are extracted. These

features are then transformed to form a new feature vector through statistical mea-

sures based image representation using the method introduced in 2.4.3.1. Finally,

this new feature vector will pass through the classifier beforehand trained or pass

through a set of classifiers, according to the fusion strategy, to judge whether this

image contains or not a given object. In this procedure, two particular problems

should be taken into consideration. The first one is that only a biased dataset
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(usually there are much more negative samples than positive ones) may be avail-

able during the training stage, especially when a one-against-all strategy is used

for multi-class classification. Such an unbalanced dataset generally leads to a de-

crease of the classifier performance as the training set has to be as representative

as possible. As a result, we have envisaged three principal ways to address this

problem: 1, the simplest one is to construct a balanced dataset using only a subset

of negative samples through sub-sampling (randomly for example); 2, a series of

classifiers is built up according to a cascade technique, all classifiers having at their

disposal balanced dataset created using different samplings; 3, the "weak" side of

the dataset is compensated by giving it a higher weight during the training. The sec-

ond issue is the dimensionality reduction method which aims at reducing effectively

the feature vector dimension in order to avoid the potential "curse of dimension-

ality" while keeping its discrimination ability. In the following experiments, four

different solutions are considered in order to evaluate their respective efficiency for

our image categorization problem: 1, no dimensionality reduction method is used;

2, a canonical discriminant analysis [Fisher 1936] is used; 3, a principal compo-

nent analysis [Pearson 1901] [Jolliffe 2002] is used; 4; an adaboost algorithm is used

[Freund & Schapire 1999] [Freund & Schapire 1997] [Shen & Bai 2004]. A brief in-

troduction of all these techniques is given in the following paragraphs.

• Balanced classifier: In this case, a subset of negative samples is chosen

through random sampling. Its size is equal to the one of the positive sample

set.

• Cascade of classifiers: This is a series of balanced classifiers in each of

which the positive samples are always the same whereas the negative samples

are composed of the false positives of the previous balanced classifier and new

added negative samples until the two sides reach a new balance (see Figure

2.13). The process terminates when no more new negative sample are left.

The final score is the sum of the scores given by each balanced classifier.

• Biased classifier: This corresponds to a single global classifier which is

trained using all available samples. However, in order to handle the unbal-
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Figure 2.13: Illustration of the cascade of classifiers.

anced effect of the dataset, different weights are given to the positive and

negative samples. As weight values are classifier and dataset dependent, they

are determined experimentally.

• Principal Component Analysis (PCA): It is a simple, widely-used and

non-parametric method for extracting relevant information from confusing

dataset. With minimal additional effort PCA provides a roadmap for how

to reduce a complex dataset to a lower dimension to reveal the sometimes hid-

den, simplified structure that often underlie it, that is to say it transforms a

number of possibly correlated variables into a smaller number of uncorrelated

variables called principal component.

• Canonical Discriminant Analysis (CDA): It is a quick algorithm which

allows reducing the dimension by producing a new representation space which

distinguishes the best the different classes. Its principle is to produce a series

of uncorrelated discriminative variables, in order to have individuals in the

same class projected on these axes as close as possible and individuals from

different classes as distant as possible. In most cases, K − 1 axes are obtained

where K is the number of classes. This method has been used previously for

PMIR.
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• ADAboost algorithm (ADA): The adaboost algorithm is presented in sec-

tion 2.2.3.2 as a classifier. However, in our approach here, we use it as a

dimensionality reduction method since each weak classifier can also be seen

as a selected single feature which best separates positive and negative sam-

ples. Thus, after T rounds, the best T features for the classification have been

selected, and they can feed other classifiers, such as SVM or Neural Networks.

Implementation Concerning the classifier, we have chosen the popular SVM,

presented in section 2.2.3.2, for its high ability in solving the small dataset,

nonlinear and high dimensional pattern recognition problems (LIBSVM package

[Chang & Lin 2001] is employed here). However, the choice of the kernel and its pa-

rameter optimization are two crucial aspects for object categorization using SVM.

According to [Chang & Lin 2001], 3 reasons have encouraged us to use the Radial

Basis Function (RBF) kernel. The first reason is that the RBF kernel has sim-

ilar performances as the linear kernel [Keerthi & Lin 2003] or the sigmoid kernel

[Lin & Lin 2003] for certain parameters. Secondly, its small number of hyperpa-

rameters facilitates the following parameter optimization task. Finally, it has less

numerical difficulties.

We have performed SVM parameter optimization thanks to a grid search using a

4-fold cross-validation technique in order to find out the best-fit group of parameters

(C, γ), where C > 0 is the penalty parameter of the error term. This parameter

also offers the possibility to construct a biased classifier mentioned in 2.4.3.2 by

giving different weights on C for the positive and negative side. A good estimation

of the weights has been obtained according to (2.63) through several preliminary

experiments, where wpos and wneg are the weights applying on C for the positive and

negative side respectively, p and n are the number of positive and negative samples.

wpos = (p+ n)/p wneg = (p+ n)/n (2.63)

One-against-all SVM classifiers have been built for each class and evaluated in

terms of AP. In order to save computation time, the 4 dimensionality reduction
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approaches presented before have only been applied on the balanced classifier, and

the best approach has then be used with the cascade of classifiers and the biased

classifier.

Results We have used in these experiments the Pascal challenge 2007 image

dataset ([Everingham et al. 2007]), which has also been used for evaluating PMIR

in section 2.4.2.3. However, in this case the whole set of test images has been

considered (4952 images) to evaluate the different approaches designed to handle

unbalanced data.

As the experiments of PMIR have proven the effectiveness of our proposed fea-

tures, namely RCM and RCS, and their complementarity to SIFT, the same set of

these three types of features have been considered here. Moreover, 2 fusion strate-

gies, early and late (noted respectively as EF and LF), have also been evaluated

together with the 4 dimensionality reduction approaches (noted as NON when no

dimensionality reduction approach is used, PCA, CAD and ADA) using these fea-

ture sets with the balanced classifier, in order to evaluate their efficiency in our case

of visual object categorization. Finally, the number of features for 3 channels SIFT,

RCM and RHS is respectively 1536, 432 and 1152 after the modeling by statistical

measures without dimensionality reduction, which is the case in NON. ADA selects

the best 50% of the original features in NON sorted according to adaboost algorithm

for all the 3 channels. However, PCA and CDA would greatly reduce this number

to about a few tens.

From Table 2.8, which shows the results for 5 representative classes using the

combinations of 2 fusion strategies and 4 dimensionality reduction approaches with

a balanced classifier, we can see that NON generally performs best among all the 4

dimensionality reduction approaches, even if results of ADA are somewhat compara-

ble. However, PCA and CDA seriously hurt the performance in our case. Consider-

ing the number of features in different dimensionality reduction approaches as well,

we found that the approaches that have a huge number of features (for example,

EF_NON has 1536+432+1152=3120 features) generally perform better than the

ones having a small number of features. This fact is probably due to the boundary
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Table 2.8: Average precision for 5 representative classes using the combinations
of 2 fusion strategies and 4 dimensionality reduction approaches with a balanced
classifier.

AP Plane Bicycle Bus Horse Person
LF_NON 0.409 0.193 0.192 0.330 0.722
EF_NON 0.423 0.252 0.281 0.386 0.750
LF_PCA 0.405 0.135 0.109 0.192 0.708
EF_PCA 0.374 0.210 0.215 0.225 0.725
LF_CDA 0.199 0.077 0.058 0.097 0.549
EF_CDA 0.188 0.089 0.054 0.219 0.545
LF_ADA 0.348 0.187 0.095 0.404 0.695
EF_ADA 0.415 0.237 0.223 0.373 0.736

blurring between classes occurring when realizing the transformations of PCA and

CDA. Then focusing on LF and EF, the results show that EF performs better than

the second fusion strategy. One of the reasons might be the good ability of SVM in

solving high dimensional problems so that it benefits EF in which all the features are

merged to form a long feature vector. This conclusion is also consistent to the fact

observed previously when comparing different dimensionality reduction approaches.

As a result, early fusion together with no dimensionality reduction will be applied

on the cascade of classifiers and biased classifier, whose results are listed in Table

2.9.

Table 2.9: Average precision for 5 representative classes using early fusion with
balanced classifiers, cascades of classifiers and biased classifiers.

AP Plane Bicycle Bus Horse Person
EF_Balanced 0.423 0.252 0.281 0.386 0.750
EF_Cascade 0.504 0.287 0.303 0.453 0.750
EF_Biased 0.517 0.351 0.318 0.585 0.755

In Table 2.9, EF_Cascade and EF_Biased get an AP much higher than

EF_Balanced for all the classes. An increasing of 13% to 51% can be observed

between EF_Biased and EF_Balanced, depending on the class except "person" in

which only 1.41% augmentation has been observed. An explanation consists in the
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fact that persons appear in almost all the training images so that the training set of

EF_Balanced doesn’t differ very much from the other two. Until now, we have got

the best results using EF_Biased which are comparable to some of results reported

in [Everingham et al. 2007], shown in Table 2.10. But we are also conscious that

there is still a relatively large gap to the best results, meaning that much efforts are

always needed to across it in the future.

Table 2.10: Average precision for 5 representative classes reported in the Pascal
challenge 2007, extracted from the site of [Everingham et al. 2007].

AP Plane Bicycle Bus Horse Person
INRIA_Larlus 0.626 0.540 0.464 0.660 0.772
INRIA_Flat 0.748 0.625 0.604 0.765 0.845

INRIA_Genetic 0.775 0.636 0.606 0.775 0.859
MPI_BOW 0.589 0.460 0.405 0.636 0.757
PRIPUVA 0.486 0.209 0.142 0.301 0.620

QMUL_HSLS 0.706 0.548 0.511 0.715 0.806
QMUL_LSPCH 0.716 0.550 0.511 0.715 0.808

TKK 0.714 0.517 0.499 0.726 0.822
ToshCam_rdf 0.599 0.368 0.333 0.639 0.779
ToshCam_svm 0.540 0.271 0.223 0.480 0.781

Tsinghua 0.629 0.424 0.407 0.650 0.769
UVA_Bigrams 0.612 0.332 0.376 0.616 0.746
UVA_FuseAll 0.671 0.481 0.463 0.698 0.794
UVA_MCIP 0.665 0.479 0.440 0.664 0.786
UVA_SFS 0.663 0.497 0.449 0.715 0.804
UVA_WGT 0.597 0.337 0.329 0.651 0.742

XRCE 0.723 0.575 0.575 0.757 0.840

The improvement recorded between single channels and early fusion in Table

2.11 means that our region based features managed to extract information which

is complementary to the one of SIFT features so that the fusion of these single

channels helps to improve the classifier performance. This conclusion is also con-

sistent to the one drawn from the experiments of PMIR. Among single channels,

their performances are more or less the same using statistical measures based image

representation, but vary significantly from one class to another.
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Table 2.11: Average precision for 5 representative classes between single channels
(SIFT, RCM, RHS) and early fusion with biased classifiers.

AP Plane Bicycle Bus Horse Person
SIFT 0.402 0.212 0.181 0.352 0.652
RCM 0.443 0.209 0.174 0.427 0.651
RHS 0.307 0.179 0.213 0.298 0.656
EF 0.517 0.351 0.318 0.585 0.755

2.4.4 Conclusion on image representation

In this section, we have mainly worked with image representations which consist in

modeling efficiently the visual content of an image after having extracted features,

especially our proposed region based features and SIFT. PMIR has been firstly pro-

posed and evaluated on a balanced subset of Pascal 2007 dataset, together with two

widely used fusion strategies, namely early fusion and late fusion. Experimental

results have shown us the promising performance achieved by PMIR and the com-

plementarity of information carried by our region based features and SIFT. However,

It could not persist its success when being evaluated on the whole test set of Pascal

2007 dataset, thus inducing us to consider SMIR. This time, a set of different classifi-

cation schemes and dimensionality reduction techniques has been considered as well,

in order to find a best pair of them to work with SMIR. Moreover, two concurrent

fusion strategies, early and late fusion, have also been studied. Experiments carried

out on the same dataset as PMIR have revealed that good classification results can

be obtained, which is comparable to the results reported in the Pascal challenge, and

the fact that our region based features carry complementary information to SIFT

has been proven again.

2.5 Conclusion

We have presented in this chapter the three principal stages of a typical visual object

categorization system, namely feature extraction, selection and image representa-

tion. Based on the well-known feature selection method SFS, a novel embedded
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feature selection approach, called ESFS, has been first introduced. It relies on the

simple principle to add incrementally most relevant features and merge them in

an embedded way thanks to the concept of combined mass functions from the evi-

dence theory which also offers the benefit of obtaining a computational cost much

lower than the one of original SFS. Experimental results have shown that selecting

relevant features improves the classification accuracy, and for this purpose, ESFS,

used as a filter selection method, performs better than widely used state of the art

approaches such as Fisher and PCA for the filter methods and SFS, SFFS and OS

for the wrapper approaches. Moreover, ESFS can be used not only as a feature

selection method, but also directly as a classifier.

We envisage in our future work to investigate alternative solutions for build-

ing mass functions associated to each single feature within ESFS. Indeed, for the

moment masses are distributed on single classes for a given feature. However, the

evidence theory allows the reasoning on union of classes, which may be more accu-

rate. Moreover, an interesting issue would be to integrate into the feature selection

process the conflict information that can be obtained from combined mass functions

and which may allow to avoid combining features that give contradictory informa-

tion. Indeed, even if several fusion operators we considered integrate the notion of

conflict, such as the one of Dempster and Yager, their performance has not been

significantly improved compared to the performance of TBM which does not handle

the conflict. Therefore further research is needed in order to integrate the conflict

information in a more efficient way.

Concerning image representation, we have also proposed two methods for visual

object categorization. The first one consist in using polynomial modeling based

image representation with our proposed new region based features, which circumvent

some drawbacks of the popular "bag of features" approach, especially the difficulty

of fixing the size of visual vocabulary. Two different fusion strategies, early and late,

have been considered to merge information from different "channels" represented by

the different types of features. Results on a subset of Pascal 2007 dataset have shown

that good performance can be achieved with our approach and that our segment

features carry information which is complementary to SIFT features.
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However, faced with unreasonable results obtained in the evaluation on the whole

test set of Pascal 2007 dataset using PMIR, we have later presented a deeper eval-

uation of different classification schemes leading to the proposition of another novel

approach for visual object categorization, using statistical measures based image

representation which is inspired by the same principle as PMIR where the polyno-

mial modeling of the feature distribution is replaced by computational more efficient

statistical measures. Thus, an evaluation of several dimensionality reduction meth-

ods and classifier construction techniques facing unbalanced dataset has also been

carried out. Moreover, two concurrent fusion strategies, early and late fusion, have

been studied as well. Experiments performed on Pascal 2007 dataset have drawn

the same conclusion as in the case of PMIR: a good classification accuracy, which is

comparable to the results reported in the challenge, can be achieved with the image

representation we propose and our region based features associated with popular

SIFT features allow to improve the classification accuracy.

Although the choice of fusion strategy remains difficult and unclear, as it depends

significantly on the features and classifier used, the fact that the fusion of different

types of features can effectively improve the classification performance has been

confirmed in both of experiments using PMIR and SMIR, encouraging us to consider

more features and fuse them in an intelligent way for building future VOC systems.
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3.1 Introduction

Sparse representation model of signals have received a lot of attentions and is a

very active research area in recent years. It is originally used as a powerful tool
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for acquiring, representing and compressing high-dimensional signals in the signal

processing applications and has achieved great successes. These successes are mainly

due to the fact that important classes of signals have naturally sparse representations

with respect to fixed bases, or concatenations of such bases. Moreover, a set of

efficient and effective algorithms based on convex optimization or greedy pursuit

has been proposed for solving the sparse representation problem and computing

such representations with high fidelity [Bruckstein et al. 2009].

In such a context, we present in this chapter our approaches inspired by the

principles of sparse representation theory that we have adapted to the problem of

VOC.

3.2 Literature review

The goal of sparse representation is to obtain a compact high-fidelity representa-

tion of a given signal, which can be considered as a linear combination of atoms

from an overcomplete dictionary [Mallat & Zhang 1993]. The property of sparsity

in the representation of signals has also been approved in human perception by some

studies of human vision [Olshausen & Field 1996] [Olshausen & Field 1997]. In fact,

many neurons in the visual pathway are selective for a variety of specific stimuli in

the human vision and then can be considered as an overcomplete dictionary. Thus,

the firing of the neurons with respect to a given input image is typically highly

sparse. Recent research on wavelet, ridgelet, curvelet and contourlet transforms

has also greatly accelerated and promoted the development of sparse representa-

tion model. Until now, it has been widely used and obtained promising results

in many different applications, such as signal separation [Starck et al. 2005], de-

noising [Elad & Aharon 2006], coding [Olshausen et al. 2001], image inpainting and

restoration [Mairal et al. 2008c] and magnetic resonance spectroscopy quantification

[Guo et al. 2010].

Recently techniques from sparse signal representation have significantly im-

pacted the domain of computer vision and pattern recognition [Wright et al. 2009a]

[Wright et al. 2009b] [Mairal et al. 2008a], in which we are often more interested in
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extracting the visual content of an image rather than a compact high-fidelity rep-

resentation. Variations and extensions of `1-minimization have been widely used

in many vision tasks, including face recognition [Wright et al. 2009b], image super-

resolution and classification [Yang et al. 2008a] [Mairal et al. 2008a], motion seg-

mentation [Rao et al. 2008], background modeling [Dikmen & Huang 2008]. In al-

most all of these applications, the sparse representation based methods has provided

encouraging results which are comparable to the state of the art ones. This has mo-

tivated us to propose approaches adapting these principles to the problem of VOC.

Before presenting our proposed approaches, we would like first of all to give

a brief introduction of sparse representation model below, followed by the related

works which consider images as signals to be processed.

3.2.1 Sparse representation model

Let consider a signal y ∈ Rn, which will be represented as a linear combination of

basic elements from a dictionary D ∈ Rn×K composed by atoms in columns {dj}Kj=1.

We say that a representation of the signal y based on this specific dictionary D is

any vector x ∈ RK which satisfies:

y = Dx (3.1)

In the case where n < K, the dictionary D is said to be overcomplete and this

equation is underdetermined thus having many possible solutions. Conventionally,

in this case, the minimum `2 norm solution is chosen:

min
x

(||x||2) subject to Dx = y (3.2)

where ||x||2 is the `2 norm of x. The above problem can easily be solved and it has

a unique solution as follow:

x = D+y = DT (DDT )−1y (3.3)
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where D+ is the pseudoinverse of D. However, this solution is generally non sparse

with many nonzero elements corresponding to the atoms from the dictionary and

consequently does not satisfy our expectation. Indeed, we would rather prefer a

sparse solution, that is to say we want to find a linear combination of only a few

atoms to approximate the signal y. This problem can be formally described by

min
x

(||x||0) subject to Dx = y (3.4)

where ||x||0 is `0 norm of x and equals the number of nonzero elements in the vector

x. Solving the equation (3.4) is a NP hard problem because of its nature of com-

binational optimization. Nevertheless, there exist many approximation techniques

for this task such as Matching Pursuit (MP) [Mallat & Zhang 1993] which consists

in selecting one atom at each stage based on the minimization of the residue in

a greedy way, and Orthogonal Matching Pursuit (OMP) [Pati et al. 1993]. If the

dictionary is an orthogonal vector set and the signal is indeed a sparse combination

of atoms, OMP is guaranteed to find this sparse set.

Another way to address the problem of (3.4) is to replace the `0 norm minimiza-

tion by `1 norm minimization:

min
x

(||x||1) subject to Dx = y (3.5)

where ||x||1 is the `1 norm of x. As in several recent works [Donoho & Huo 2001]

[Donoho 2004], it is proved that if certain conditions on the sparsity are satisfied,

i.e. the solution is sparse enough, then these two norm minimization problems are

equivalent. As (3.5) is a convex optimization problem, it has a unique solution and

can be efficiently solved by standard linear programming methods such as Basis

Pursuit (BP) [Chen et al. 1998]. The main drawback of BP algorithm is that it

is extremely time-consuming, especially for the image processing. Thus, numerous

other methods have been proposed for `1 norm minimization problem due to its

wide range of possible applications in the domain of statistics and signal processing

such as LARS/LASSO [Tibshirani 1996], Homotopy [Malioutov et al. 2005], GPSR
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[Figueiredo et al. 2007], L1-Ls [Kim et al. 2007], IST [Daubechies et al. 2004] etc.

Between `0 norm and `1 norm, the focal underdetermined system solver (FOCUSS)

is proposed [Gorodnitsky & Rao 1997], using the `p norm with 0 < p ≤ 1 to replace

`0 norm. Here, for p < 1, the similarity to the true sparsity measure is better but the

overall problem becomes nonconvex, giving rise to local minima that may mislead

in the search for solutions.

The OMP algorithm involves the computation of inner products between the

signal and dictionary columns. It is very simple to be implemented and fast to be

executed while keeping good performances. Therefore, numerous works rely on it. It

is also the case for our experiments where we have made use of OMP to perform the

sparse coding, i.e. computing the sparse coefficients x of signal y given a dictionary

D. The principle of OMP algorithm [Blumensath & Davies 2007] is as follows:

Algorithm: Orthogonal Matching Pursuit (OMP)

• Task: Given the dictionary D ∈ Rn×K and the signal y to be represented by

a linear combination of atoms from D, find the corresponding coefficients x so

that Dx best approximates y.

• Initialization: Set the initial residual r0 = y, the initial index set Γ0 = ∅,

s0 = 0. Set the indicator of iteration t = 1.

• Repeat until stopping rule (usually the number of atoms used):

– αi = dTi r
t−1 for all i /∈ Γt−1 and i ∈ {1, 2, ...,K}

– imax = argimax|αi|

– Γt = Γt−1 ∪ imax

– stΓt = D+
Γty where DΓt is a reduced dictionary composed by the columns

in D whose indices are in Γt

– rt = y −DstΓt

– t = t+ 1

• Calculate the sparse coefficients x = D+
Γty.
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Another crucial aspect for applying sparse representation model successfully on

the signals (images) is the design of the dictionary, namely D in the equation (3.1).

One type of approaches consists in using the preconstructed dictionaries which do

not change during the problem solving. Such dictionaries based on the transforms

mentioned above, i.e. ridgelet, curvelet and contourlet, have been widely used in

signal processing. Another possibility consists in using the dictionary composed

by the training images themselves, which has also given promising results as in

[Wright et al. 2009b] and [Fu et al. 2009b].

However, this conventional setting may not be suitable to be directly employed

in the domain of computer vision and pattern recognition as there is no given basis

with good property compared to signal processing [Wright et al. 2009a]. In order to

address this new situation, another type of approaches has been proposed in order to

learn a task-specific dictionary from given samples by updating the dictionary, with

the purpose of describing the image content more effectively. We can mention here

two appealing and widely used methods: Method of Optimal Directions (MOD)

[Engan et al. 1999] and K-SVD [Aharon et al. 2006]. Both of them are iterative

methods, containing a sparse coding stage which finds the corresponding coefficients

x of a signal y based on the current dictionary and a dictionary update stage which

updates the dictionary using coefficients obtained from previous stage to better fit

the data. The objective function for these two methods can be expressed as in (3.6)

which is a reformulation of (3.4).

min
D,X
{||Y −DX||2F } subject to ||xi||0 ≤ L ∀i (3.6)

where Y is a matrix containing all the signals {yi}Ni=1 in columns and X is the

corresponding coefficient matrix composed by {xi}Ni=1. The notation||A||F is the

Frobenius norm, defined as ||A||F =
√∑

ij a
2
ij . L is a positive number which controls

the sparsity level. As any pursuit algorithm can be used to do the sparse coding

for both of them, typically OMP, their main difference lies in the dictionary update

stage. Assuming that X is fixed, MOD takes the derivative of ||Y −DX||2F to get
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the relation (Y −DX)XT = 0, leading to

Dt+1 = Y XtT (XtXtT )−1 (3.7)

Thus, MOD simply updates the dictionary in an entire way without changing the

coefficients in this stage. On the contrary, K-SVD updates D sequentially, one

column (atom) by one column, combined with an update of the sparse coefficients,

thereby accelerating convergence and yielding more accurate results. So finally, K-

SVD has been chosen as a dictionary update method in our experiments, whose

algorithm can be described as follows [Aharon et al. 2006]:

Algorithm: K-SVD

• Task: Find the best dictionary to represent the signals {yi}Ni=1 as sparse com-

positions, by solving

min
D,X
{||Y −DX||2F } subject to ||xi||0 ≤ L ∀i

• Initialization: Set the dictionary D0 ∈ Rn×K with `2 normalized columns

(randomly selected from the training dataset for example). Set the indicator

of iteration t = 1.

• Repeat until stopping rule (convergence for example):

– Sparse Coding Stage: Use any pursuit algorithm (typically OMP) to

compute the coefficient vectors xi for each signal yi, by approximating

the solution of

∀i = 1, 2, ..., N, min
xi
{||yi −Dt−1xi||22} subject to ||xi||0 ≤ L.

– Dictionary Update Stage: For each column k = 1, 2, ...,K inDt−1, update

it by

∗ Define the group of signals that use this atom ωk : {i|1 ≤ i ≤

N, xkT (i) 6= 0} where xkT is the k-th row of X.
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∗ Compute the overall representation error matrix, Ek, by

Ek = Y −
∑
j 6=k

djx
j
T .

∗ Restrict Ek by choosing only the columns corresponding to ωk, and

obtain ERk .

∗ Apply SVD decomposition ERk = U∆V T . Choose the updated dic-

tionary column d̃k to be the first column of U . Update the coefficient

vector xkR to be the first column of V multiplied by ∆(1, 1). Here xkR
is a reduced version of the row vector xkT by discarding of the zero

entries.

– t = t+ 1.

3.2.2 Reconstructive methods

In the standard framework of sparse representation, the objective is to reconstruct

the signal using as few number of atoms as possible while minimizing the recon-

struction error at the same time. The methods derived from this philosophy are

called reconstructive methods.

[Wright et al. 2009b] proposes to represent the test sample using a dictionary

composed by the training samples themselves. They argue that if sufficient training

samples are available from each class, it will be possible to represent the test samples

as a linear combination of just those training samples from the same class. So this

representation is naturally sparse, involving only a small fraction of the overall train-

ing dataset. They apply this approach on face recognition that is realized according

to the reconstruction errors for different categories after the sparse representation

of test samples having been recovered via `1 minimization.

[Candès 2006] presents the Compressive Sensing (CS) theory by introducing a

sensing matrix in the traditional sparse representation model, which shows that the

signals can be recovered from far less samples than those required by the classical

Shannon-Nyquist Theorem. Then in [Duarte-Carvajalino & Sapiro 2009] a frame-

work for simultaneously learning the overcomplete non-parametric dictionary and
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the sensing matrix is introduced, obtaining good results for image restoration.

[Raina et al. 2007] makes use of sparse representation model to learn a dictionary

from the unlabeled data for a reconstruction task, without assuming that these

unlabeled data follow the same category labels as the labeled data, an approach

they called "self-taught learning". Then the sparse decompositions of signals are

used as posteriori within a classifier.

Another ingenious approach presented in [Yang et al. 2009b] incorporates the

classical "bag of features" model with sparse coding which is used to replace the K-

means clustering algorithm. In fact, sparse coding can be viewed as a generalization

of K-means by relaxing two constraints: 1, each signal is allowed to be represented

by a linear combination of codewords instead of one in K-means; 2, the value of

coefficients is allowed to vary instead of being fixed to 1 in K-means. So this re-

placement can achieve a much lower reconstruction error due to the less restrictive

constraint, leading to a possible improvement of performance.

Although the reconstructive methods presented above have obtained promising

results for many applications, their efficiency for the classification task is not guar-

anteed. Indeed the goals of reconstruction and classification are naturally different.

One immediate solution to extend reconstructive approaches to the classification

task may consist in learning a dictionary for one category in a reconstructive way

so that the reconstruction error of a signal in this category is minimized. However,

we can not ensure that the reconstruction error of a signal from a different category

on this specific dictionary is bigger than the signals from the same category.

Thus, discriminative methods have been proposed to generate a signal repre-

sentation that maximizes the separation of signals from different categories, being

usually sensitive to corruption in signals due to lacking crucial properties for signal

reconstruction. Therefore a better choice is to combine the reconstructive term and

discriminative term together in the objective function of sparse representation model

for classification task, thus yielding the following reconstructive and discriminative

methods.
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3.2.3 Reconstructive and discriminative methods

[Huang & Aviyente 2006] proposes to integrate a Fisher discrimination term, which

tries to maximize the inter-class variance while minimize the intra-class one, to

the standard reconstructive sparse representation formulation. Their approach is

proved to yield robust and discriminant image representations through the exper-

iments on synthetic signals and handwritten digits recognition task with different

levels of noise. However, there is no dictionary learning in their work as they use

preconstructed dictionaries and sparse coding over them. However, the actual dic-

tionary plays a critical role, and it has been shown that learned and data adaptive

dictionaries significantly outperform off-the-shelf ones. Therefore, one may prefer

to learn a task-specific dictionary for classification.

In [Mairal et al. 2008a] multiple dictionaries are learned, one per category, so

that each category dictionary provides a good reconstruction for its corresponding

category and a poor one for the other categories. During the learning procedure,

they introduced a softmax discriminative cost function to reconstructive sparse rep-

resentation:

Cγi (y1, y2, ..., yN ) = log(
N∑
j=1

e−γ(yj−yi)) (3.8)

which is close to zero when yi is the smallest value among the yj . Increasing the

value of the parameter γ > 0 provides a higher relative penalty cost for each mis-

classified patch whereas the final classification process itself is based on the cor-

responding reconstruction error, rather than exploiting the actual decomposition

coefficients, which seems to be more reasonable to feed them into a discriminative

classifier. Moreover, the strategy of learning one dictionary for each category re-

quires more computational resource. The same authors investigate in another work

[Mairal et al. 2008b] the possibility to learn simultaneously a single shared dictio-

nary as well as multiple decision functions for different signal categories, one function

for each category, instead of learning multiple dictionaries in [Mairal et al. 2008a].

Contrary to [Mairal et al. 2008a] who modifies the dictionary update stage of

K-SVD, [Rodriguez & Sapiro 2007] proposes to improve the discrimination power

through modifying the sparse coding stage. It is mainly based on the concept of
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obtaining simultaneous sparse decompositions within each category by representing

all the signals from that category at once as a linear combination of a common

subset of atoms. The objective is to capture the common internal structure of these

signals and eliminate their internal variation, while keeping a global discrimination

term among different categories at the same time.

Contrary to these reconstructive and discriminative methods that have been

designed for local image analysis, such as texture classification, digits recognition

and local patch analysis, we would like to present in the following our proposed

reconstructive and discriminative approach inspired by sparse representation for

generic visual object categorization.

3.3 R_SROC: a Reconstructive Sparse Representation

based Object Categorization

Before using directly reconstructive and discriminative sparse representation for vi-

sual object categorization, we have firstly proposed a simple preliminary reconstruc-

tive approach [Fu et al. 2009b], inspired by [Wright et al. 2009b], to evaluate the

effectiveness of sparse representation model for our interested task, VOC. Assuming

the intuitive hypothesis that an image could be represented by a linear combination

of the training images from the same class, a sparse representation of the image

is first of all obtained by solving a `1 (or `0)-minimization problem and then fed

into a traditional classifier such as SVM to finally perform the classification task.

Experimental results obtained on the SIMPLIcity dataset have shown that this new

approach can improve the classification performance compared to standard SVM

using directly features extracted from the image. The details of the approach is

presented below.

3.3.1 R_SROC principle

Inspired by the principles of sparse representation, an image can be represented by

a linear combination of elements from a dictionary composed of training images
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themselves. Suppose that

{f1,1, f1,2, ..., fi,j , ..., fM,NM−1, fM,NM
} ∈ Rn. (3.9)

are feature vectors extracted from the training images for totally M categories rep-

resenting the distribution of their visual content, where Ni, i = 1, 2, ...,M is the

number of images for the i-th object category. Then, a new image feature vector y

can be expressed as follows:

y =ω1,1f1,1 + ω1,2f1,2 + ...+ ωi,jfi,j + ...

+ ωM,NM−1fM,NM−1 + ωM,NM
fM,NM

.
(3.10)

where ωi,j is the weight for the j-th image of the i-th category. Let D be a new

matrix (dictionary) built of all N = N1 + N2 + ... + NM training images for these

M categories:

D = [D1, D2, ..., DM ] = [f1,1, f1,2, ..., fM,NM
]. (3.11)

and let x be a N × 1 coefficient vector:

x = [ω1,1, ω1,2, ..., ωM,NM
]T ∈ RN . (3.12)

Then, the equation (3.10) can be rewritten using the following matrix notation:

y = Dx ∈ Rn. (3.13)

If sufficient representative training images are available for each category, we

can assume that the image y can be represented by a linear combination of only the

training images from the same category as y. Suppose that y belongs to the i-th

category, thus the coefficient vector x is supposed to have the following form:

x = [0, 0, ..., 0, ωi,1, ωi,2, ..., ωi,Ni , 0, ..., 0, 0]T . (3.14)

whose values are zero for the images that do not belong to the i-th category. We
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can obviously observe that x is naturally sparse if the number of categories to be

classifiedM is sufficiently large. For instance, in our caseM = 10, then only 10% of

the entries of x has nonzero value hence sparse. Based on this observation, finding

the sparsest solution x for the equation (3.13) is equivalent to the problem of (3.5)

and can be solved by numerous methods mentioned in section 3.2.1.

Once the sparse representation x of all the images has been obtained by com-

puting a `0 norm minimization problem or the equivalent `1 norm minimization

problem, they can be used to feed a traditional classifier such as Neural Networks

(NN), Linear Discriminant Analysis (LDA) or SVM to perform the final classifica-

tion task. The complete categorization process is described as follows:

R_SROC algorithm

1. Extract the feature vector representing the image visual content for all the

training images: fi,j ∈ Rn, i ∈ {1, 2, ...,M}, j ∈ {1, 2, ..., Ni}, where M is

the number of categories and Ni is the number of training images for i-th

category. (For example, suppose we have 3 categories and there are 9, 10, 11

training images in each category respectively. The feature vector representing

the image has a dimension of 10. Thus, we have in this case M = 3, N1 = 9,

N2 = 10, N3 = 11, n = 10.)

2. Regroup all these feature vectors to build the dictionary D =

[D1, D2, ..., DM ] = [f1,1, f1,2, ..., fM,NM
] ∈ Rn×N where N =

∑M
i=1Ni is the

total number of training images. (Retaking the previous case, we get N = 30

and D is a 10× 30 matrix while D1, D2, D3 are respectively 10× 9, 10× 10,

10× 11 sub-matrices.)

3. Normalize the columns of D to have unit `2 norm.

4. Solve the `1 norm minimization problem to obtain the sparsest solution x for

the equation y = Dx:

min
x

(||x||1) subject to Dx = y.

where y is the image for which we want to obtain its sparse representation
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Figure 3.1: Some sample images from SIMPLIcity dataset (from left to right, from
top to bottom, they belong to African & village, Beach, Building, Bus, Dinosaur,
Elephant, Flower, Horse, Mountain & glacier and Food respectively).

for classification. (Or alternatively, solve the `0 norm minimization problem:

minx(||x||0) subject to Dx = y.)

5. Feed the obtained sparse representation of images x as input of a classifier

(SVM in our case).

6. Assign the category label to images according the output of the classifier.

3.3.2 Experimental results

Our experiments using R_SROC are performed on the SIMPLIcity dataset

[Wang et al. 2001b] with the whole ten categories. They are: African & village,

Beach, Building, Bus, Dinosaur, Elephant, Flower, Horse, Mountain & glacier and

Food. Thus, a total of 1000 images from these 10 categories has been used. Half of

the images are used for training and another half for test, these two subsets being

chosen randomly. Some sample images are presented in Figure 3.1.

A total number of 2446 features has been computed to represent each image

from SIMPLIcity dataset. The corresponding feature set includes Color Auto-

Correlogram (CAC), Color Coherence Vectors (CCV), Color Histogram (CH),

Color Moments (CM), Edge Histogram (EH), Grey Level Co-occurrence Matrix

(GLCM), Texture Auto-Correlation (TAC) and Local Binary Pattern (LBP). Com-

pared to the feature set we have used in section 2.3, CH [Swain & Ballard 1991]

and LBP [Takala et al. 2005] have been added here for their good performance in

[Zhu et al. 2010].
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Table 3.1: Classification Rate (CR) for visual object categorization on SIMPLIcity
using SVM.

Class C1 C2 C3 C4 C5
CR 80% 82% 62% 84% 100%
Class C6 C7 C8 C9 C10
CR 86% 84% 98% 72% 86%

Average CR 83.4%

Table 3.2: Classification Rate (CR) for visual object categorization on SIMPLIcity
using R_SROC.

Class C1 C2 C3 C4 C5
CR 84% 74% 84% 98% 100%
Class C6 C7 C8 C9 C10
CR 86% 90% 98% 72% 88%

Average CR 87.4%

As we have mentioned in section 3.2.1, OMP algorithm [Pati et al. 1993] has

been chosen for obtaining the sparse representation of the images because of its

efficiency and rapidity. Concerning the classifier, we have chosen the multi-class

SVM (C-SVC in LIBSVM package [Chang & Lin 2001]) with RBF kernel to perform

one step global classification. SVM parameter optimization task has been done

thanks to a grid search using 4-fold cross-validation technique within the training

set, the same as in section 2.4.3.2.

Two experiments have been carried out in our work. In the first one, we have

used SVM directly on the feature vectors extracted from images to classify a test

image into the corresponding category according to the object it contains. The

detailed results are shown in Table 3.1 where Ci, i ∈ {1, 2, ..., 10} represent i-th class

with respect to the order used to present 10 classes in the previous paragraphs (the

same for Table 3.2). In the second experiment, we have first computed the sparse

representation of images according to the algorithm presented in the previous section

and then used these sparse representations to feed SVM classifiers to perform the

classification task. The detailed results are givne in Table 3.2. The classification

rate has been employed to measure the performance of the classifier.

From these 2 tables, focusing on the average classification rate for 10 categories
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at first, we can clearly see that our R_SROC performs significantly better than the

traditional method using SVM, and presents an improvement of 4%. We should also

notice that the powerful SVM has already obtained a relatively high classification

rate, so the superiority of 4% achieved by R_SROC is obvious considering the

relative small improvement space. Then, when going further into the results of each

category, we can notice that R_SROC has enhanced the classification performance

for almost all 10 categories, and especially for C3 and C4, i.e. Building and Bus,

which present a large improvement. The only category that has been degraded is

C2 Beach. However, the level of degradation is much lower compared to the level of

improvement for other categories. Given the above observations, we can conclude

that using a sparse representation of images thanks to R_SROC allows to improve

the classification compared to a standard approach where the image features would

have been used directly to feed SVM classifiers.

3.4 RD_SROC: a Reconstructive and Discriminative

Sparse Representation based Object Categorization

Encouraged by the promising results obtained using R_SROC, we have decided to

go further into the direction of this sparse representation based visual object cat-

egorization. Thus, we have proposed an approach based on a reconstructive and

discriminative sparse representation for VOC, called RD_SROC. In this section, we

will first formulate the problem mathematically and then propose the correspond-

ing algorithm to solve it. Then, the evaluation of the corresponding RD_SROC

approach will be presented.

3.4.1 RD_SROC principle

Recall the notation: we have a set of N training signals {yi}Ni=1 belonging to M

categories. Y = [y1, y2, ..., yN ] is a signal matrix with the corresponding sparse

coefficients based on the dictionary D as X = [x1, x2, ..., xN ]. Moreover, we suppose

that Ni signals are in the category Mi, for 1 ≤ i ≤M .

The objective function of the standard reconstructive sparse representation can
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be expressed as in (3.6):

min
D,X
{||Y −DX||2F } subject to ||xi||0 ≤ L ∀i (3.15)

If we integrate the sparsity constraint into the function, it can be reformulated as:

min
D,X,Λ

{λ1||Y −DX||2F + λ2

N∑
i=1

||xi||0}

⇒ min
D,X,Λ

{λ1

N∑
i=1

||yi −Dxi||22 + λ2

N∑
i=1

||xi||0}

(3.16)

where Λ = {λ1, λ2} is a set of regularization parameters which adjust the tradeoff

between the reconstruction error and the sparsity.

The main goal of our approach is to learn a reconstructive and discriminative

dictionary which helps to increase the discrimination power of the signal sparse rep-

resentation based on this dictionary, while keeping a relative low reconstruction er-

ror, i.e. the reconstructed signal using the obtained sparse coefficients being as close

to the original signal as possible. Therefore, inspired by [Huang & Aviyente 2006],

the Fisher discrimination term [Bishop 2007] is introduced to the objective function.

Suppose SW is the "intra-class scatter" which measures the within-class covari-

ance:

SW =

M∑
i=1

Si (3.17)

where

Si =
∑
xj∈Mi

(xj −mi)(xj −mi)
T (3.18)

mi =
1

Ni

∑
xj∈Mi

xj (3.19)

mi is the mean of the signals belonging to category Mi. Let SB denote the "inter-

class scatter" which we identify as a measure of the between-class covariance

SB =

M∑
i=1

Ni(mi −m)(mi −m)T (3.20)
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where m is the mean of all signals

m =
1

N

N∑
i=1

xi (3.21)

Then, the Fisher discrimination score can be expressed as

F (X) =
||SB||22
||SW ||22

=
||
∑M

i=1Ni(mi −m)(mi −m)T ||22
||
∑M

i=1

∑
xj∈Mi

(xj −mi)(xj −mi)T ||22
(3.22)

The Fisher score is maximized when the distance between different categories is

maximized while that within a category is minimized, thus making the classification

task easier.

Integrating the Fisher discrimination term to (3.16) gives:

min
D,X,Λ

{λ1

N∑
i=1

||yi −Dxi||22 + λ2

N∑
i=1

||xi||0 − λ3F (X)} (3.23)

where Λ = {λ1, λ2, λ3} is, similarly to (3.16), the set of regularization parameters

used to tune the tradeoff between the reconstruction error
∑N

i=1 ||yi − Dxi||22, the

sparsity
∑N

i=1 ||xi||0 and the discrimination power F (X). The expected reconstruc-

tive and discriminative dictionary can be learned by solving properly the previous

minimization problem. Thus, the signal sparse representation which gains the dis-

crimination ability while retaining its faithfulness to the original signal can also be

obtained through sparse coding based on the learned dictionary.

As mentioned previously, most of works in the literature use an iterative method

to solve the dictionary learning problem. They generally contains two stages: sparse

coding and dictionary update. We have followed this strategy for solving the mini-

mization problem in (3.23). The first question that arises is "Given the dictionary,

how to do the sparse coding faced with our reconstructive and discriminative objec-

tive function?". Since it involves not only a single signal but also all the training

signals, the traditional sparse coding methods, such as BP and OMP, can not be

directly applied to (3.23). Therefore we propose here a Sequential Forward Sparse

Coding algorithm (SFSC) to do this task.

98



Chapter 3. Sparse representation for VOC

Let G being the function to be minimized:

G = λ1

N∑
i=1

||yi −Dxi||22 + λ2

N∑
i=1

||xi||0 − λ3F (X) (3.24)

The first step of SFSC consists in selecting one atom from the dictionary D

with the smallest value of function G which is calculated by assuming that only

that specific atom has been used for the sparse decomposition to obtain the sparse

coefficients of all signals {xi}Ni=1 as well as X. Indeed, if we know beforehand the

subset Γ of indices of atoms which are used for sparse decomposition, the sparse

coefficients can easily be obtained using

X = D+
Γ Y (3.25)

where DΓ is a reduced dictionary composed only by the atoms whose indices are in

Γ. Then in each following step, we continue to select one atom among the remaining

ones, which yield the smallest value of G based on the subset of atoms formed by

the combination of pre-selected atoms and this new one, until reaching the stopping

rule. Here, the stopping rule can consist in achieving the predefined number of

atoms used for sparse decomposition or stopping when the value of G begins to

increase. The detailed algorithm is as follows:

SFSC algorithm

• Task: Given the dictionary D ∈ Rn×K , the regularization parameter set Λ and

the set of signal Y = [y1, y2, ..., yN ] to be represented by a linear combination

of atoms from D, find the corresponding coefficients X = [x1, x2, ..., xN ] that

minimize G

G = λ1

N∑
i=1

||yi −Dxi||22 + λ2

N∑
i=1

||xi||0 − λ3F (X).

• Initialization: Set the initial index set Γ0 = ∅ and the indicator of iteration

t = 1.

• Repeat until stopping rule:
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– For each i /∈ Γt−1 and i ∈ {1, 2, ...,K}, let Ψ = Γt−1 ∪ i. Then calculate

the sparse coefficients X = D+
ψY as well as the value of Gi based on

X. DΨ represents the reduced dictionary composed by the columns in D

whose indices are in Ψ

– imin = argi min(Gi)

– Γt = Γt−1 ∪ imin

– t = t+ 1

• Calculate the sparse coefficients X = D+
ΓtY .

Concerning the dictionary update stage, we can employ the method of K-SVD

introduced in section 3.2.1. Thus one complete dictionary learning algorithm is

formed and ready to be used for generic visual object categorization. The entire

classification algorithm is described as follows:

RD_SROC algorithm

1. Extract the feature vector representing the image visual content for all the

images: fi,j ∈ Rn, i ∈ {1, 2, ...,M}, j ∈ {1, 2, ..., Ni}, where M is the number

of categories and Ni is the number of images for i-th category.

2. Normalize all fi,j to have unit `2 norm.

3. Learn a reconstructive and discriminative dictionary D of sparse representa-

tion based on training images, by iteratively running the following two stages

with the purpose of minimizing the objective function G. D is initialized by

a subset of training image vectors, chosen randomly.

• Sparse Coding using SFSC.

• Dictionary Update similar to the dictionary update stage of K-SVD.

4. Compute the sparse coefficients of all the images based on the learned dictio-

nary D, including the training images and test images.

5. Use a classifier (SVM for example) to accomplish the classification task, using

the obtained sparse coefficients as input.
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One advantage of our proposed RD_SROC is that other discrimination criteria

can be easily employed by replacing F (X) into the objective function, without

changing the whole classification scheme. For example, we have tested the use a

SVM accuracy as the discrimination term. All these experiments are presented in

the next subsection.

3.4.2 Experimental results

Our experiments using RD_SROC have been performed on several com-

monly used datasets, including SIMPLIcity [Wang et al. 2001a], Caltech101

[L. Fei-Fei & Perona 2004] and Pascal 2007 [Everingham et al. 2007], in order to

evaluate its discrimination ability. They will be presented respectively in the fol-

lowings subsections.

3.4.2.1 Results on SIMPLIcity dataset

The results reported on the SIMPLIcity dataset [Wang et al. 2001b] are obtained

with a 4-fold cross-validation. The same experimental configuration as the one used

for evaluating R_SROC has been used (see details in section 3.3.2). Considering

different discrimination criteria integrated in the objective function, three tests have

been done to evaluate the performance of our proposed RD_SROC: using Fisher

discrimination measure (noted as Fisher in the following); using the output of a

SVM classifier with RBF kernel (noted as SVM_RBF in the following); using the

output of a SVM classifier with linear kernel (noted as SVM_Linear in the follow-

ing). All the regularization parameters are empirically set to have the same value,

meaning that all the three terms, namely the reconstruction error, the sparsity and

the discrimination power, in the objective function G have the same weight. The

stopping rule of SFSC is set to use 60 atoms for sparse coding.

Before carrying out our experiments on SIMPLIcity, we would like to pay more

attention to the dictionary size, which is considered to be a crucial parameter affect-

ing the performance. Being different to the case of R_SROC where the dictionary is

preconstructed of all training images and its size is determined directly, RD_SROC
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Figure 3.2: The classification rates using RD_SROC with different sizes of dictio-
nary.

relies on the learning of a reconstructive and discriminative dictionary to better

fit the classification task, whose optimal size can not be determined theoretically.

Therefore, we have used 75% of all the images, namely 750 images, to train the

dictionary with different sizes, from 100 to 700 with a step of 100. The classifica-

tion test is done on the other 25% images and the size associated to the highest

classification rate is retained for the whole experiments. From the Figure 3.2, we

can clearly see that the classification rate rises with the increase of dictionary size

from the beginning to 500, where it reaches the highest value 89.6%, and then it

decreases if we continue to increase the dictionary size. Therefore, we have chosen

the size of 500 for the following experiments.

Results using Fisher for visual object categorization on SIMPLIcity using

RD_SROC are given in Table 3.3. Results using R_SROC have also been pre-

sented here for comparison purpose, using the same experimental configuration as

RD_SROC. The different parts correspond to 4-fold cross-validation while (C1, C2,

..., C10) corresponds to the 10 categories. So "Average" in column is the classifi-

cation rate averaging all the parts for a certain category and "Average" in line is

inversely the classification rate averaging all the categories for a certain part. As

a result, the value in the intersection of two "Average"s represents the final overall

classification rate.
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From the two tables, we note that the overall classification rate increases from

87.5% of R_SROC to 89.1% of RD_SROC with Fisher, which means that the classi-

fication ability of RD_SROC is really reinforced by adding the Fisher discrimination

term to the standard sparse representation framework. Although the improvement

is not so significant if we only take into account the absolute value of augmentation

between them, we should say that it is still quite important and can not be neglected

considering the relative small improvement space left. Because the higher the clas-

sification rate is, the more difficult it will be to let it be increased. Now let us look

at the last column, i.e. the classification rate for single category. We can see that

the superiority of RD_SROC is mainly due to the large improvement for difficult

categories, namely the ones with lower rate such as C2 (Beach), C3 (Buildings) and

C9 (Mountains & glaciers). For instance, 9% of augmentation has been observed

for C9 using RD_SROC compared to R_SROC.

Table 3.5 and Table 3.6 present respectively the results of SVM_RBF and

SVM_Linear. They have provided almost the same result with the overall classifi-

cation rate of 87.6% for both of them, showing no advantage compared to R_SROC

and being worse than RD_SROC with Fisher. This is probably due to the "over-

fitting" during the dictionary learning and classifier training, as we have used two

independent SVM classifiers in the process, one for discrimination term and the

other for final classification. However, it did not hurt much the performance ei-

ther, proving that our proposed algorithm RD_SROC can robustly cooperate with

different discrimination terms without changing the algorithm itself.

Detailed analysis Our proposed sparse coding method SFSC needs some crite-

rion as stopping rule. It can be either the number of atoms used for sparse decom-

position or the decrease of the objective function value. We have chosen the first

criterion for its simplicity and the fact that it can avoid the case where many atoms

have been used but only with very small coefficients thus yielding a non-sparse

representation, which may probably happen with the second criterion. However,

determining the optimal number of atoms used still remains an open question. In

our experimentation, we have tested three typical values (30, 60, 100) for all three
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Table 3.3: Classification Rate (CR) of Fisher for visual object categorization on
SIMPLIcity using RD_SROC.

CR 1st part 2nd part 3rd part 4th part Average
C1 92% 96% 80% 84% 88%
C2 72% 72% 80% 88% 78%
C3 88% 80% 84% 76% 82%
C4 100% 100% 96% 88% 96%
C5 100% 100% 100% 100% 100%
C6 84% 96% 88% 64% 83%
C7 100% 100% 100% 88% 97%
C8 88% 96% 96% 96% 94%
C9 88% 84% 88% 68% 82%
C10 84% 100% 96% 84% 91%

Average 89.6% 92.4% 90.8% 83.6% 89.1%

Table 3.4: Classification Rate (CR) for visual object categorization on SIMPLIcity
using R_SROC (4-fold cross-validation).

CR 1st part 2nd part 3rd part 4th part Average
C1 88% 96% 92% 84% 90%
C2 72% 76% 72% 72% 73%
C3 84% 76% 72% 80% 78%
C4 96% 100% 96% 96% 97%
C5 100% 100% 100% 100% 100%
C6 84% 100% 92% 68% 86%
C7 100% 100% 100% 80% 95%
C8 96% 96% 100% 100% 98%
C9 80% 76% 68% 68% 73%
C10 72% 100% 88% 80% 85%

Average 87.2% 92.0% 88.0% 82.8% 87.5%
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Table 3.5: Classification Rate (CR) of SVM_RBF for visual object categorization
on SIMPLIcity using RD_SROC.

CR 1st part 2nd part 3rd part 4th part Average
C1 92% 88% 80% 84% 86%
C2 64% 68% 84% 88% 76%
C3 88% 76% 80% 72% 79%
C4 96% 96% 96% 92% 95%
C5 100% 100% 100% 100% 100%
C6 88% 88% 88% 76% 85%
C7 100% 100% 100% 88% 97%
C8 84% 96% 100% 96% 94%
C9 92% 76% 72% 68% 77%
C10 72% 100% 92% 84% 87%

Average 87.6% 88.8% 89.2% 84.8% 87.6%

Table 3.6: Classification Rate (CR) of SVM_Linear for visual object categorization
on SIMPLIcity using RD_SROC.

CR 1st part 2nd part 3rd part 4th part Average
C1 96% 84% 80% 80% 85%
C2 64% 64% 80% 88% 74%
C3 88% 72% 72% 76% 77%
C4 100% 100% 100% 88% 97%
C5 100% 100% 100% 100% 100%
C6 80% 92% 96% 60% 82%
C7 100% 100% 100% 88% 97%
C8 88% 96% 100% 96% 95%
C9 88% 80% 72% 72% 78%
C10 88% 100% 96% 80% 91%

Average 89.2% 88.8% 89.6% 82.8% 87.6%
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Table 3.7: Classification Rate (CR) of Fisher for visual object categorization on
SIMPLIcity using RD_SROC with 30 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 88% 88% 80% 80% 84%
C2 60% 64% 68% 88% 70%
C3 84% 72% 80% 56% 73%
C4 100% 100% 92% 76% 92%
C5 100% 100% 100% 100% 100%
C6 80% 96% 80% 56% 78%
C7 100% 100% 100% 88% 97%
C8 80% 96% 100% 96% 93%
C9 88% 72% 60% 60% 70%
C10 76% 100% 88% 88% 88%

Average 85.6% 88.8% 84.8% 78.8% 84.5%

experiments, namely Fisher, SVM_RBF and SVM_Linear, corresponding to (6%,

12%, 20%) of the total number of atoms. Besides the results presented above for

60 atoms used, the results of Fisher with 30 and 100 atoms used are presented in

Table 3.7 and Table 3.8 respectively. Similarly the results of SVM_RBF with 30

and 100 atoms used are given in Table 3.9 and Table 3.10. Finally, the results of

SVM_Linear with 30 and 100 atoms used are presented in Table 3.11 and Table

3.12.

From these tables of results, we can clearly see that the classification rates with

60 atoms and 100 atoms are much higher than that with 30 atoms, presenting an

improvement of 4% in average. However, there is not much difference between the

results with 60 atoms and 100 atoms, the results with 60 atoms being a little bit

better than those with 100 atoms. This suggests that using 60 atoms is a good

choice for space coding with SFSC and using more atoms may not be helpful to

improve the performance.

As the authors of [Huang & Aviyente 2006] have also proposed a sparse coding

method in their work, a supplemental experiment has been done by using their

method instead of SFSC in RD_SROC. The same 3 numbers of atoms used have
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Table 3.8: Classification Rate (CR) of Fisher for visual object categorization on
SIMPLIcity using RD_SROC with 100 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 88% 92% 88% 92% 90%
C2 68% 76% 84% 96% 81%
C3 84% 80% 80% 72% 79%
C4 96% 100% 96% 88% 95%
C5 100% 100% 100% 100% 100%
C6 88% 96% 92% 40% 79%
C7 100% 100% 100% 84% 96%
C8 92% 96% 100% 96% 96%
C9 88% 84% 80% 68% 80%
C10 92% 100% 92% 92% 94%

Average 89.6% 92.4% 91.2% 82.8% 89.0%

Table 3.9: Classification Rate (CR) of SVM_RBF for visual object categorization
on SIMPLIcity using RD_SROC with 30 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 88% 96% 76% 76% 84%
C2 56% 64% 64% 84% 67%
C3 84% 60% 76% 60% 70%
C4 96% 100% 92% 80% 92%
C5 100% 100% 100% 100% 100%
C6 80% 96% 88% 56% 80%
C7 100% 100% 100% 80% 95%
C8 76% 96% 92% 96% 90%
C9 72% 76% 72% 68% 72%
C10 84% 100% 92% 76% 88%

Average 83.6% 88.8% 85.2% 77.6% 83.8%
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Table 3.10: Classification Rate (CR) of SVM_RBF for visual object categorization
on SIMPLIcity using RD_SROC with 100 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 92% 96% 84% 80% 88%
C2 68% 76% 72% 88% 76%
C3 84% 68% 72% 80% 76%
C4 100% 100% 100% 84% 96%
C5 100% 100% 100% 100% 100%
C6 84% 96% 84% 56% 80%
C7 100% 100% 96% 76% 93%
C8 88% 96% 100% 96% 95%
C9 96% 76% 72% 60% 76%
C10 88% 96% 96% 88% 92%

Average 90.0% 90.4% 87.6% 80.8% 87.2%

Table 3.11: Classification Rate (CR) of SVM_Linear for visual object categorization
on SIMPLIcity using RD_SROC with 30 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 92% 88% 76% 76% 83%
C2 56% 56% 76% 88% 69%
C3 84% 84% 64% 60% 73%
C4 96% 100% 92% 84% 93%
C5 100% 100% 100% 100% 100%
C6 80% 84% 88% 68% 80%
C7 100% 100% 100% 92% 98%
C8 84% 96% 92% 96% 92%
C9 76% 72% 64% 72% 71%
C10 76% 100% 92% 80% 87%

Average 84.4% 88.0% 84.4% 81.6% 84.6%
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Table 3.12: Classification Rate (CR) of SVM_Linear for visual object categorization
on SIMPLIcity using RD_SROC with 100 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 92% 92% 76% 88% 87%
C2 72% 68% 76% 88% 76%
C3 84% 76% 76% 76% 78%
C4 100% 100% 96% 80% 94%
C5 100% 100% 100% 100% 100%
C6 84% 100% 88% 56% 82%
C7 100% 100% 100% 92% 98%
C8 92% 92% 100% 96% 95%
C9 88% 76% 76% 64% 76%
C10 84% 100% 96% 72% 88%

Average 89.6% 90.4% 88.4% 81.2% 87.4%

been considered, namely (30, 60, 100), and their results are listed respectively in

Table 3.13, 3.14 and 3.15. A severe degradation of performance has been observed

compared to our approach, the decrease being of 5%-8% for the classification rate.

Among the three numbers of atoms used, we can see that 60 is still a good choice

which balances the performance and the computational burden.

3.4.2.2 Results on Caltech101 dataset

Caltech101 [L. Fei-Fei & Perona 2004] is a dataset which contains 101 categories of

objects and one extra background category, thus having a total of 102 categories.

Most categories contain about 50 images while some of them may contain only 30

images or up to 800 images. Some sample images are presented in Figure 3.3.

A traditional experimental configuration is used, i.e. 15 images chosen randomly

from each category for training and another 15 images chosen in the same way for

test. So we have totally 1530 training images and the same number of test im-

ages. Concerning the feature set, SIFT, CSIFT, OSIFT, LBP and HOG have been

employed (see 2.2.1 for more details). Here one problem is that the number of SIFT-

like features extracted from an image can vary from one image to another, while our
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Table 3.13: Classification Rate (CR) for visual object categorization on SIMPLIcity
using RD_SROC with the sparse coding method of [Huang & Aviyente 2006] and
30 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 84% 76% 64% 72% 74%
C2 68% 60% 60% 68% 64%
C3 80% 68% 76% 48% 68%
C4 92% 84% 88% 84% 87%
C5 100% 100% 100% 100% 100%
C6 80% 88% 64% 64% 74%
C7 100% 100% 100% 72% 93%
C8 68% 100% 84% 100% 88%
C9 80% 64% 64% 60% 67%
C10 60% 100% 80% 76% 79%

Average 81.2% 84.0% 78.0% 74.4% 79.4%

Table 3.14: Classification Rate (CR) for visual object categorization on SIMPLIcity
using RD_SROC with the sparse coding method of [Huang & Aviyente 2006] and
60 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 96% 80% 64% 76% 79%
C2 60% 56% 60% 68% 61%
C3 76% 80% 76% 60% 73%
C4 96% 100% 88% 84% 92%
C5 100% 100% 100% 100% 100%
C6 84% 88% 76% 52% 75%
C7 100% 96% 100% 76% 93%
C8 72% 88% 96% 100% 89%
C9 76% 64% 60% 68% 67%
C10 68% 96% 80% 76% 80%

Average 82.8% 84.8% 80.0% 76.0% 80.9%
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Table 3.15: Classification Rate (CR) for visual object categorization on SIMPLIcity
using RD_SROC with the sparse coding method of [Huang & Aviyente 2006] and
100 atoms.

CR 1st part 2nd part 3rd part 4th part Average
C1 92% 84% 64% 80% 80%
C2 60% 60% 56% 76% 63%
C3 92% 80% 68% 64% 76%
C4 96% 100% 76% 84% 89%
C5 100% 100% 100% 100% 100%
C6 84% 92% 80% 60% 79%
C7 100% 96% 100% 76% 93%
C8 60% 96% 92% 100% 87%
C9 84% 60% 68% 56% 67%
C10 64% 96% 80% 68% 77%

Average 83.2% 86.4% 78.4% 76.4% 81.1%

Figure 3.3: Some sample images from Caltech101 dataset (from top to bottom,
from left to right, they belong to anchor, butterfly, crocodile, face, saxophone and
strawberry).
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RD_SROC algorithm requires one feature vector with the same dimension to rep-

resent an image. Thus, the classical "Bag of Features" (BoF) approach is chosen for

this purpose as its effectiveness has been demonstrated in [Everingham et al. 2007].

Finally, a spatial pyramid as explained by Figure 2.8 is also applied, thus yielding 8

histograms corresponding to the whole image and 7 subregions for one image, noted

as sp1 to sp8.

The classification process is as follows. First a reconstructive and discriminative

dictionary is trained on BoF feature vectors sp1 using RD_SROC with 500 atoms in

the dictionary and 60 atoms used for sparse coding, which corresponds to the best

configuration evaluated previously during our experiments on SIMPLIcity. Then

a sparse coding using SFSC is performed for all BoF features vectors sp1 to sp8

to obtain the corresponding Sparse Representation Coefficients (SRC) sp1 to sp8.

After that, kernel matrices of SRC are computed for each spatial pyramid level

and merged together using the proportion as merging weights, which is the ratio of

areas of its corresponding subregion compared to the whole image, to form the final

entire kernel matrix (see section 2.4.1.3 for details). In this step, 3 normalization

methods of kernel matrices are considered before their fusion: 1, no normalization;

2, mean normalization in which each kernel matrix is divided by its mean value; 3

std normalization in which each kernel matrix is normalized to have mean 0 and

standard deviation 1. Finally, one-against-one SVM classifier is used to perform

the classification task for every type of feature, with 2 popular kernels evaluated,

namely linear kernel and RBF kernel (the parameter γ in RBF kernel is optimized

using 4-fold cross-validation on training sets of SRC sp1). The ultimate decision of

category for a test image is made based on its maximal probability after the average

fusion of probabilities given by SVM for each type of feature.

The detailed results in terms of classification rate are presented in Table 3.16,

where we also show the results obtained when using directly BoF feature vectors to

feed SVM classifier after kernel computation and fusion for comparison purpose. We

can note that the type of normalization method has almost no impact on the perfor-

mance and all of them provide almost the same classification rate. This might mean

that the normalization step before the fusion of kernel matrices is not necessary.

112



Chapter 3. Sparse representation for VOC

Table 3.16: Classification Rate (CR) for visual object categorization on Caltech101.
SRC means the results obtained using coefficients from RD_SROC and BoF means
the results obtained using BoF directly.

CR non normalization mean normalization std normalization
Type of results SRC BoF SRC BoF SRC BoF
Linear kernel 46.3% 21.8% 46.7% 29.4% 46.5% 30.7%
RBF kernel 45.6% 24.8% 45.6% 32.6% 45.8% 28.2%

Moreover, our RD_SROC is robust to both of linear kernel and RBF kernel with

a little bit favor for linear kernel. This is a very interesting property because linear

kernel is much more computational efficient, especially in the case where we should

find a good γ for RBF kernel to insure a better performance. However, the obtained

results are worse than other results reported in the literature, which can reach clas-

sification rates around 60% to 75%. This has led us to do a comparative experiment,

whose results are in the same table, in order to know whether this degradation came

from RD_SROC itself or other components of the whole classification process.

We can see that using BoF directly has provided even worse results compared to

SRC, which proves that the image representation SRC obtained through RD_SROC

has gained indeed more discrimination ability, making it more suitable for classifica-

tion task. But why the overall result is not so good? We guess that a deeper research

in the future on many steps in the whole classification process would be interesting

and useful to improve the performance as the goal is to find a best adapted classi-

fication method to sparse representation based image representation. These steps

include the task dependent parameter regularization for RD_SROC, the fusion of

different spatial pyramid levels, the intelligent way to combine the results of different

features (for example, we can replace SVM by MKL to realize an automatic feature

combination in the kernel level), the design of novel kernels to best fit the properties

of our sparse representation base image representation etc.

113



Chapter 3. Sparse representation for VOC

3.4.2.3 Results on Pascal 2007 dataset

We have also evaluated our RD_SROC on 5 representative categories of Pascal 2007

dataset [Everingham et al. 2007], namely aeroplane, bicycle, bus, horse and person.

As the images in this dataset may have several labels, i.e. one image may belong

to several categories, it is necessary to build one classifier per category using one

against all strategy. This kind of classification configuration offers us the possibility

to propose an innovation compared to the previous experiments, considering not

only the reconstructive and discriminative dictionary but also the adapted purely

reconstructive dictionary for one category. Inspired by [Perronnin et al. 2006], the

basic idea is very simple: we first train a reconstructive and discriminative dictio-

nary based on both the positive training images and negative training images using

RD_SROC, and then a purely reconstructive dictionary can be adapted from the

previously obtained dictionary, using the images from that category only through

the combination of OMP and K-SVD. The final dictionary is the combination of

them. Thus we can expect that an image is better approximated by the atoms

in the adapted dictionary of a certain category if it belongs to this category and

otherwise it would rather be described by the atoms in the reconstructive and dis-

criminative dictionary.

Most of the experimental configuration is the same as that of Caltech101, except

that we have a final dictionary with the size of 1000, which is the result of com-

bination of two dictionaries with the size of 500. Therefore, the number of atoms

used for sparse coding is correspondingly changed to 120. As we have already shown

that the type of kernels and normalization methods has almost no impact on the

performance of the experiments on Caltech101, we have just used linear kernel with-

out normalization before kernel fusion on Pascal 2007, with the purpose of reducing

the computational cost. The results are given in Table 3.17. Morever, Table 3.18

presents the results using BoF directly, without sparse representation.

Average fusion in the tables means that the results generated by different features

are equally fused to form the final result while val fusion takes the normalized

average precision on validation data as weighs to fuse the results of different features.
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Table 3.17: Average precision (AP) for visual object categorization on Pascal 2007
using SRC.

AP for SRC average fusion val fusion
aeroplane 0.615 0.605
bicycle 0.281 0.287
bus 0.301 0.301
horse 0.640 0.639
person 0.709 0.710

Table 3.18: Average precision (AP) for visual object categorization on Pascal 2007
using BoF directly.

AP for BoF average fusion val fusion
aeroplane 0.517 0.522
bicycle 0.114 0.114
bus 0.148 0.148
horse 0.447 0.465
person 0.610 0.610

Actually, they exhibited more or less the same performance. By comparing these

two tables, we can see that our approach performed better than using BoF directly,

with large superiority for all the 5 categories. But the overall performance even if it

remains in an acceptable level, is still distant to the best reported in the challenge

(see Table 2.10 for details). Moreover, if we compare the results in Table 3.17 to

the best results obtained using SMIR in Table 2.9, we find that the performance

increases significantly for some categories, such as "aeroplane" and "horse", whereas

for other categories, the performance regrettably decreases. All phenomena reveal

again that further research in the future on the points mentioned in the case of

Caltech101 would be useful to exploit the potential discrimination ability of our

sparse representation based image representation.

115



Chapter 3. Sparse representation for VOC

3.5 Conclusion

Sparse representation is originally used in signal processing as a powerful tool for

acquiring, representing and compressing high-dimensional signals. Motivated by the

great successes it has achieved, recently it has become a hot research topic in the do-

main of computer vision and pattern recognition. In this chapter, we have proposed

two approaches for visual object categorization via sparse representation, including

a reconstructive method (R_SROC) as well as a reconstructive and discriminative

one (RD_SROC). Based on the intuitive hypothesis that an image can be repre-

sented by a linear combination of training images from the same category, R_SROC

approach first computes the sparse representation of images through solving the `1

(or `0) norm minimization problem and then uses them as new feature vectors for

images to be classified by traditional classifiers such as SVM in our case. To improve

the discrimination ability of the sparse representation, we have proposed RD_SROC

which includes a discrimination term, such as Fisher discrimination measure or the

output of a SVM classifier, to the standard sparse representation objective function

in order to learn a reconstructive and discriminative dictionary.

Experiments carried out on the SIMPLIcity dataset have clearly revealed that

our reconstructive approach has gained an obvious improvement of the classification

accuracy compared to standard SVM using image features as input. Moreover, our

reconstructive and discriminative approach has obtained better results than pure

reconstructive one which shows that adding a discrimination term for constructing

the sparse representation is more suitable for the classification task.

Experiments on Caltech101 and Pascal 2007 datasets, have revealed that our

approach has indeed gained more discrimination ability compared to the traditional

"bag of features" representation. However, even if the overall performance remains

in an acceptable level, it is still lower than some of state of the art methods.

Thus, we believe that sparse representation can greatly help for designing effi-

cient approaches for VOC purpose. We have proposed in this chapter two innovative

and promising methods but since it is a rather precursory work, many directions

still need to be investigated, including the way to identify optimal regularization pa-
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rameters for RD_SROC, the way different spatial pyramid levels should be fused,

the way to combine the results from different features (for example, we can replace

SVM by MKL to realize an automatic feature combination in the kernel level), the

design of novel kernels to best fit the properties of our sparse image representation.
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This thesis addresses the active research topic of generic visual object categoriza-

tion (VOC) which consists in labeling a real world image according to the objects

it contains given a set of categories under consideration.

Without imposing any restriction on the processed images, we are faced with

image content that may be heterogeneous, ambiguous, and also acquired under poor

conditions. Moreover, we have to deal with problems inherent to object categories

like the wide variations of shape and appearance of objects inside a category, and due

to the representation of an object in an image, such as various scales and orientations,

as well as illumination and occlusion problems. To all these difficulties, we also need

to add the one induced by the large number of real world object types that need to

be discriminated.

Despite many efforts and much progress that have been made during the past

years, VOC remains an open and very challenging problem. In this context, we

have proposed in this thesis our contributions, especially concerning the two main

components of the methods addressing this problem, namely features selection and

image representation. In the following, we will first summarize our contributions

and then propose some perspectives which would be interesting for future work.
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4.1 Contributions

• Firstly, we have proposed an Embedded Sequential Forward feature Selection

algorithm (ESFS) for VOC. Its goal is to select the most important and non-

redundant features for obtaining a good performance for the categorization. It

is mainly based on the commonly used sub-optimal search method Sequential

Forward Selection (SFS), which relies on the simple principle to add incre-

mentally most relevant features. However, ESFS not only adds incrementally

most relevant features in each step but also merges them in an embedded way

thanks to the concept of combined mass functions from the evidence theory

which also offers the benefit of obtaining a computational cost much lower

than the one of original SFS. Experiments have shown that used as a filter

selection method, ESFS performs better than widely used state of the art

approaches such as Fisher and PCA for the filter methods and SFS, SFFS

and OS for the wrapper approaches applied to the visual object categorization

task. Moreover, ESFS can be used not only as a feature selection method, but

also directly as a classifier.

• Secondly, we have proposed novel image representations through polynomial

interpolation and statistical measures, called PMIR and SMIR respectively,

to model the visual content of an image. They allow to overcome the main

drawback of the popular "bag of features" method which is the difficulty to

fix the optimal size of the visual vocabulary. Moreover, when a GMM is

used for a soft assignment, we can avoid the inaccurate assumption of the

Gaussian distribution of features which is not always the case in the different

applications. Finally, our representations are also able to cope with a smaller

number of feature vectors per image, a situation that we often encounter. We

have tested PMIR and SMIR on a subset of Pascal 2007 dataset along with

our proposed region based features and SIFT. Two different fusion strategies,

early and late, have also been considered to merge information from different

"channels" represented by the different types of features. Results of PMIR

have shown that a good performance can be achieved with our approach and
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that our segment features carry information which is complementary to the

one of SIFT features. A deeper evaluation of SMIR combined with several di-

mensionality reduction methods and classifier construction techniques facing

unbalanced dataset has then been carried out and drawn the same conclusion

as in the case of PMIR, that is a good classification accuracy, which is com-

parable to the best results reported in the Pascal challenge, can be achieved

and our region based features and SIFT are complementary to each other.

• Thirdly, we have proposed two approaches for VOC via sparse representation,

including a reconstructive method (R_SROC) as well as a reconstructive and

discriminative one (RD_SROC). Indeed, sparse representation model of sig-

nals has received a lot of attentions and has been a very active research area

in recent years. Recently, techniques from sparse signal representation have

significantly impacted the domain of computer vision and pattern recognition.

This has motivated us to propose approaches adapting these principles to the

problem of VOC.

Based on the intuitive hypothesis that an image can be represented by a linear

combination of training images from the same category, R_SROC approach

first computes the sparse representation of images through solving the `1 (or

`0) norm minimization problem and then uses them as new feature vectors

for images to be classified by traditional classifiers such as SVM in our case.

To improve the discrimination ability of the sparse representation to better fit

the classification problem, we have also proposed RD_SROC which includes

a discrimination term, such as Fisher discrimination measure or the output of

a SVM classifier, to the standard sparse representation objective function in

order to learn a reconstructive and discriminative dictionary. Moreover, we

have also proposed to combine the reconstructive and discriminative dictionary

and the adapted pure reconstructive dictionary for a given category so that

the discrimination power can further be increased.

Experiments carried out on the SIMPLIcity dataset have clearly revealed that

our reconstructive approach has gained an obvious improvement of the classi-
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fication accuracy compared to standard SVM using image features as input.

Moreover, our reconstructive and discriminative approach has obtained better

results than pure reconstructive one which shows that adding a discrimina-

tion term for constructing the sparse representation is more suitable for the

classification task.

Supplemental experiments on Caltech101 and Pascal 2007 datasets, have re-

vealed that our approach has gained more discrimination ability compared to

the traditional "bag of features" representations. However, even if the overall

performance remains in an acceptable level, it is still lower than some of state

of the art methods, which suggests that the promising sparse image represen-

tation may be improved to better fit VOC properties.

4.2 Perspectives for future works

Extensions of this work that we envisage, not only concerning feature selection but

also image representation, are presented in the following paragraphs.

• We plan to investigate alternative solutions for building mass functions asso-

ciated to each single feature within ESFS. Indeed, for the moment, masses

are distributed on single classes for a given feature. However, the evidence

theory allows the reasoning on union of classes, which may be more accu-

rate. Moreover, an interesting issue would be to integrate into the feature

selection process the conflict information that can be obtained from combined

mass functions and which may allow to avoid combining features that give

contradictory informations. Indeed, even if several fusion operators we con-

sidered integrate the notion of conflict, such as the one of Dempster and Yager,

their performance has not been significantly improved compared to the perfor-

mance of TBM which does not handle the conflict. Therefore further research

is needed in order to integrate the conflict information in a more efficient way.

• Since features of different natures extracted from an image often carry different

image informations which can contribute respectively to the final image clas-

122



Chapter 4. Conclusion and future works

sification from different aspects, the fusion of them is considered to be able to

effectively improve the classification performance. This point of view has been

confirmed in both of experiments using PMIR and SMIR. However, actually

we have only evaluated in this work two fusion strategies, namely early fusion

and late fusion, and we think that it might be meaningful to consider other

numerous intermediate strategies which may consist in generating intermedi-

ate classes from different sources and to take a final decision based on these

intermediate classes. The objective would be to find a fusion strategy which

allows to best exploit the complementarity between features while eliminating

as much as possible their contradictory part.

• As an extension of SVM, MKL allows to use a combination of kernels instead

of a single one in SVM. Each basis kernel in the combination can either be

different kernels with different parameter configurations or use different types

of features. This characteristic offers more freedom to incorporate more fea-

tures combined with different kernels to improve the performance, since MKL

performs an automatic feature fusion and feature selection during the training

procedure. Therefore, we think that it would be interesting to evaluate MKL

for the classification using our approaches, instead of the current SVM.

• We believe that sparse representation can greatly help for designing efficient

approaches for VOC purpose. We have proposed two innovative and promis-

ing methods, R_SROC and RD_SROC, but since it is a rather precursory

work, many directions still need to be investigated. In particular, parameter

regularization is an important aspect for these methods, especially the weights

attributed to the reconstructive term, discriminative term and sparsity in the

objective function. Actually, we have empirically used equal weighting for

all these 3 terms. However, it might not be the optimal choice for achieving

the best performance. Exploiting intelligent ways for its automatic determi-

nation depending on a concrete object categorization task would be another

interesting direction for future improvement. Moreover, the way to combine

the results from different features is another important point. We plan to
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replace SVM by MKL to perform an automatic feature combination at the

kernel level using novel kernels to better fit the properties of our sparse image

representation. Finally, although SMIR has obtained comparable results to

that reported in the Pascal challenge, it is still less effective than the best

method in the challenge which mainly relies on BoF. This is the reason why

we have chosen, in case of local image features, to make use of BoF to compute

the image representation further used for sparse representation. However, we

envisage to evaluate the efficiency of our SMIR representation instead of BoF

within our R_SROC and RD_SROC sparse image representations.
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During this thesis, 5 papers have been published in international conferences, 1
paper has been submitted to IEEE Transaction on Knowledge and Data Engineering.
There is another paper published in international journal in the domain of virtual
reality, with collaboration of my ancient colleague.

International Conferences:

1. H. Fu, A. Pujol, E. Dellandréa, L. Chen: Image modeling using statistical
measures for visual object categorization, International Conference on Image
Processing Theory, Tools and Applications (IPTA’10), pp. 319-324, April
2010.

2. C. Zhu, H. Fu, C.E. Bichot, E. Dellandréa, L. Chen: Visual object recog-
nition using local binary patterns and segment-based feature, International
Conference on Image Processing Theory, Tools and Applications (IPTA’10),
pp. 426-431, April 2010.

3. H. Fu, C. Zhu, E. Dellandréa, C.E. Bichot, L. Chen: Visual object cate-
gorization via sparse representation, International Conference on Image and
Graphics (ICIG’09), pp. 943-948, June 2009.

4. H. Fu, Z. Xiao, E. Dellandréa, W. Dou, L. Chen: Image categorization using
ESFS: a new embedded feature selection method based on SFS, Advanced
Concepts for Intelligent Vision Systems (Acivs 2009), pp. 288-299, April 2009.

5. H. Fu, A. Pujol, E. Dellandréa, L. Chen: Region based visual object cat-
egorization using segment features and polynomial modeling, IAPR Interna-
tional Workshops on Structural, Syntactic and Statistical Pattern Recognition
(S+SSPR 2008), in conjunction with ICPR 2008, pp. 277-286, April 2008.

Submission to an International Journal:

1. H. Fu, Z. Xiao, E. Dellandréa, W. Dou, L. Chen: A new embedded sequential
feature selection method for categorization of image and audio, submitted to
IEEE Transaction on Knowledge and Data Engineering, 2010.

International Journal:

1. L. Ma, W. Zhang, H. Fu, Y. Guo, D. Chablat, F. Bennis: A framework for
interactive work design based on motion tracking, simulation, and analysis,
International Journal of Human Factors and Ergonomics in Manufacturing,
Volume 20, Issue 4, pp. 339-352, June 2009.
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