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Abstract 
 

 The general aim of the study is to offer mathematical model of the process, which can allow 

crack identification in the compressor or turbine blade of aircraft gas-turbine engine in operation.  

 Within the frameworks of this goal cracked blade non-linear dynamic model was elaborated 

and introduced to the global model of the bladed disk. Crack induced non-linearity was taken into 

account applying contact analysis elements in conjunction with harmonic balance method. For 

system size reduction the sub-structuring methodology using fixed-interface method was applied. It 

supposes the crack location to be considered as interface between two dependent, in this case, sub-

structures. Such approach was applied to the both uncoupled cracked blade and bladed disk models. 

Also considering uncoupled cracked blade the centrifugal forces effect was examined. It was 

concluded, that depending on crack properties (location and size), it will be enough to use the linear 

crack presence formulation supposing crack to be always open (initial gap). 

 During simulation of the bladed disk forced response containing cracked blade the effect of 

blade mistuning was simulated. Simulation results shown that at certain level of mistuning it 

becomes impossible to separate cracked blade response. Furthermore such crack detectability 

decreases with absence of cracked blade frequency localization. The last one phenomenon is very 

important diagnostic sign, which simplifies cracked blade detection at almost all cases. 

 The last phase of the work was devoted to simulation of blade tip-timing method application 

for cracked blade identification. It consisted in blade arriving time generation, blade tip amplitudes 

reconstruction and bladed disk frequency response calculation on the base of measured (simulated) 

time data. Such approach allowed us to identify cracked blade in the same way as in frequency 

response analysis. Generally speaking, blade tip-timing method can be used as the part of engine 

health monitoring system for compressor or turbine blades dynamic performances monitoring. 
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Résume 
 

  Ce travail porte sur le développent de modèle mathématique du processus d’identification 

de la fissure dans une aube de compresseur ou de turbine  d’un moteur d’avion en fonctionnement. 

  Dans le cadre de cette problématique, le modèle non-linaire d’aube fissurée a été développé 

et introduit dans la modèle globale de roue aubagée. La non-linéarité causée par la présence de 

fissure a été prise en considération par application des éléments d’analyse de contact conjointement 

avec la méthode de balance harmonique. Nous avons utilisé l’approche de sous-structuration pour la 

réduction de la taille du système. Cette approche se base sur la méthode à interface fixe en 

supposant que la fissure forme l’interface entre deux sus-structures dépendants. Elle a été appliquée 

aux modèles d’aube isolée et roue aubagée. L’effet de forces centrifuges a aussi été étudié en 

utilisant le modèle d’aube pas couplée. On peut déduire de cette étude qu’il suffit de simuler le 

comportement vibratoire d’une aube fissurée par l’approche linaire, mais cela dépend de la position 

et de la taille de la fissure. La formulation linéaire de comportement dynamique d’aube fissurée 

consiste à supposer que la fissure est toujours ouverte.   

  L’effet de désaccordage a été examiné avec la simulation de réponse forcée de la roue 

aubagée contenant une aube fissurée. Les résultats de simulations montrent qu’un certain niveau de 

désaccordage peut cacher la réponse de l’aube fissurée. De plus, la capacité de détecter cette aube se 

dégrade avec l’absence de sa localisation dynamique fréquentielle.  

  La dernière phase du travail a été consacrée à la simulation d’application de la méthode de 

tip-timing à l’identification d’aube fissurée. Elle se constitue de la génération du temps d’arrivé, la 

reconstruction d’amplitude de réponse en tète d’aube et le calcul de la réponse forcée du disque à 

partir des données mesurées (générées). Cela nous donne la possibilité d’identifier l’aube fissurée 

de manière analogue à l’analyse de la réponse forcée. On peut conclure qu’il sera possible d’utiliser 

la méthode de tip-timing comme une partie d’un système global de health monitoring de moteurs 

d’avion pour contrôler le comportement dynamique d’aubes de compresseur ou de turbine. 

      

 

Mot clés:  

aube fissurée, roue aubagée,  méthode de balance harmonique, 

désaccordage, localisation dynamique d’aube fissurée,   

méthode de tip-timing 



iv                                                                  Résume                                                                            _ 
 

 

 

 

 



 

v 

 

Table of contents 

 
Abstract i 

Résume iii 

Table of contents v 

Introduction 1 

1. Some aspects of gas-turbine engines structural dynamics 5 

1.1 Aviation engine in the scope of health monitoring 5 

 1.1.1 Overview of an aircraft gas-turbine engine 5 

1.1.2 Bases of aviation technique health monitoring  7 

1.1.3 Aircraft gas-turbine engine health monitoring system  8 

1.1.4 Methods of parametric diagnostic of aircraft gas-turbine engine 11 

1.1.5 Physics of aircraft gas-turbine engine parameters modification  12 

1.2 Dynamics of deformable solid bodies in rotation 13 

1.3 Forced response of tuned bladed disk 17 

 1.3.1 Cyclic analysis of tuned bladed disks 17 

 1.3.2 Engine order excitation 19 

 1.3.3 Zig-zag diagram application to periodic structures 21 

1.4 Mistuning and vibration localization in bladed disk structures 22 

        1.4.1 Mistuning influence on dynamics of bladed disk 23 

        1.4.2 Vibration localization in mistuned bladed disks 26 

 1.5 Dynamics of bladed disk with a crack presence in the blade 30 

Conclusions 35 

2. Contact analysis and crack propagation 37 

2.1. Contact analysis elements for crack inside interaction modelling 37 

2.1.1 Taking into account friction in contact analysis  39 

2.1.2 Stress-deformed state in contact zone  41 

2.1.3 Virtual work principle 43 

 2.1.4 Variational inequality 44 

 2.1.5 Variational equality 46 

2.1.6 Solution of the contact problem 47 

2.2 Fatigue and endurance calculation of structures elements 51 

2.2.1 Alternating loads  52 



vi                                                         Table of contents                                                                      s   
 

 

2.2.2 Fatigue curve and limit stresses diagram 54 

2.2.3 Distribution curve of cyclical durability 56 

2.2.4 Damage accumulation. Durability estimation 57 

2.3 Structure crack resistance calculation  59 

2.3.1 Stress intensity coefficient 59 

2.3.2 Force criterion of cracked structures strength                                                    64 

2.3.3 Critical stress and critical length of crack. Safety factor 66 

2.3.4 Example of residual strength calculation of the cracked structure 69 

2.4 Residual durability of structure with crack  73 

2.4.1 Diagram of material cyclical crack resistance 74 

2.4.2 Definition of residual durability of structure with crack  76 

2.4.3 Example of cracked structure residual durability calculation 77 

Conclusions 80 

3. Nonlinear analysis of the cracked structures in dynamics 81 

3.1 A solution to a non-linear dynamic problem 82 

3.1.1 Time domain methods for a solution to the non-linear problems 83 

3.1.2 Frequency domain methods for a solution to the non-linear problems  86 

3.1.3 Methods for reduced order modelling 89 

3.2 Cracked blade model dynamic 92 

3.2.1 Reduction of cracked blade model 94 

3.2.2 Application of penalty method for non-linear force representation 97 

3.2.3 Non-linear solution of the problem 98 

3.2.4 Validation of harmonic balance method results by direct time integration  102 

3.2.5 Frequency response of the non-linear cracked blade model 104 

3.2.6 Centrifugal forces effect on cracked blade non-linearity 109 

3.2.7 Fracture mechanics elements application to cracked blade model 112 

3.3 Dynamic model of bladed disk with a cracked blade 114 

3.3.1 Bladed disk model reduction 117 

3.3.2 Choosing the number of retained harmonics in the case of bladed  

disk model 
120 

3.3.3 Effect of the phase lag of excitation forces on the bladed disk forced 

response 
121 

3.3.4 Mistuning effect on the bladed disk forced response 122 

3.3.5 Prediction of mistuned bladed disk frequency response 127 

Conclusions 131 



vii                                                         Table of contents                                                                      s   
 

 

4. Tip-timing method application for cracked blade detection 133 

4.1 Blade amplitude reconstruction from multi-probe measurements data 135 

4.2 Blade tip-timing method application to the bladed disk model 139 

4.2.1 Simulation of tip-timing measurements 140 

4.2.2 Comparison of frequency response reconstructed by tip-timing method data 

with harmonic balance method results 
154 

4.3 Tip-timing measurements simulation at different mistuning levels 155 

4.3.1 Presence of cracked blade frequency localization 155 

4.3.2 Absence of cracked blade frequency localization 160 

4.4 Measurement performances influence on cracked blade detectability 161 

Conclusions 167 

Conclusions and perspectives 169 

Personal publications 173 

References 174 

Nomenclature 183 

List of figures 187 

List of tables 193 

Annex 1 195 

 

 

 

 

 

 

 

 

 

 

 



viii                                                         Table of contents                                                                      s   
 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

 

Introduction 

 

 
 The research study presented in this dissertation aims to provide computational 

methodologies and understanding of the physical phenomena that will aid to control bladed disk 

dynamic behaviour containing one or several cracked blades.  

 Bladed disk structures are found in a wide array of applications from small impeller pumps 

via automotive turbosystems up to large turbines for power generation and aviation gas-turbine 

engines for military and commercial aircrafts. Up-to-date aviation engines are complex products 

therefore requiring much attention to them. They are elaborated in the conditions of the extremely 

high concurrence level, within the frameworks of very strict requirements to their performances: 

technical, economical and environmental. Due to this, entire aviation gas-turbine engine health 

monitoring through on-line damage detection is increasingly gaining the interest of manufacturers. 

 The various today’s on-wing health monitoring systems are a collection of separate, 

unrelated technologies providing a basic monitoring level. Their capabilities are relatively limited 

and the information they provide is used, normally, to initiate maintenance actions. And they are 

not applicable for real-time controlled objects tracing and decision-making. 

 As far as turbines and compressor blades are among the most critical engine elements, 

special measures should be applied to include them in an accurate way to the engine health 

monitoring system. Their behaviour characteristic parameters should be traced continuously during 

engine operation because damages, like fatigue induced cracks, have features to propagate. So that. 

crack initiation and attainment of the limit working cycles number could happen between engine 

checks. Also blade monitoring can be carried out on the base of blade forced response at different 

excitation frequencies or engine rotation speed, alias during engine operation only. This can give us 

much more diagnostic information and that is more important – such information will be updated in 

each measurement (time point) and initiated ruinous defects could be revealed. Thus, the problem of 

knowledge necessity about dynamic behaviour of cracked blades becomes more and more 

important.  

 Some difficulties are brought by probabilistic character of crack characteristic parameters. 

But they are not alone. Problems of mistuning, vibration localization caused by cracked blade 

presence should be studied because they will have effect on the process of crack presence
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detection. In the study we will deal with model of the bladed disk, which has properties of the blisk 

structure. So that, the questions of blade to disk connection will be omitted. With the advent of 

blisks, single part bladed disks, the interest about blade mistuning as an objectionable phenomenon 

has increased. In the blisk blades are permanently attached to the disk and it is not possible to 

discard the blades that fall outside acceptable manufacturing tolerances.  

  Also the question of proper modelling of crack behaviour becomes one of the most 

important. It will influence on dynamic structure response ability to give to the maintenance 

engineer certain information, which is sufficient or not for cracked blade identification. Generally, 

the crack is modelled by linear approach supposing it to be always open and such model can be 

easily introduced by perturbation of blade partition of global bladed disk stiffness matrix. But in 

reality due to inside crack contact such approach may be not realistic enough. Contact induced non-

linear cracked blade behaviour could hide the crack presence effect on overall bladed disk forced 

response, if mistuning is taken into account. Such considerations are also true for cracked blade 

frequency localization case.  

 After it the main attention is focused on application of the non-invasive method able to map 

out bladed disk dynamics during engine operation. In such way we will transfer to investigate the 

possibility to apply a method of cracked blade identification based on measurements of blade tip 

deflections. For this purposes blade tip arriving times, when blade tip passes through stationary 

installed on engine casing probe, are used. Methods using such methodology are known as blade 

tip-timing methods. Vibration characteristics of the investigated object are analyzed according to 

acquisition of arriving times data. Further, the related blade fatigue life or/and its health conditions 

are evaluated. Blade tip-timing method can be used to create on-line system of blade health 

monitoring. This system should be able to solve the following tasks: 

− initial data measurements; 

− calculation of characteristic parameters by measured data; 

− processing of characteristic parameters to describe chosen blade dynamic behaviour. 

 In such on-line blade monitoring system, non-contact displacement sensors play an 

important role. Several physical principles are used for non-contact measurements. Among these, 

eddy current, optical reflection and capacitive sensors have good properties. 

 The analysis and applicability of the non-linear bladed disk dynamic model to tip-timing 

method should be fulfilled with investigation of the method’s ability to detect cracked blade using 

only measurement data. 

 Obtained results should provide solid ground for deeper understanding of cracked blade 

identification problem on the base of its dynamic behaviour and show effective ways of preventing 

of disastrous effects. They are believed to be beneficial for the industry.  
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 In order to accomplish all required tasks the presented study is structured in the following 

way. As far as it deals with faults detection in blades of an aviation engine in operation, firstly, the 

engine should have been considered as a complex dynamic object. Therefore, chapter 1 deals with 

questions of aviation gas-turbine engines diagnostics, dynamics of solid bodies and simulation 

approaches of crack presence in a blade. The special attention is paid to bladed disks in the scope of 

mistuning presence and cyclic symmetry analysis.  

 The questions of contact analysis fundamentals and theoretical formulation of crack 

presence in a structure using fracture mechanics theory are considered in chapter 2. It serves to go 

together with proper formulation of crack presence in the blade. Moreover, application of fracture 

mechanics to estimation of cracked structure residual durability can be integrated as an assessment 

element of health monitoring system responsible for cracked blade detection. Such system can be 

based on realistic non-linear model of cracked blade and application of on-line procedure of blade 

dynamic performances monitoring (e. g., tip-timing method). 

 Accordingly, the principal part of the study is contained in chapter 3, where development of 

non-linear cracked blade model is presented. The non-linear approach of crack presence simulation 

supposes simultaneous application of harmonic balance method and elements of contact analysis 

(penalty method). The model of bladed disk with cracked blade is then investigated. It is subjected 

to mistuning influence that, in most of cases, affect cracked blade detectability. An example is 

devoted to zig-zag diagram application, which is shown to be applicable even in the case of 

disrupted symmetry (by influence of both mistuning and cracked blade). 

 Finally, the study is concluded by tip-timing method application to the bladed disk model 

(chapter 4). It is aimed on simulation of real measurements, which can be performed during engine 

operation or maintenance. Simulations supposing different crack cases (size, location) are 

performed to show the method ability to trace bladed disk frequency response and, consequently, to 

detect cracked blade. 
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 The aim of this chapter is to present main outlines in aviation gas-turbine engine structural 

dynamics in connection with engine health monitoring. Parameters of dynamic behaviour of engine 

components will be considered as their probable diagnostic signs. 

 Firstly, main aspects of the engine design are presented and principles of its operation are 

explained. The attention is paid to engine operational modes, engine operational loads, sources and 

signs of vibrations. Main engine critical parts are singled out and their influence on engine 

availability and performances is summarized.    

 Theoretical aspects of solid body dynamics in rotation are considered to form the 

background for all following developments. Crack modelling approaches are considered to choose 

the most appropriate one to simulate non-linear behaviour of cracked blade. 

 Also mistuned bladed disk dynamics, cyclic modelling and vibration localization are 

presented in the form of bibliographical review. Frequency localization phenomenon of mistuned 

structures is considered as one of the most important aspects that can be used in engine health 

monitoring for cracked blade identification. 

 
1.1 Aircraft engine in the scope of health monitoring 

 
 1.1.1 Overview of an aircraft gas-turbine engine 

 

 Now, aircraft gas-turbine engines gain wide application in all spheres of civil aviation and 

they are under continuous development. The social and economical factors play the main role in 

their perspective development [66]. 

 Social factors mean such requirements as safety guarantee, flight time reduction and effect 

on environment. Economical factors are the increased requirements to engine efficiency and 

reduction of maintenance costs. All these factors make demands to the engines and denote 

main directions of their perspective development: 

 

Chapter 1  

Some aspects of gas-turbine engines structural dynamics 
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− intensification of the working process by effective control using diagnostic systems; 

− optimization of engine design (weight and durability parameters). 

In all following studies we will deal with turbofan engine, as soon as its structural parts and 

assemblies will be the objects of all simulations. 

 A turbofan engine gas path consists of several components arranged from front to back (Fig. 

1.1). The first component is the fan, which is open to the outside, and, in a civil aircraft engine, 

provides most of the thrust by propulsion of a huge quantity of air through the engine core. The first 

of these remaining components is the booster, also known as the low pressure compressor (LPC), 

which is followed by the high pressure compressor (HPC). This opens into the combustor where 

fuel is injected and burned. The resulting hot gas drives the high pressure turbine (HPT) and the low 

pressure turbine (LPT). Each of these components affects the engine’s operation, and algorithms for 

improved control and knowledge about component health will enable a higher level of performance 

to be obtained.  

 
Fig. 1.1. Aircraft turbofan engine  

 
 The state of component health involves characteristics that degrade over time: such features 

as efficiency, flow capacity, and seal leakage. These tend to change slowly over many flights, but 

abrupt changes might indicate the occurrence of a sudden fault. From a structural point of view, the 

engine is made up of rotating and non-rotating parts. The non-rotating outer portion consists of, 

among other things, the ducts for bypass airflow, and stator vanes which project into the airflow 

through the components. It also contains the bearings outer races that hold the rolling elements that 

support the shafts. The shafts, in turn, support the fan, compressor and turbine disks – these are the 

rotating components. The low pressure shaft supports the fan, LPC, and LPT. The hollow high 

pressure shaft fits around the low pressure shaft and it is separated from it by bearings. It supports 

the HPC and HPT. The compressors and turbines each consist of multiple disks attached to the 
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shaft, and each disk is fitted with multiple blades around its circumference. As these parts rotate, 

they interact, setting up natural vibrations and resonances. Change in an engine vibration signature 

may be recognized as a damage sign.  

 Working blade of aviation gas-turbine engine is one of its most important and highly loaded 

components (Fig. 1.2). Some aspects of its design are presented here because it will be the main 

object of the work in all following chapters. 

 

    

cmax

 
(a)                                                           (b) 

Fig. 1.2: (a) typical turbine blade design (cooled); (b) turbine blade profiling 

 
 Parameters of blades profiling must provide operational gas-dynamic parameters of blade 

row performances. For simplification of blades manufacturing its body concave (external face) 

surface is outlined by circle arch and convex (internal face) surface is outlined by parabola or 

lemniscate segments (Fig. 1.1). Profile mass centres are aligned in order to reduce bending stresses. 

Maximum relative profile thickness cmax is changed from 20-25% at root section to 4-6% at blade 

tip. Blades with cooling system have higher values of the relative thickness. 

 Cross-section area of the blade profile is generally decreased from root to tip non-linearly: 

                                        ,)
RR

RR
)(FF(F)R(F q

rp

r
prr −

−
−−=                                                             (1.1) 

where rR  end rF – radius and area of the root section and pR  end pF – radius and area of the 

periphery section, q – power low rate. For turbine blades q=0.5-0.6 and pF / rF =0.3-0.4. Profile of 

chord generally is not changed or changed slightly along blade height.  These measures allow reduce 

stresses in root section on up to 30-35%. 

 
  1.1.2 Bases of aviation technique health monitoring  
 

 At present, systems using on-board control devices and information accumulation on engine 

technical condition are widely spread. These systems allow performing of estimates of 

serviceability, operability and trouble-shooting up to replaceable assembly [51].  

External 
face 

Internal 
face 

Leading 
edge 

Trailing 
edge 
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Different methods and diagnostic tools were developed for engines health monitoring [8, 

52, 99]. They are aimed on improvement of on-board and land-based devices and specialised 

systems, which are used for flight data acquisition, storage and processing. Also such methods 

provide engine diagnosing with minimum time and financial expenses. Optimum efficiency can be 

attained by assembling diagnostic tools in a unified complex integrated system. Creation of the 

overall health monitoring system requires in-depth study of method capabilities and drawbacks, its 

optimum application regarding to operation conditions and full use of the acquired information. 

Efficiency of diagnostic systems is determined by controllability and accessibility of the 

engine to diagnosing in the volume ensuring faults detection; presence of powerful and trusty 

airborne system of parameters control, which allows engine and its functional systems health 

monitoring; high resolution of diagnostic methods and tools ensuring fault detection at early stage; 

sophisticated system of decision making about possibility of engine operation; possibility of 

nondestructive methods utilization. 

There are some ways of maintenance and repair cost reduction providing the required 

reliability level. One way is to make possible engine accessibility for inspections without its 

removal. Another one way is the use of overall system of in-condition health monitoring with 

parameters control.  

  
 1.1.3 Aircraft gas-turbine engine health monitoring system  

 
The system of parametric control and diagnostics of gas-turbine engine is intended for 

estimation of its technical condition while in service. It performs in-flight failures detection and 

prevents faults of the engine and its main functional systems (start, fuel and oil system, compressor 

control system, thrust reverse system) [98]. 

The system performs automatic recording of parameters and signals acquired by on-board 

devices, their express processing after each flight, monitoring and analysis by the methods of 

parametric diagnostics. It allows yielding operative estimate of current technical condition of the 

engine and its functional systems. Current estimate of engine technical condition is performed by 

logical analysis of parameters and signals, proximate analysis of flight and engine runs information, 

visual observation of parameters and signals. Analysis of parameter trends is used for intermediate 

term estimate and prediction of serviceability of the engine. Such kind of analysis establishes 

parameters dependence on operating time. Then, trends of set limits overrun are determined. 

Complex analysis of flight information in the diagnostic laboratory allows engines classification on 

"faultless" and "supposed to be defective". Also it allows solution making about engine technical 

condition, necessity of components substitution, inspections and regulations. 
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Generalized system of the parametric control and diagnosing performs the following tasks [4]: 

− Proximate analysis of engine technical condition by flight information; 

− Processing and analysis of engine runs; 

− Aviation engine health monitoring by measured parameters; 

− Decision making on aviation engine technical condition; 

− Monitoring of current and equivalent engine operating times; 

− Scanning and visualisation of flight information; 

− Data management about failures and measures of their elimination; 

− Thermodynamic model of the engine for the engine diagnosing; 

− Program of fuel rate monitoring; 

− Oil system condition monitoring program; 

− Engine thrust calculation program; 

− Vibration performances monitoring; 

− Official data management on aviation engine. 

From the point of view of algorithmization all tasks of parametric control and diagnosing 

are divided into three groups: operative estimate of technical condition, diagnostics and predictions, 

trouble-shooting. 

Main taks of operative estimate cover monitoring of on-board diagnostic system, proximate 

analysis of flight information, processing and analysis of the engine runs and visualisation of flight 

information.  

The problems linked with engine monitoring and diagnosing by parameters measured in 

flight constitute the second group. This group includes tasks of parameter-trend analysis, 

monitoring of oil system, fuel rate, engine thrust and vibration performances of the engine. This 

tasks are intended for intermediate term estimate and prediction. 

Problems of aircraft engine official data management form group of the information tasks. 

Data about failures and modes of their elimination, crew and laboratory notes are used for faults 

search in conjunction with decision making system. 

 As it can be understood from stated above, the main task of engine health monitoring is the 

engine investigation as the diagnostics’ object and development of methods and tools of its 

diagnosing. To solve this task there are some stages to be accomplished: 

− localization of the engine state multitude subjected to diagnosing; 

− selection of the minimum number of parameters required for particular state 

recognition; 

− development of methods of diagnostic parameters determination; 
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− analysis of processes occurring in the engine at its operational state and defect 

propagation monitoring; 

− methods development of engine state prognosis and defects localization; 

− system development of diagnostic information acquisition, storage and analysis;  

− definition of engine health monitoring system in the overall maintenance system with 

the goal to reduce faults number and full utilization of engine service life abilities. 

 Engineering analysis of the engine deterioration physical process in operation can be 

classified by: 

− process of gas-dynamic flow deterioration of the engine core indicated by thermo and 

gas-dynamic parameters changing; 

− process of engine mechanical state deterioration caused by continuous wear of engine 

bearing and exhausting of engine critical parts resource abilities by parameters of long-

term strength, low and high-cycle fatigue, thermal-fatigue life. 

 Consequently, engine health monitoring can be performed by: 

− diagnostics using thermo and gas-dynamic parameters; 

− diagnostics using engine oil conditions; 

− diagnostics using visual control and defectoscopy; 

− diagnostics using vibration and acoustic parameters. 

 Cracked blade identification will be performed with the goal to provide engine health 

monitoring using diagnostics by vibration parameters.  

 Methods of vibration diagnostics provide engine technical condition estimation using 

information contained in oscillation processes accompanying engine operation. Dynamic loads 

induce acoustic waves propagation in the engine flow. Thus, parameters of vibration depend on 

vibration spectrum and intensity of excitation loads.   

 Generally, the reasons of faults occurrence in the structural elements are associated with 

change of acting loads character. Then, it leads to change of eigenfrequencies caused by fault. And 

it becomes clear that it is possible to detect fault earlier by vibro-acoustic methods then by any other 

diagnostic approach. The main sources of engine vibration have aerodynamic and mechanical 

nature. Aerodynamically induced vibration is normally caused by blade vanes. They produce 

vibration noise and its intensity is increased with increase of flow turbulence. Sometimes additional 

spectrum components can occur. They are linked with rotating flow stall, vibrating burning, etc. But 

the main source of vibration is the rotating rotor. It produces vibration caused by inequalities of its 

manufacturing, wearing and unbalancing.  Also mechanically induced vibrations arise due to gear 

assemblies, bearings and auxiliary units.  
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Engine vibration state diagnostics is performed in two ways. Firstly, it is performed by 

analysis of spectrum frequency content with its comparison in faultless and defected states. In the 

easiest way this approach provides faults detection, which causes new discrete frequency 

components (aerodynamic stall) and sufficient increase of vibration level (blade defects). Secondly, 

analysis of main rotor harmonic levels is carried out at the operational modes. This helps to reveal 

defects leading to rotor unbalancing. Superharmonics are also used to explore elastic support 

bearings and connecting clutches. 

 

 1.1.4 Methods of parametric diagnostic of aircraft gas-turbine engine 
 
 
Up-to-date approaches of engine technical condition monitoring using parametric methods 

are grounded on mathematical model of the engine working process [2, 102]. Such model allows 

determination of faults resulting in change of engine working process parameters. 

Parametric information supposes thermo and gas-dynamic and mechanical parameters to be 

equal  during faultless engine operation, if they are measured within the same operation mode and 

under equal external conditions. 

Parametric methods take their special place in engine health monitoring regarding to some 

advantages [46]: 

− diagnostic information can be acquired continuously on running engine that allows 

tracing a fault origination and development and forecasting of technical condition 

modification; 

− parameters of engine working process are linked among themselves by strict 

dependences allowing application of mathematic tools. 

The analysis of existing methods of diagnostic information processing allows separation of 

two main approaches of engine technical condition estimate. Accordingly to the first one, the engine 

parameters (efficiency of compressor and turbine, squares of characteristic sections, etc.) are used 

as diagnostic parameters. They are obtained using mathematical model of the engine. After that, 

they are compared with parameters of mathematical model of faultless engine initial state or 

defective engine model (fault portrait). By results of comparison, the current technical condition of 

engine is defined. Accordingly to the second approach, measured parameters are accepted as 

diagnostic parameters.  They are reduced to equal conditions and operation mode [51–52]. Finally, 

the technical condition estimate is yielded using trend analysis of parameters change caused by 

origination and development of fault.  

For technical conditions estimate the method of the matrixes is used. It is grounded on 

comparison of reduced parameters deviation from standard values previously calculated for various 
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possible faults of the engine. However, its practical use is complicated by uncertainty of parametric 

identification of the engine faults. 

Also methods of signs separation in space can be applied for diagnostics purposes [78]. 

They use "compactness hypothesis". According to it, the points representing the same state are 

clustered in bounded area of sign space. Consequently, engine state can be estimated by the vector 

of states in m-dimensional space. In this space m engine parameters are used as co-ordinates. 

Though, construction of the confidential hypersurface of the limiting states, considering all possible 

technical states of the engine and their combinations, is quite difficult task. 

Probabilistic methods of diagnostics are grounded on stochastic interdependences of states 

and their signs [8, 83]. The main problem in application of these methods is elaboration of 

recognition algorithms, which allow decision making on the engine technical condition.  

 

 1.1.5 Physics of aircraft gas-turbine engine parameters modification  

 

Physical processes, happening in the engine at fault origination, result in its parameters 

modification. The coking of high pressure turbine ports of the combustion chamber (partial or full) 

leads to increase of temperature field nonuniformity. It increases thermal losses in combustion 

chamber and, hence, reduces efficiency of extension duct, including combustion chamber and high 

and low pressure turbines. 

Automatic control system has to ensure constant high pressure turbine work in order to 

maintain constant rotational speed of high pressure rotor. Thus, it is possible to compensate 

efficiency decrease only by increase of turbine gas temperature and consequently of the fuel rate. If 

efficiencies of both high and low pressure turbines are fixed, gas temperature behind the turbine 

increases proportionally to the gas temperature. Consequently, combustion chamber details, rotor 

blades and nozzle vanes of turbines work in the conditions of more and more increased 

temperatures and, consequently, thermal loadings. 

Simultaneously, owing to heightened thermal loading of the engine "hot part", there are 

material structural modifications with formation of cracks and burn-outs. On heads and sections of 

combustion chamber the embossing separation with slot formation is observed. These defects cause 

losses of strength and cracking that leads to engine operation termination. For prevention of 

dangerous developments of faults in the flight, resulting in failure or even not localised engine 

damage, it is required, depending on stage of already visible defects development, to decrease 

periodicity of optical inspections. 

 Thus, practical value of technical condition monitoring by parameters consists in: firstly, at 

initial stage of defect development, it is possible to extend an engine service life by modification of 
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parameters regulations; and, secondly, at detection of the structural modifications origination, the 

accomplishment of optimum number of inspections should be performed in order to prevent a 

defect development [100–101]. 

 
 1.2 Dynamics of deformable solid bodies in rotation 
 
 In the previous subchapter some critical engine elements were outlined. Moreover, as soon 

as gas-turbine engine rotating elements belongs to them, the particular knowledge is required to 

proper formulate their dynamic behaviour. Therefore some elements of deformable solids dynamics 

should be considered in the brief manner. 

 Formulation of the theory of deformable solids in dynamics will be used throughout the 

study that makes it to be briefly considered [32]. 
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Fig. 1.3. Schematic presentation of deformable solid body  

 
 Let’s consider the system of the volume Ω with boundary Ω∂  in its undeformed state 

located in the origin (Fig. 1.3), which is inertial orthonormal system (OXYZ). Each point of the 

body has co-ordinates expressed by the vector Txxx ],,[ 321=x . At time t=0 the body is in state 

                        )()( 00 xuxxv += ,                            (1.2) 
where )(0 xu  is the initial displacements vector. 

 At the time t>0 the body state will be described (for example in the point P1) by the vector 

            ),(),( tt xuxxv += ,                            (1.3) 
where ),( txu  is displacements’ vector at the time moment t>0 resulting in the body dynamic 

deformation. 

 Description of coordinate system transformation requires involving of the translational 

vector s and the matrix of rotation R. In the inertial coordinate system point P can be described by 

the vector:   

),()()(),( tttt xvRsxy += ,                 (1.4) 
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 From (1.4) velocity of the solid body points required for dynamic problem formulation will 

expressed as: 

   uRuxRsy &&&& +++= )( .                  (1.5) 

 Vector of rotation speed T],,[ 321 ωωω=ω  allows expressing the derivative of rotational 

matrix, which states the relation between inertial coordinate system and the system of the body in 

time t, will be: 
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RRΩR& .               (1.6) 

 Equation of motion of deformable solid is derived on the base of the variation principle of 

Hamilton. It stipulates that sum of kinetic and potential energy variations and variation of the work 

performed by nonconservative forces is equal to zero: 

                 ∫∫ =δ+−δ
2

1

2

1

0)(
t

t

t

t
pc WdtdtEE ,                            (1.7) 

where Ec is kinetic energy, Ep is potential energy and Wδ is the work performed by nonconservative 

(dissipative) forces in the interval t1-t2. Expression WEE pc +−  is known as Lagrange function of 

the system. 

  Supposing our object movement to be described by n generalized co-ordinates 

)(tqi (i=1,…,n) the members of equation (1.7) can be presented in the following way: 

                    qwqqq, δ=δ== WtEEtEE ppcc   ),,(  ),,( & ,                 (1.8) 

where w – vector of nonconservative forces. 

  Then utilizing (1.8), equation of Lagrange associated with variation principle can be written: 

     wqqq =∂∂+∂∂−∂∂ //)/( pcc EEE
dt
d

& ,              (1.9) 

where qw &∂−∂= /dF , Fd – dissipation function of Rayleigh. 

 Kinetic energy can be expressed as follows:  

    

∫∫

∫∫∫∫∫

ΩΩ

ΩΩΩΩΩ

−+ρ++ρ+

++ρ−ρ−ρ+ρ=ρ=

ΩxΩxxRΩsssΩΩxsRu

ΩΩxsRΩuΩuΩuΩΩuuΩuuΩyy

dd

dddddE

TTTTT

TTTTTT
c

) 2(
2
1)(

)(
2
1

2
1

2
1

2

2

&&&&

&&&&

 (1.10) 

       Potential energy is derived as: 

         ∫∫
ΩΩ

Ω∇∇=Ωεε= ddE TT
p uEuE )(

2
1

2
1 .              (1.11) 
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  Work of nonconservative forces w taking into account hypothesis of structural damping is: 

    ∫
Ω

Ωεεξ= dT && Ew
2
1 ,              (1.12) 

where ξ – coefficient of structural damping. 

 E is the elasticity matrix derived from the expression of elastic deformation low  

          )),(),((),( ttt xxEx εξ+ε=σ & ,             (1.13) 

which relies vector σ  associated with stress tensor with vector ε associated with deformations 

tensor. 

 Finally, applying approach of Rayleigh-Ritz, it is possible to obtain the equation of motion 

in matrix form. This approach consists in decomposing displacements field in truncated set of 

functions or generalized coordinates, which describe system motion. In the coordinate system of 

deformed body it will lead to: 

   )()(),( tt qxHxu = ,              (1.14) 

where )(xH  is 3 by n matrix of system form and )(tq is the set of n generalized displacements. 

   Substituting (1.14) to (1.9) the equation of motion in matrix form in rotating reference frame 

will be: 

         
NKL
PDC

gqwLqqCqM

+=
+=

=+++ )()( t&&&

             (1.15) 

where M, C, L are the matrices of mass, damping and stiffness respectively, w and g are the vectors 

of nonconservative and excitation forces. Matrices C and L are decomposed in matrices D of 

damping, gyroscopic P and stiffness K matrices and centrifugal or spin-softening matrix N.  

 All this matrices can be calculated using following expressions: 
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                     (1.16) 

 Using equation (1.15) the system natural frequencies and system deformed states at each 

eigenmode can be easily obtained. In order to deal with dynamic analysis of compressor or turbine 

blades, some consideration should be taken into account. 

 If working wheel disk is sufficiently stiff or coupling ratio between disk and blades is low, 

blades oscillations can be considered as isolated. From engines operation experience it is known 
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that fatigue cracks development also can be caused by blades resonant oscillations. In Fig. 1.4 the 

table of blade natural modes spectrum is shown. Parameter m presents number of oscillation nodal 

lines along blade height and n – along its chord. In the first line blade bending modes are placed, in 

the second – torsional and in the third and following lines – complex or platelet modes. 

 
Fig. 1.4. Natural modes spectrum structure of an individual blade 

 
                     (a)                                                     (b)  

Fig. 1.5. Natural modes of typical turbine blade: (a) flexural, (b) torsional 

 
 Reconstruction of full natural modes spectrum of the working blades at required excitation 

frequency range (Fig. 1.5) gives the possibility to predict dangerous resonance operation modes and 

to establish reasons of their occurrence, if their have been detected during engine operation [7]. 

 
  Prestressed effect overview 

 
  Questions of stress stiffening effect caused by structure rotation should be considered in 

more details. This effect is very important for relatively thin structures with bending stiffness 

comparatively smaller regarding to axial stiffness. In our case, the blade is an example of such 

structure. The effect arises from the variations in flexible body stiffness induced by inertial internal 

constraints and external loads.  

1×1 2×1 3×1 

 

2×1 2×2 
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Theoretically, stress stiffening is the second-order effect, at which structure is subjected to the 

initial stresses 0
ijσ  and displacements field 0

iju . These stresses and displacements are independent on 

time. The main goal during the analysis is to calculate additional stresses and displacements caused 

by stress stiffening. Graphically, the stress stiffening effect is shown in Fig. 1.6 [30]. Stress and 

displacements fields can be represented by equation: 

                 
*0

*0

ijijij

ijijij uuu

σ+σ=σ

+=
,                              (1.17) 

which is system deformed and stressed state measured in its prestressed configuration *Ω . 
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Fig. 1.6. Structure subjected to stress stiffening effect  

 
 For the prestressed structure the principle of Hamilton (1.7) can be rewritten in the form of: 

       0)(
2

1

*
ext 

*
int 

* =−−−δ∫
t

t
dgdc dtEEEE ,                                      (1.18) 

where *
cE  is additional kinetic energy, *

int dE  is additional energy of linear deformation,  *
ext dE  is 

potential of additional external forces, gE  is geometric energy of prestressed state. 

 It should be underlined that stress stiffening influence becomes notable in the meaning of 

eigenfrequency increase with increase of rotation frequency. Its effect can be represented by 

increment of the stiffness matrix and its notation will be omitted. Also gyroscopic P and spin-

softening N matrices can be neglected due blade radial stiffness, which is very high. 

  
      1.3 Forced response of tuned bladed disk 
 

 1.3.1 Cyclic analysis of tuned bladed disks 
 

Bladed disk assemblies in their undamaged state are an example of a periodic structure. A 

perfectly periodic structure consists of a chain of interconnected identical elements. If the last 
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element of the chain is connected to the nearest one, the structure is called cyclically symmetric. All 

cyclic structures share the same set of modes of vibration. This assumption of perfect cyclic 

symmetry simplifies the bladed disks vibration analysis. Instead of analyzing the structure as a 

whole, the equations of motion may be uncoupled and the size of the problem reduced to 

consideration of blade-disk sector dynamic behaviour. 

 Tuned turbine and compressor bladed disks belong to the class of periodic structures. 

Typically the period is one sector of the bladed disk consisting of one blade and corresponding 

portion of the disk. Cyclic symmetry is valid only for tuned bladed disks. For the degrees of 

freedom (DOFs) located in the interior of the sector and at its left and right interfaces the following 

indices will be used: i, l and r (Fig. 1.7). 

 
Fig. 1.7. Cyclic structure analysis components 

 
 For a wave propagating in the structure the angle of the phase lag is used to describe 

behaviour of two equivalent points of two adjacent sectors: 

                                                                  
N

nπ
=β

2 ,                                                                     (1.19) 

where n is the number of excited diameters and N is the number of sectors (blades). 

 This allows description of displacements vector of the disk sector:  

                                                               r
i

l e uu β= .                                                                     (1.20) 

 Also the forces exercised by the adjacent left and right sectors can be expressed in the 

analogous way: 

                                                               r
i

l e FF β= .                                                                     (1.21) 

 Equation of motion of the discretized sector can be repartitioned between DOFs of left and 

right interfaces and interior DOFs:   
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  Applying equations (1.19) and (1.20), size of equation (1.22) can be decreased in two times: 
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 This equation can be represented in the form of the eigenvalues problem, in which mass and 

stiffness matrices depend on number of excited diameters: 

                                                        ( ) 02 =ω− uMK nn .                                                             (1.24) 

 Solution to (1.24) will give the eigenfrequencies and deformed shapes, which are calculated 

using isolated sector for the given number of excited diameters n. To obtain deformed modes of the 

full structure it is enough to use equation (1.19). If to suppose that simulated sector is designated as 

the reference, then deformation of the j-th sector will be:   

                                                              ref
i

j e uu β= .                                                                   (1.25) 

 In the case of n=0 ( 0=β ) and n=N/2 ( π=β ), nM and nK are real symmetric matrices and 

eigenvalues are also real and simple. In other cases nM and nK are complex and eigenvalues are 

real and double. 

 To conclude with cyclic symmetry analysis, it makes possible calculation of cyclic structure 

modes using only one sector. This reduces considerably the size of the problem, which is very 

critical during bladed disk structures analyses. 

  
  1.3.2 Engine order excitation 
 

 Generally, excitation during forced response analysis of engine rotating parts is supposed to 

be an engine order excitation. This excitation condition occurs due to the fact that the rotors are 

rotating in steady flow, which is non-uniform around the annulus. This non-uniformity is caused by 

multiple obstacles in the flow channel, e. g. stator blades, fuel nozzles, combustion chamber parts, 

etc.  They represent by themselves spatial variation of the flow and each blade of the disk 

experiences these spatial variations and, therefore, responds by vibration frequencies, which are 

directly related to the rotor speed. Due to this the excitation force has a characteristic frequency, 

which is an integer multiple of the rotor rotation speed. By performing Fourier transformation of the 

spatial shape of the flow field, it can be decomposed into its spatial harmonics and the response of 

the assembly to each of these can be analyzed separately.  

The forcing function of an engine order EO with excitation frequency ω  on blade i can be 

expressed as: 

 NjEOiti
ajj ee /)1(2 −πω= FF ,              (1.26) 
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where N is the number of blades, jF  is the travelling wave excitation of amplitude Faj going in the 

positive j direction (increasing blade number) with wave speed 
EO
Nc

π
ω

=
2

. The positive direction is 

supposed to be in clockwise relatively to aircraft axis. The blades numeration is also performed in 

clockwise direction, as well as rotor rotation. 

 The advantage of examining individually the spatial excitation harmonics consists in the fact 

that each harmonic excites only modes with the same number of nodal diameters as the excitation. 

An assembly can have several modes with a given number of nodal diameters, like a circular plate 

has many modes with a different number of nodal circles for a given number of nodal diameters. 

 There is a convenient way to present the characteristics of forced response due to engine 

order excitation. It is known as Campbell or interference diagram (Fig. 1.8). Campbell diagram 

presents functional dependence of excitation frequency on rotor rotational frequency with indication 

of the response level on third axis. Also there are horizontal lines showing individual blades natural 

frequencies. These lines are plotted as horizontal signifying that they are independent of speed. In 

reality they can change with rotor speed due to centrifugal forces effect causing stiffening of blade 

modes, bending modes in particular. The diagram also contains engine order lines. When an engine 

order line crosses a natural frequency curve a resonance condition will occur. 

 
Fig. 1.8. Campbell diagram example  
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  1.3.3 Zig-zag diagram application to periodic structures 

 

  In the case of perfect cyclic symmetry of a bladed disk the diagram known as zig-zag takes 

an important place [104]. It allows to establish the relationship between nodal diameters number of 

excited mode with excitation order (excitation harmonic multiplied by number of obstacles (stator 

blades) preceding the considered bladed disk). In order to establish this relationship we can use 

again one sector formulation as for the perfectly symmetric linear system, applying principle of 

superposition. The applied forces can be decomposed by spatial Fourier transformation regarding to 

number of excited diameters n. We pass here from force physical values jF to their cyclic 

description nF : 

                                       

even) is  if(exist  ,)1(1

,2)1(sin2 

,2)1(cos2 

,1

1

1
2/

1

1

1
0

N
N

N
jn

N

N
jn

N

N

N

j
j

j
N

N

j
j

b
n

N

j
j

a
n

N

j
j

∑

∑

∑

∑

=

−

=

=

=

−=

π−
=

π−
=

=

FF

FF

FF

FF

                                     (1.27) 

 Generally, excitation force vector can be decomposed and presented in the following form 

for a reference sector: 

                                  ( ) ( ),sincos)(
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where K is the number of retained harmonics, k is the harmonic number, Ω  is the rotation speed, 

rad/sec. 

 As in our case the external excitation rotates, the forces acting on j-th disk sector can be 

presented by equation: 

             .)1(2sin)1(2cos)(
11
∑∑
==

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −π

+Ω−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −π

+Ω=
K

k

b
k

K

k

a
kj N

jtkEO
N
jtkEOt FFF           (1.29) 

 If to consider case of excitation containing a particular harmonic k in equation (1.29) and to 

calculate coefficients from equation (1.27) we will have after applying some transformations [17]: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π−+−

Ω−⎟
⎠
⎞

⎜
⎝
⎛ π−−

Ω−−

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π−+−

Ω+⎟
⎠
⎞

⎜
⎝
⎛ π−−

Ω−=

=−

∑ ∑

∑ ∑

= =

= =

N

j

N

j

b
k

N

j

N

j

a
k

b
n

a
n

N
jnkEOitikEO

N
jnkEOitikC

N
i

N
jnkEOitikEO

N
jnkEOitikC

N

i

1 1

1 1

2)1)((exp)exp(2)1)((exp)exp(

2)1)((exp)exp(2)1)((exp)exp(

  

F

F

FF

  (1.30) 



                         Chapter 1.  Some aspects of gas-turbine engines structural dynamics                        _ 

 

22 

 It should be noted that harmonic k can excite only determined number of diameters. 

Equation (1.29) generates different cases supposing presence of number m that  mNnkEO =−  or. 

mNnkEO =+ . The equation relating number of excited diameters and excitation order and 

excitation harmonics can be written in the following manner: 

 
kEOmNn

kEOmNn
+−=
−= ,  (1.31) 

 One of these equations is chosen in order to respect condition 2/0 Nm ≤≤ . Also it should 

be noted that n can not exceed value of N/2, if N is even, or (N-1)/2, if N is odd. The example of 

generalized zig-zag diagram is presented in Fig. 1.9. 

 It was mentioned that zig-zag diagram is true only for perfectly periodic structures and 

equation (1.31) can be used only in such cases. For problem with cracked blade or mistuning 

presence the bladed disk structure is no longer symmetric and such approaches are seemed to be 

inapplicable. 

 
Fig. 1.9. Zig-zag diagram presentation 

 
 As example, we take bladed disk with 31 blades excited by engine order 28. In order to use 

equation (1.30) the input parameters are: k=1, C=28, N=31. This will give us n=3 as the number of 

excited diameters at m=1. If in excitation the third harmonic will be dominant (k=3), the solution 

can be reached at only m=3: n=31·3-28·3=9. 

   

1.4 Mistuning and vibration localization in bladed disk 

structures 
 

 Bladed disk is assumed to be tuned, if all blades are strictly identical and also they are 

identically installed and uniformly spaced. Nowadays, the designers of aircraft gas-turbine engines 

are aware of inherent differences among rotor blades due to material and manufacturing tolerances 

as well as in-service degradation, known as mistuning. These events disrupt structure symmetry and 

lead the structure to be mistuned. 
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.  

  1.4.1 Mistuning influence on dynamics of bladed disk 

 

 Mistuning is a term adopted to designate the small blade-to-blade variations in geometric 

and material properties, which are unavoidable in all real bladed disks due to manufacturing and 

assembly tolerances and non-uniform wear during engine operation. After so many years of 

research, mistuning is still under consideration as one of the most important events. It is necessary 

to establish its fundamental role in aviation engine dynamics. A tremendous interest in the 

mistuning phenomenon can be attributed to its negative influence on bladed disk high-cycle fatigue 

life and, consequently, to its negative impact on durability and reliability of the engine itself. High-

cycle fatigue (HCF) failures result from excessive blade vibration cycles, complicated by mistuning 

and aeromechanical sources, as thousands of cycles accumulate rapidly due to high rotation speeds 

of the engines. HCF leads to the early failure of most critical aviation engine components, as 

turbine or compressor blades, and in rare cases results in the loss of the engine and the entire 

aircraft. The fundamental blade mistuning problem, shown  in Fig. 1.10, comes from the fact that 

unavoidable (but generally small) blade-to-blade variations produce very large uncertainty in the 

forced response levels of bladed disks, which, in extreme cases, can lead to a catastrophic HCF 

failure [87].  

 
Fig. 1.10. Fundamental presentation of the mistuning problem in bladed disks 

 

 Stiffness perturbation approach. Blade mistuning can be modelled by offsets in their 

modal stiffness Λ or, equivalently, offsets in natural frequencies ω of the blades [9, 37]. The 

mistuned modal stiffness of i-th blade mode for the j-th blade may be expressed as 
k
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k
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k
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, ,              (1.32) 

where k
jΛ  – modal stiffness of the j-th tuned blade mode, k

jδ  – mistuning parameter for the i-th 

blade mode.  

 Due to simple implementation and validation in most studies on mistuned bladed disks, 

variations in Young’s modulus disks are considered as the main source of blade mistuning. This 
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leads to uniform rescaling of the stiffness matrix. The mistuning parameter k
jδ  in (1.32) is then 

replaced by jδ , which represents the offset of Young’s modulus from its nominal value for j-th 

blade. Some methods of mistuning introduction exist, which allow full or partial mistuning 

implementation to the bladed disk model.  

 Mistuning projection method. This method is utilized in conjunction with cyclic analysis 

technique adopted for bladed disks. It is based on the assumption that the mistuned modes of a 

bladed disk assembly may be realized by a linear combination of its tuned modes. From the work 

[9] it is confirmed by two observations: the local motion of a blade in mistuned assembly is 

supposed to be an amplification of its tuned motion and any admissible disk shape may be realized 

by a linear combination of its harmonic shapes in cyclic coordinates, if all harmonics from 0 to kmax 

are included in the model. To continue with it, global stiffness and analogically mass matrices 

should be partitioned in the following way: 
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where b
jΔK  is a matrix containing the stiffness deviations from the nominal stiffness matrix for the 

j-th blade, ]KBdiag[Δ b
j denotes a pseudo-block-diagonal matrix. It should be reminded that only 

blade stiffness mistuning is considered, thus, all other partitions are remained unaffected. Then 

eigenvalues problem is solved for each harmonics k: 

         0~)( 2 =ω− kkk uMK fullfull .               (1.34) 

 In expression (1.34) stiffness and mass matrices are calculated for each harmonic and then 

cyclic analysis approaches are applied. For constriction of such matrices the global matrices should 

be repartitioned with relation to: bb – blade interior DOF partition, g – blade to disk interface DOF 

partition, dd – disk interior DOF partition.  
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 The cyclic representation of the blade matrix partition on the example of its blade to disk 

partitioning is accomplished as: 
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 A fundamental step in this method is to use a small subset of the obtained cyclic modes in 

order to form a reduced order model by classical modal analysis. 
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 Partial mistuning modelling. Short overview of different mistuning modelling methods 

was presented in the work [87]. A bladed disk is said to be partially mistuned, if mistuning affects 

only its small portion. In other words, it affects only limited number of blades. Such analysis is 

generally motivated by the expectation that at low blade-to-blade coupling the response of a specific 

blade would be affected by only a few of neighbouring blades. Thus, the remaining blades could be 

considered as tuned. Partially mistuned bladed disks have been investigated in the work [69] and it 

has been shown that forced response determination became simpler than at full mistuning 

consideration. Reduction in complexity is a direct consequence of the limited extent of the 

mistuning as also was observed in [82]. Let’s present our system motion equation as: 

FHu = ,              (1.37) 

where CMKH ω+ω−= i2  is impedance matrix, F is external excitation forces vector. 

  In the presence of mistuning, H can be separated into its tuned partition H* and mistuned 

component ΔH. It is convenient to partition (1.37) into: 
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  Due to the partial mistuning assumption, the matrices diH , idH  and iiH  are equal to their 

tuned equivalents, and dddddd HHH Δ+= * . In order to obtain the equations of motion (1.37) in a 

form supposing system to be tuned, the mistuning caused force dddm uHF Δ=  is introduced and 

equation (1.37) becomes: 

      
iiiidid

mdididdd

FuHuH

FFuHuH

=+

−=+
**

**

.             (1.39) 

 If the vector Fm is known, (1.39) is equation of motion of tuned system subjected to the 

combined action of the forces F and Fm. Thus, by linearity, the response vector u can be rewritten 

as the sum of the tuned solution (response to the force F) and of a mistuned component (response to 

the force Fm). 

 Adaptive perturbation method. It is known from [62] that the analysis of disk model given 

by (1.39) can be achieved not in the physical coordinates u(t), but rather in terms of a set of 

variables q(t) that accurately represent the contributions of the various modes shapes. 

 These new coordinates would be related to the physical ones by the relation: 

)()( tt Tqu = ,               (1.40) 

where T is transformation matrix the columns of which are the exact mode shapes of the mistuned 

bladed disk or their approximation. Then equation of motion will be presented as: 
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 Considering the magnitude of the different terms jlH~ , it was first noted that, if the columns 

of the matrix T are close approximations of the mistuned bladed disk modes, the off-diagonal terms 

ljjl ≠,~H  are close to zero. Further, the magnitude of jjH~ is “small” when the excitation frequency 

is close to one of the approximate natural frequencies lω associated with T, 

ll
T

ll
T

l )/()(2 MTTKTT=ω . On this basis, it was suggested to partition the response vector q in 

terms of the components qS and qL which are associated with small and large diagonal elements of 

H~ respectively. Proceeding with this partitioning the linear system (1.41) becomes: 
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where dimension S=d and dimensions L=N-d, d corresponds to the number of retained modes. 

 The computation of the steady-state components qS and qL can now be performed.  
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 Up to this point, the formulation is exact and the results are independent from the selection 

of the transformation matrix T. Relying on the expected large separation between the excitation 

frequency ω  and the approximate natural frequencies lω  corresponding to LΦ  (matrix T is the set 

of modes sΦ and LΦ  ), it is then proposed [62] that 1~ −
LLH  (used for qS and qL calculation from (1.43) 

can be approximated by Taylor’s series 

...~~~~)~~(~ 1*1*1*1*1 +Δ−=Δ+=
−−−−−
LLLLLLLLLLLLLL HHHHHHH ,                 (1.44) 

where matrices *~H and H~Δ are the tuned and mistuned components respectively.  

  Introducing a truncated form of this series leads to the required approximation of the forced 

response of the mistuned disk. This procedure was called adaptive because its accuracy can be 

increased or decreased varying the number of retained modes. 

 

  1.4.2 Vibration localization in mistuned bladed disks 

 

 Having obtained the fundamental mistuning model, a major concern becomes the prediction 

of the ability to detect cracked blade on the base of the bladed disk forced response. The easiest 

case at the presence of certain level of mistuning is if we are able to localize cracked blade dynamic 
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response. Generally the maximum forced vibration response of a subcomponent (blade) of a 

mistuned structure is often larger than that of a perfectly tuned structure. It comes from that 

mechanical energy stored in a subcomponent of a mistuned structure is different from those stored 

in other subcomponents. This is called the vibration localization of a mistuned structure.  

 The localization phenomenon has recently received wide attention and it has been shown to 

occur in various types of nearly periodic structures, namely bladed disk assemblies [41, 76]. 

Localization phenomenon has something similar with damping. It also leads to vibration amplitude 

decay. But the nature of this decay is different. In the case of damping, energy is dissipated because 

vibrations are transmitted throughout the system, whereas in the case of localization, the energy is 

simply absorbed in particular region within the structure. Localization occurs because waves 

propagating away from the energy source are rejected by the boundary between the slightly 

different subcomponents constituting the nearly periodic structure. The resulting energy 

accumulation may lead to higher local amplitudes than it can be predicted, if perfect periodicity has 

been supposed. This event can possibly have disastrous effect.  

 The manner, in which the subcomponents making up a nearly periodic structure are 

interconnected (Fig. 1.11), plays a major role in its dynamics. The vibration energy passes between 

subcomponents through only these connections. If neighbouring subcomponents are connected 

through several DOFs, the periodic structure is said to be multi-coupled structure. Localization in 

multi-coupled systems is much more difficult to analyze, because there are multiple wave pairs and, 

therefore, the decay rates of all the different wave types must be considered. Next, at any given 

subcomponent a wave type may not only be partially rejected and transmitted into waves of the 

same type, but it may be partially rejected and transmitted into other wave types as well. 

 Usually, for such analyses, in the case of turbine rotor, each subcomponent represents by 

itself a blade with corresponding partition of the disk. Coupling between blades is due to structural 

coupling through the disk and aerodynamic coupling through the fluid. Blades may also be 

connected through a shroud. Hence, a bladed disk is a complex multi-coupled structure. Some 

methods of vibration localization in mistuned bladed disk exist. Among them are transfer matrix 

approach and Lyapunov exponents utilization approach. 

 Transfer matrix approach. The transfer matrix modelling of nearly periodic structures 

undergoing harmonic motion was discussed in the work [76]. It is supposed that only nearest 

neighbouring subcomponents are coupled. An interface is the points separating two subcomponents. 

Transfer matrix corresponds to the state vector for the subcomponents. It relates the states at two 

consecutive interfaces, or two consecutive subcomponents. The dimension of the state vector must 

be twice the number of coupling coordinates at each interface. A state vector is most commonly 

defined as the displacements of the coupling coordinates at the interface and the associated forces. 
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Fig. 1.11. A schematic diagram of nearly periodic system 

 

 A transfer matrix that relates the deflections and forces at adjacent interfaces can be 

presented as: 
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where index 0 means a tuned system. For mistuned system the transfer matrix will be different for 

each subcomponent. Alternatively we could define a state vector for subcomponent as the 

deflections of the coupling coordinates at both ends of the subcomponent, which rates two adjacent 

subcomponents: 
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 The representation in equation (1.46) does not take into account external forces acting on the 

system and hence only the free dynamics is considered. Such formulation requires two equations 

relating the coupling coordinates qi-1, qi and qi+1. One is the equation of motion taken at interface i: 

0)( 101 =−ωβ+− −+ iii qqq ,             (1.47) 

where )(0 ωβ  is a function defined by the equation of motion of the subcomponent and depends on 

the frequency of harmonic motion. At the absence of aerodynamic and Coriolis forces equation 

(1.47) is symmetric. The second equation in (1.47) is identity qi =qi-1. Hence, each subcomponents 

of tuned structure is described by the same transfer matrix representation: 
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 When mistuning is introduced into the cyclic system, its periodicity is broken. The 

mistuning may be caused by a parameter which appears in relation to i-th interface - the mistuning 

of parameters of individual blades. When the symmetry of equation (1.48) is no longer exist and it 

replaced by 
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where iδ  is the small deviation of the parameter from its average value, defining the mistuning for 

the i-th subcomponent. It is commonly accepted as random variable of mean zero.  
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 Alternatively, the mistuning may be caused by a parameter which appears at interfaces, i and 

i+1. Then equation (1.48) becomes: 
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 When mistuning is introduced, the system is no longer symmetric. This loss of cyclicity 

results in a splitting of the double natural frequencies, such that the system has P clusters of N 

distinct natural frequencies, where N is the number of blades and P is the number of subcomponent 

DOFs. The clusters of frequencies correspond, approximately, to the passbands of the system tuned 

counterpart, although generally they are wider. The corresponding mode shapes are standing waves 

that no longer possess the cyclic symmetry exhibited by the tuned system, where all blades vibrate 

with the same amplitude. Instead, the vibration energy may be concentrated in a handful of blades 

that have significantly larger deflection than the majority of blades. This phenomenon is referred to 

the mode localization. 

 Lyapunov exponents utilization approach. Another way that allows analyzing the 

localization in a multi-coupled system is to find the Lyapunov exponents of global wave transfer 

matrix [16], which is the matrix that relates the vector of wave amplitudes at one end to the wave 

amplitude vector at the other end. The Lyapunov exponents provide a measure of the rates of 

amplitude decay for the various wave types. 

 The harmonic dynamics of any subcomponent may be represented by 2m by 2m transfer 

matrix T, which depends on the frequency of motion. If the system is perfectly periodic, then each 

transfer matrix is identical and adjacent states are related by 

1−= iii uTu ,               (1.51) 

 For mistuned system the transfer matrix will be different for each subcomponent. It si 

possible to use X, the matrix of eigenvectors of T, to define the transformation from physical to 

wave coordinates: 

Xvu = ,               (1.52) 

where v – vector of wave amplitudes. 

 Equation (1.52) can be rearranged then in the form of: 

XTXW vWv iiiii
1

1 , −
− == .              (1.53) 

  Note, that in tuned system W is equal for all subcomponents and it is diagonal, with the 

diagonal elements equal to the eigenvalues of T. Since all off-diagonal elements are zero, this 

implies that for tuned system there is no wave rejection and any interaction between different wave 

types., For a mistuned system, however, there will be nonzero off-diagonal terms indicating both 

wave interactions and rejections.  
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 The goal here is to describe the asymptotic behaviour  of the wave vector v as it is taken as 

subsequent subcomponents along the system. If to have an arbitrary initial wave vector v0 at the left 

end of a nearly periodic structure, the wave vector after N bays is: 

   0vWv NN = ,              (1.54) 

where 11...WWWW −= NNN  is the global wave transfer matrix for the N- subcomponents segment. 

 Norm of vector v is: 
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where ⋅⋅, denotes inner product and asterisk sign -complex conjugate of the transpose. 

 Evidently, the magnitude of this norm will depend on the eigenvalues of NN WW* . It is 

necessary to introduce the singular values of matrix. The singular values of an arbitrary matrix A 

are defined as: 
2/1* )]([)( AAA ii λ=σ ,              (1.56) 

where iλ  –  eigenvalues ordered by decreasing magnitude. 

 Thus, the singular values of NW  dictate the growth or decay of the wave vector after N 

subcomponents. Furthermore, the N-th root of the singular values describes the growth per 

subcomponent of the wave vector. Since NW  is a product of independent and identically distributed 

random matrices, asymptotically the N-th root of the singular values are non-random with 

probability one. The N-th root of an arbitrary k-th singular value is of the form. 

   ∞→γ→σ Nk
N

Nk ),exp()]([ /1W ,             (1.57) 

where kγ  is the i-th Lyapunov exponent. Thus, the Lyapunov exponents are a measure of the 

asymptotic exponential growth or decay rate of the wave vector. The Wolf algorithm can be used 

for Lyapunov exponents calculation [105]. 

 

 1.5 Dynamics of bladed disk with a crack presence in the blade 
 

 Vibration-based inspection of structural behaviour offers an effective tool of non-destructive 

testing. The analysis of the dynamic response of a cracked structure to excitation forces and the 

monitoring of alterations, which may occur during its lifetime, may be employed as a global 

integrity-assessment technique to detect the presence of a crack. Indeed it is well known that, in the 

case of simple structures, crack position and depth can be determined from changes in natural 

frequencies, modes of vibration or the forced response amplitude level. At the same time for 
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complex structures or their models, specifying of such dependences is generally unattainable task. 

In this case only the fact of the crack presence is seemed to be detectable. Reviewing experimental 

studies we can make common conclusion from them that decrease in the natural frequencies of the 

beam-like models of cracked blades is the main derived diagnostic sign. Some approaches exist to 

inspect the vibration response of the structure with non-propagating crack by means of stochastic 

analysis [14–15], acoustic signals analyzing [29, 108] and using its frequency or modal data [39, 42, 

56, 61, 65, 94]. Structure’s displacements in time domain also give information about cracked 

presence in the structure [59, 63, 97]. Majority of authors use open crack model, which also can be 

modelled by system stiffness reduction [48, 76]. But in reality, it is not sufficient for the cracked 

blade to be described by a model of open crack. Therefore it must be taken into account that the 

crack alternately opens and closes, thus giving rise to natural frequencies falling between those 

corresponding to the open and closed cases. Next, the short overview of different approaches aimed 

on crack presence simulation is presented. 

 Perturbation method. This method is very understandably described in the work [24]. A 

crack in blade, or in its approximation by beam, can cause local stiffness change, and 

correspondingly, results in changes in structural dynamic properties such as natural frequencies and 

mode shapes. For simplicity, it is assumed that the crack extends over the entire width of the blade. 

The i-th natural frequency and mode shape of the undamaged beam are iω  and iφ , respectively. 

When the crack occurs, the i-th natural frequency and mode shape become *
iω and *

iφ . Neglecting 

the mass change and other geometrical changes due to the crack presence, the first-order 

perturbation method is applied to present numerically the changes in the natural frequencies. It is 

based on fractional changes in modal strain energy, which can be related to the fractional changes 

of the eigenvalues (frequencies) in the following way: 
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,              (1.58) 

where iW and iW∂  are the i-th modal strain energy of the undamaged structure and its change due to 

the crack, and ii λλ∂ / is the fractional change of the i-th eigenvalue due to the crack. 

 This approach can be utilized for simple structures like Euler-Bernoulli beams, but for more 

complex structures it is almost impossible to obtain crack parameters and strain energy release 

relationships. 

 Breathing crack model. Such model can be considered as the most representative for crack 

behaviour simulation [67]. In the work [18] it is dealt with crack alternating behaviour as the 

response on externally applied varying load. In some studies [1, 23] it was shown that the load-

displacement response of a crack can be represented by the curve shown in Fig. 1.12, where P1, P2 

and P3 are the points when crack is fully open, partially open and fully closed respectively. Such 
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type of load-displacement relationship leads to a continuous presentation of crack DOFs stiffness 

function (DOF describing crack zone geometry) such as 

)(tk
du
dPk == .              (1.59) 

 Here, time t is chosen as the independent variable because the crack opening level depends 

on external load magnitude, which varies with time due to vibration. For mathematical reason, the 

continuous stiffness in equation (1.59), can be decomposed into Fourier series. Examining the 

dynamic response of a crack at its first mode, the stiffness may be expressed as 

    )cos1()( 0 tkktk c ω++= Δ ,            (1.60) 

where ω  is the crack breathing frequency, which is equal to the excitation frequency, k0 is the 

stiffness of the structure when crack is fully open. 
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F, N
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Fig. 1.12. Schematic load-displacement curve for breathing crack behaviour case 

 
 The presented above approach is used in many works due to its simplicity of formulation 

and possibility of accurate crack breathing process simulation using simplified beam-like cracked 

blade model. 

 Contact simulation of crack presence in structure. An approach presented in the work 

[49] with the use of contact analysis elements seems to be very perspective to use throughout our 

study (Fig. 1.13). In this case the crack presence effect can be simulated by supposing the contact 

interaction between crack sides. This approach seems to be most realistic as far as it is able to take 

into account all aspects of inside crack interaction and its effect on cracked structure dynamics. 

When two or more bodies come into contact, due to externally applied loading, the contact region 

may increase or decrease, as with crack closing and opening, and these changing boundary 

conditions result in a non-linear contact problem. In contact analysis often no a priori information 

concerning the contact conditions is available, which presents considerable difficulties. 

 When the normal force Fn is compressive, the interface remains in contact and it is assumed 

that the normal displacements and forces respond as a linear spring. When the normal force Fn is 
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extension, the contact is broken and no force is transmitted. The change in normal displacement, 

assuming that there is no gap between bodies, can be given as 

    AnBnn uuu ,, −=Δ ,                           (1.61) 

where un,B and un,A are the displacements in the normal direction.  

 The load-displacement curve can now be given as in Fig. 1.13b. Force in the tangent 

direction is defined only when Fn<0. If nt FF μ< , where μ  is the friction coefficient, there is no 

sliding at the interfaces.  Consequently, tangential displacements and forces respond as a linear 

spring. 
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Fig. 1.13. Contact approach for crack behaviour simulation: (a) contact between two bodies,  

(b) load-displacement curve (normal force) 

 
 By using load-displacement relationships the contact stiffness for a nodal point, will be: 

n

n
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F
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Δ

= .                             (1.62) 

 This approach was decided to be very representative for crack presence simulation as it can 

accurately describe crack sides interaction and at the same time it is able to provide crack behaviour 

simulation, which reflects its breathing nature.  

 Harmonic balance approach for crack presence simulation. Harmonic balance method 

has gained a wide spread in the engineering calculation of the complex non-linear problems. And 

cracked blade is not exclusion, as it was presented in the works [84, 90–91]. Numerical integration 

of non-linear equation of motion is usually very computer-time consuming. For this reason some 

researchers have studied techniques capable to obtain the response as steady-state solution avoiding 

direct integration. In [50] square-wave function f(t) was used to model the beam stiffness, 

transforming the non-linear equations of motion (1.15) into a linear periodically time-variant 

equation: 

   FuKKuCuM =Δ−++ ))(( tfu&&& .              (1.63) 
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 In order to apply harmonic balance method the closing crack function f(t) in Fourier series 

can be expressed as 
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where ω represents the angular frequency of harmonic input. 

 The solution of equation (1.63) was obtained by assuming that 
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where Fj  is amplitude of external excitation force applied in j-th DOF.  

 And all DOFs of structure can be expressed as 
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where ai and bi are the components of vectors of the constant variables. This approach seems to be 

extremely efficient both in terms of computation time and analytically. Furthermore, this approach 

enables the higher harmonics of the response to be obtained quickly for any excitation frequency. 

 All presented above approaches allows simulation of crack presence effect on dynamic 

properties. But those, which offer parametrical dependence between crack parameters and their 

influence on dynamic properties, use simplified beam-like blade model. In the case of more or less 

realistic blade geometry, such functional dependences are almost impossible to derive. As most 

realistic way for crack presence simulation, the contact approach can be used. But it is very time 

expensive due to complexity of the problem to solve. So, the best way is application of such 

methodology with the harmonic balance method, which is able to reduce the computation time and 

to be very representative for the non-linear problem solution. 
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 Conclusions 

 

 The chapter was devoted to the consideration of the main aspects surrounding the problem 

of cracked blade identification process.  

 Recently developed approaches of mistuning modelling and its influence on bladed disk 

dynamic response was overviewed, special attention was paid to vibration localization phenomenon 

in the presence of mistuning. These events are supposed to have significant effect on cracked blade 

detectability.   

 Cracked blade identification process should be developed inside creation of not only 

realistic model, but also in conjunction with durable and reliable engine health monitoring system. 

Such system should be able to deliver the data required for cracked blade identification. Different 

models of crack presence in the blade have been developed and all of them have their own 

advantages. For future development the approach combining contact interaction inside the crack 

and harmonic balance method will be used. 

  In order to continue the following studies it will be necessary to discuss in the next chapters 

the elements of contact analysis for accurate definition of its application to cracked blade model. 

Moreover, the fracture mechanics theory should be examined with the goal to consider functional 

dependences between crack parameters and amplitude of forced response. 
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 The present chapter is the preliminary base for the main goal of the research – cracked blade 

model development. It will cover two very important areas of interest: contact analysis principal 

fundamentals and theoretical formulation of the crack presence in a structure using fracture 

mechanics theory.  

Necessity to present some basic formulation dealing with contact analysis comes from 

statement of the crack behavior in the blade. As it was mentioned earlier the contact analysis in 

conjunction with harmonic balance method is supposed to be the most appropriate to simulate crack 

breathing process. For clarity and brevity of presentation, the main attention is paid to frictionless 

contact of an elastic body with a rigid obstacle.  

Fracture mechanics element will be shown with the aim to describe process related to crack 

initiation, propagation and cracked structure failure after certain number of loading cycles has been 

performed 

 

2.1. Contact analysis elements for crack inside interaction 

modeling 
 

 It is well known that surfaces of the contact interaction in reality do not have planar shape, 

even if they have been polished. In the microscopic level we can observe presence of bumps and 

cavities on the contact surfaces. Such irregularities are termed as the surface roughness and 

depending on their level they can be included or not to the analysis. Different experiments and 

studies showed that succession of the roughness peaks has height, which vary from 5·10-7m. to 

5·10-5m. At the same time the distance between these peaks has bigger spread, varying from 5·10-

7m. to 5·10-3m. Inclination of the peaks is estimated to be very small, about 5-12 degrees. Also 

contact surfaces state will depends on external conditions. 

 

Chapter 2 
 

Contact analysis and crack propagation 

 



                   Chapter 2.  Contact analysis and fracture mechanics elements application                      _ 

 

38 

 

 
Fig. 2.1. Two solid bodies contact interaction  

 
 It means that for two bodies in contact (Fig. 2.1) realistic contact interface will be different 

from supposed in the analysis due to the roughness of surfaces. It will be lower of the first contact 

point. Consequently, we can say that stresses appeared in contact points will be comparable with 

material mechanical properties. 

  The question of the plastic deformation of the roughness peaks is always under 

consideration of many researchers [3, 34, 106]. Since materials of the same or comparable hardness 

are in the contact, a peak can be deformed plastically at the moment of its first contact with opposite 

surface. At the same time material relaxation will be performed in the elastic way. Then, if new 

loading will be applied to continue contact interaction, the peak will be under elastic deformation up 

to the moment when material stress will be equal to that, which induced plastic deformation during 

previous loading step (Fig. 2.2). Different mathematical models were proposed to try to simulate 

contact surfaces with the roughness and obtain same results of correlation between normal contact 

loading and realistic contact surface. They gave the possibility to obtain the law of Coulomb, which 

was experimentally validated. 

Normal 
displacement

Interface 
stress Plastic 

deformation

Elastic 
deformation

 
Fig. 2.2. Schematic presentation of metallic contact surface loading with roughness presence 

 

 Because in following simulations we will deal with metal surfaces imposed to be in dry 

contact, it is worth to say some words about such metal surfaces. The scheme of the metal surface is 

shown in Fig. 2.3. In contact problems with friction performances of metal surface depend on 

presence of different layers covering metal surface. 
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Fig. 2.3. Schematic presentation of film covering metal surface 

 
 The first covering layer is the layer of oxygenation formed by reaction with oxygen from air. 

In contact problems with friction the last one strictly depends on presence of different layers 

covering metal surface. For some materials with low reaction abilities with oxygen such layer can 

be absent. Then we can find the layer of absorbed gas, which came from the atmosphere and 

consists of the water and oxygen molecules. Finally, the metal surface is covered by the layer of 

contaminants, which are generally composed from grease and oil. In these conditions initial 

dynamic friction coefficient in most of cases varies between 0.1 and 0.3. Thus, friction coefficient 

will increase gradually with decrease of the layer of contaminants. 

 

 2.1.1 Taking into account friction in contact analysis  

 

Firstly, it was discovered that friction force is proportional to the normal loading. Coulomb 

verified experimentally this fact and stated distinction between static and dynamic frictions 

supposing contact bodies to be rigid (Fig. 2.4 a). 
 

 
   (a)         (b) 

Fig. 2.4. Schematic presentation of: (a) contact element,  

(b) force-displacement curve of Coulomb’s model 

 
 Classic friction contact problem can be explained using following aspects [75]: 

1. Friction force is proportional to the normal contact force: 

nt ff μ≤ ,              (2.1) 

where μ  is the friction coefficient. 
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Very often two values of the μ  coefficient are defined: static friction coefficient sμ  and 

dynamic friction coefficient dμ . Static friction coefficient is applied at contact initiation 

phase, when dynamic friction coefficient is applied during sliding. 

2. Friction coefficient is independent on contact process. 

3. Static friction coefficient is bigger then dynamic one. Such statement can be confirmed 

experimentally. 

4. Dynamic friction coefficient is independent on sliding velocity. But it is only 

simplification, because in reality there is dependence between these parameters [85] and 

such dependence can be stricter in the case of stick-slip movement [103]. 

5. As soon as tangential movement appears, friction force has same path as relative 

velocity of two contact bodies, but in opposite direction: 

.
r

r

v

v
ff nt μ≤                (2.2) 

Graphical representation of Coulomb’s law is shown  in Fig. 2.4b. Also it should be noted 

that friction coefficient varies with materials properties of contact bodies.  

Also Ying [106] defined the bilinear model (Fig. 2.5a) of the contact with friction. This 

model consists in association of spring with stiffness k and one contact element with dry friction, 

for which Coulomb’s law is used.   

 

 
(a)       (b) 

Fig. 2.5. Schematic presentation of bilinear model (a) and force-displacement curve of bilinear model (b) 

 
 Utilization of both spring properties and friction element provides mathematical formulation 

of the bilinear model in the following form: 

⎩
⎨
⎧

>=
<=

00

0

,
,

uukuf
uukuf

t

t .                (2.3) 
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 Bilinear model presents by itself the extension of Coulomb’s law by adding a flexibility to 

the system. Such approach has very important advantage to pass through the singularity in function 

zero. 

 
(a)       (b) 

Fig. 2.6. Schematic presentation of contact models hysteretic properties:  

(a) Coulomb’s law, (b) bilinear model 

 
 2.1.2 Stress-deformed state in contact zone  

 
Let’s consider the problem on contact between two deformable solids as it is shown  in Fig. 

2.7. Deformations are supposed to be small. This supposition also invokes the consideration of the 

small sliding. The solids occupy two domains lΩ  with boundaries 2,1, =Γ ll . They initially come 

into the contact by boundary 21
ccc Γ=Γ=Γ . Each solid is subjected to the volumetric forces lf  

action and forces lT  acting on l
fΓ . Consequently, displacement field  lU  is imposed on l

uΓ .  

 
Fig. 2.7. Schematic presentation of contact interaction between two solids 

 
Since deformations supposed to be small, the tensor of deformations can be written: 

)(
2
1)( ,,

l
ij

l
jiij uuu l +=ε .                (2.4) 
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 Properties of the solids are accepted to be elastic and elasticity tensor l
ijkha  will be used in 

analysis. Stress tensor will be expressed then as: 

          2,1),( =ε=σ lua l
kh

l
ijkh

l
ij .                (2.5) 

 

 Equation of motion in the local form will be: 

          2,1,2

2

, =
∂

∂
ρ=+σ l

t
u

f
l
i

i
l

i
l

jij .                (2.6) 

 Initial conditions for the presented problem are expressed by: 

        2,1,)0(,)0( 00 === luuuu llll && .                (2.7) 

 For 2,1=l we will have on l
uΓ : 

           llll UuUu 00 )0(,)0( && ==                                     (2.8) 

 On the boundary cΓ  the stress vector is decomposed in normal and tangential components: 

2,1, =σ+σ= lnT l
t

ll
n

l ,                (2.9) 

where ln is normal to the body l. 

 Distance between two bodies is defined on cΓ : 

    ),(),()( 212211 uuununuud =+−= .                                (2.10) 

 Finally, conditions of the contact with friction can be presented by following expressions: 

         
⎪⎩

⎪
⎨
⎧

σ=σ−=σ

σ=σ=σ
≥

ttt

nnnd
21

21
  0 ;                                (2.11) 

                 
⎪⎩

⎪
⎨
⎧

=σ

=σ
>

0

0
  0

t

nd ;                                                        (2.12) 

                                                     

⎪
⎪

⎩

⎪
⎪

⎨

⎧

λσ−=−⇒σμ=σ

=−⇒σμ<σ

=

=

tttnt

ttnt

uu

uu

d

d

21

21 0

0

  0

&&

&&

&

                                  (2.13) 

 Equation (2.11) presents by itself Coulomb’s law of friction. Locally, two solid bodies are in 

immovable contact, if condition nt σμ<σ  is provided and sliding occurs at nt σμ=σ . From the 

formulas (2.9–2.11) it is possible to derive the presence of unilateral contact. Two solids can not 

penetrate each other in this case.  
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 Classical condition of impenetrability can be expressed in conjunction with condition of 

compression during the contact and an additional condition: 

    0,0,0 =σ≤σ≥ nn dd .                                                   (2.14) 

 In the case of dynamic contact problem one more condition is added: 

         0=σnd & .                                                               (2.15) 

 
  2.1.3 Virtual work principle 

 
 The objective of this chapter is to derive problem shown in the previous subchapter adapted 
for following discretization. Let’s define fields: 

    
}at  0)(),()(),({

}at  ,{)(
2121 l

u

l
u

llll

vdVVvvvK

UvvV

Γ≥Ω×Ω∈==

Γ==Ω
,                               (2.16) 

where K defines admissible displacements field. It should be noted that in this case we do not 

specify an ensemble, where displacements have been taken. Often, Sobolev’s spaces are used for 

functional representation of the problem. 

  Since Kv ∈  for each solid body l, lv&  is the field of compatible virtual velocities. Taking 

equation of motion (2.6), it is possible to write the balance of virtual works for each solid body in 

contact: 

              ∫∫∫ ΩΩΩ
Ω+Ωσ=Ωρ

lll

ll
i

l
i

ll
i

l
jij

ll
i

l
i

l dvfdvdvu &&&&& , .                                (2.17) 

 Let’s make transformation of the first integral of the second member in (2.17) to the integral 

by parts and apply the theorem of Ostrogradsky: 

               ∫∫∫ ΩΓΩ
Ωσ−Γσ=Ωσ

lll

ll
ji

l
ij

ll
i

l
i

l
ij

ll
i

l
jij dvdnvdv ,, &&& .                               (2.18) 

 Then, at l
ji

l
ij σ=σ , it can be written: 

                        ∑∑∑∑ εσ=σ
i j

l
ij

l
ij

i j

l
ji

l
ij vv )(, && .                                             (2.19) 

 Also the conventional form of the virtual works representation can be expressed as: 

                  ∫∫∫∫ ΩΓΩΩ
Ω+Γσ=Ωεσ+Ωρ

llll
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l
ij

ll
ij
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ij

ll
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i

l dvfdnvdvdvu &&&&&& )( .                     (2.20) 

 Taking into account boundary conditions of the contact problem shown in the previous 

subchapter, the work of forces acting on the boundary 2,1, =Γ ll  can be derived. These forces work 

can be decomposed in the following way: 

               ∫∫∫∫∫ ΓΓΓΓΓ
Γσ+Γσ+Γσ+Γ⋅=Γσ
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l
u

l
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l

ll
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ij
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ll
i
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l
ij dvdvdnvdvTdnv &&&&& .          (2.21) 

 For two deformable solids in contact it is finally written: 
               vfvfvfvLvuavuKv ctcnu &&&&&&&& ,,,)(),(),(   +++=+ρ∈∀ .                      (2.22) 
where ),( vu &&&ρ  represents the virtual work of inertial forces. 
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 The expression of the virtual work of inertial forces is: 

                                                l

l

lll
l

dvuvu Ω⋅ρ=ρ ∑∫
=

Ω

2

1
),( &&&&&& ,                                                         (2.23) 

 ),( vua &  is the partition of the interior forces virtual work, which can be presented as: 

                                         l

l

l
ij

l
kh

l
ijkhl

dvuavua Ωεε= ∑∫
=

Ω

2

1

)()(),( && ,                                                (2.24) 

 Member )(vL & is the representation of the exterior forces virtual work: 

                                   ∫∑ ∫ Γ
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Ω
Γ⋅+Ω⋅=
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l
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ll dvTdvfvL )()(
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&&& ,                                                (2.25) 

 vfu &,  is the virtual work of the forces required to induce displacement on boundaries 1
uΓ  

and 2
uΓ  and it can be written in the following way: 

    ∑∫
=

Γ
Γσ=

2

1
,
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ll
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i

l
iju l

u

dnvvf && ,               (2.26) 

 vfcn &,  is the virtual work of the normal contact forces: 

    ∑∫
=

Γ
Γσ=

2

1
,

l

ll
n

l
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c

dvvf && ,               (2.27) 

 vfct &,  is the virtual work of the tangential contact forces: 

    ∑∫
=

Γ
Γσ=

2

1
,

l

ll
t

l
tu

c

dvvf && .               (2.28) 

  It should be noted that the real virtual work of the normal forces at v=u is equal to zero, 

0, =vfcn & . 

 
  2.1.4 Variational inequality 

 
 It is possible to show that problem from subchapter 2.1.1 can be equal to:  

            uvfvfuvLuujvujuvuauvuKv cnu &&&&&&&&&&&&& −++−≥−+−+−ρ∈∀ ,,)(),(),(),(),(   ,      (2.29) 

or 

    ∑ ∫
=

Γ
Γ−σμ=

2

1

21)(),(
l

ttn
c

dvvuvuj &&& .             (2.30) 

 It should be noted that if u is solution of the problem, then 1
tσ  and relative velocity 

21
tt uu && − are collinear vectors and they have opposite direction. From this we have: 

          211211 )( tttttt uuuu &&&& −σ−=−⋅σ .                         (2.31) 
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 Consequently for all Kv ∈ : 

          211211 )( tttttt uuuu &&&& −σ−≥−⋅σ ,                         (2.32) 

and then 

                                   ( )21211211211 )()( ttttttttttt uuuuuuuu &&&&&&&& −−−σ−≥−⋅σ−−⋅σ .                       (2.33) 

 If we have the case of sliding, nt σμ=σ1 , then: 

                                   ( )2121211211 )()( ttttntttttt uuuuuuuu &&&&&&&& −−−σμ≥−⋅σ−−⋅σ .                       (2.34) 

 If there is sticking, nt σμ−≥σ1 , then: 

                                                          21211 )( ttnttt uuuu &&&& −σμ−≥−⋅σ ,                                  (2.35) 

which gives again equation (2.34) with 021 =− tt uu && . 

 Now it is possible to obtain (2.29) because: 

                  ),(),(, vujuujuvfct &&&& −≥− .                         (2.36) 

 We can also remark that: 

                ∫Γ
≥Γσ−=−

c

dvduuvf nct 0)()(, ,            (2.37) 

because 0)( ≥vd  and 0)( ≤σ un .  

 This follows to the variational inequality expression in the more compact form: 

                                    )(),(),(),(),( uvLuujvujuvuauvu −≥−+−+−ρ && .                              (2.38) 

 Direct solution of the (2.29) or (2.38) seems to be very challenging problem. Therefore it 

was proposed [47] to divide such problem into two subproblems: in the first subproblem tangential 

forces are supposed known and in the second one the normal forces are accepted to be defined. 

Such approach consists in consequent solution of the subproblems up to the convergence of the 

global problem will be reached. 

 Case of the frictionless contact. Such case is most interesting for our work, since 

frictionless contact will be used through all the study. Solution of the contact problem in this case is 

easy task because we can follow to the classical constrained optimisation problem. If to consider 

quasi-static problem, the variational inequality (2.38) will be presented as: 

     )(),( uvLuvua −≥− ,                               (2.39) 

and our problem will be equivalent to the total potential energy minimisation.  

 Condition of impenetrability will be used as constrain equation: 

     )(),(
2
1)(min vLvvavE pKv

−=
∈

.                            (2.40) 
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 Also, if Ku ∈ is valid for all v and K in (2.40), then:  

             ( )),(),(2
2
1)()(),(

2
1 uuavuavLuLuua −+≤− .                           (2.41) 

 Let’s suppose that elasticity tensor is symmetric and it verifies ellipticity property: 

                           ijijijijijkha εαε≥εε>α∃ ,0 .                                       (2.42) 

 Consequently, we will have: 
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,0),(2),(),(),(

vLvvauvuvavLvvauLuua

vuauuavvauvuva

−≤−−−−≤−

≥−+=−−
                (2.43) 

 After it, we can see that u minimizes total potential energy. Analogically, if Ku ∈ is valid 

for all v and K, then: 

                       )(),(
2
1)(),(

2
1 vLvvauLuua −≤− .                                       (2.44) 

 Also the symmetry of a will give us:  

                   0)(),(),(
2
1

≥−−−+− uvLuvvauuva .                            (2.45) 

 In order to pass from the constrained optimisation problem to the unconstrained problem 

some methods can be applied. They are: penalty method, Lagrange multipliers method and 

augmented lagrangian method.  

 Case of the contact with friction. In this the real contact surface crΓ and normal contact 

forces are supposed to be known. As a result, the functional corresponding to the contact with 

friction becomes: 

     ∫Γ
Γ−σμ=

cr

dvvuvj ttn
21)()( && .                        (2.46) 

 Analogically to the frictionless contact case, we can show that problem is represented by 

minimisation of: 

                       )()(),(
2
1)( vjvLvvav +−=π .                                       (2.47) 

 Due to the norm of relative displacement 21
tt vv && − , )(vj is not differentiable and thus, in this 

case we do not have standard optimisation problem. In order to overcome such difficulties a kind of 

function regularization should be applied to j [47].  

 

  2.1.5 Variational equality 

 

 Taking into consideration (2.22), the problem can be formulated in the following way: 

                           uvfvfuvLuvuauvuKv ctcn &&&&&&&&&&& −++−=−+−ρ∈∀ ,,)(),(),(   .                (2.48) 
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  Terms corresponding to imposed displacement can be thrown out, because: 

    0,     21 =−⇒==Γ×Γ uvfUvuat uuu &&&&& .             (2.49) 

 Majority of the finite elements software utilizes the mentioned above formulation for the 

solution of the contact problem with friction. Generally, both real contact surfaces and contact 

forces are unknown. Therefore, some incremental methods of non-linear problems solution must be 

applied. 

 
  2.1.6 Solution of the contact problem 
 
  Discretization by finite elements 
 
 In the case of application of the variational equality, equation (2.48) can be presented in 

discretized form as [21]: 

         extc FFKUUM =++&& ,                   (2.50) 

where M is the mass matrix, K is the stiffness matrix, Fct is the vector of contact forces, Fext is the 

vector of external forces. 

  Unilateral contact imposes contact stresses: 

       iicmi GVA ≤∈∀ )(  ,...,1 ,                                     (2.51) 

where m is the number of imposed stresses, equal to the number of contact elements, A is the matrix 

of contact stresses, which depends on discretization of the contact surface and contact element type,  

G is the vector of initial separation distances between contact elements. 

 Variational inequality described in the sub-chapter 2.1.3 can be represented here using nodal 

displacements. The problem of the contact will be again divided into two cases: frictionless contact 

and contact with friction. 

 In the frictionless contact case the problem returns to minimisation of the total potential 

energy: 

       
.

,
2
1)(

GVA

VFKVVV

≤

−=

c

T
ext

T
pE

                                     (2.52) 

 For the contact problem with friction it is necessary to perform minimisation of the 

regularized problem: 

            )(
2
1)( VFVFKVVV Φ+−=Π T

c
T
ext

T ,                                    (2.53) 

where )(VF ΦT
d is the discretized form of the regularized functional j, cF is the vector of normal 

contact forces.  

 During solution procedure it should be verified that there is no lost contact in the zone of 

imposed normal forces. 
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  It can be performed using equality: 

GVA =c .              (2.54) 

  
  Lagrange’s multipliers method 
 
 This approach can be formulated for both variational equality and variational inequality. We 

start with the method application using variational equality. 

Let’s take problem formulation (2.53) with friction presence.  In order to find the minimum 

of Π  with constraint GVA =c , it is necessary to solve the system of equations: 

               
⎩
⎨
⎧

=
=λ+Φ∇+−

equations m                                              
equationsn   )(
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FAVFVFKV

c

ext
T
c

T
d

T
ext .                                (2.55) 

 In the system (2.55), components λ  are additional unknowns called as multipliers of 

Lagrange [45]. Number of these terms is equal to the number of imposed constraints m, which is 

equal to the number of contact elements. Φ∇  is the gradient of Φ , which is a function of each 

contact element. System (2.55) is non-linear system of n+m equations with n+m unknowns. The 

system can be solved by one of Newton-type methods of non-linear systems solution. Functional Π  

is convex and differentiable. Since the system (2.55) will have solution ),( *λU , U will be problem 

global minimum and it will be unique because Π  is strictly convex. 

 The lagrangian of the system is defined by: 

                ) ()(),( GVAVFVFKVVV −λ+Φ+−=λ c
TT

d
T
ext

TL .                                (2.56) 

 In the case of variational inequality the problem of contact without friction (2.52) can be 

formulated in the following manner. It is required to find minimum and U should satisfy to the 

condition of Karush-Kuhn-Tucker. From this condition vector λ  of Lagrange’s multipliers should 

be found that: 
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 We can see that multipliers of Lagrange correspond to the contact forces in the matrix A. If 

we consider two bodies in the state of initial contact and utilize node to node contact elements, the 

conditions of Karush-Kuhn-Tucker will be: 
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n equations 

m equations 

m equations 

m equations (additional conditions) 
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 Lagrange’s multipliers will be exactly in the opposite direction to the contact normal forces. 

Solution of the conditions of Karush-Kuhn-Tucker is more difficult in the case of their formulation 

on the base of variational equality.  

 
  Penalty method 
 
 The penalty method is widely used for solution of the constrained optimisation problems. 

With its help it is possible to transfer from constrained problem to the unconstrained one. The main 

advantage consists in omitting of the additional unknowns introduction as in the method of 

Lagrange’s multipliers.  But at the same time the penalty method application can lead to the 

problems of ill-conditioning.  

 Let’s consider again the frictionless contact problem. With node to node elements and 

without initial separation the problem will be presented as: 

         
⎪⎩

⎪
⎨
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≤

−=

0)(
2
1)(min

V

VFKVVV

g

E T
ext

T
p    .                                (2.59) 

Component )(Vg represents the level of penetration for each m-th contact element and they 

can be calculated using following formula: 

miUUUgg niniii ,...,1  ,)())(( 2
,

1
, =+==V .             (2.60) 

 Penalty method, as it was mentioned, consists in replacing of the constrained optimisation 

problem by the problem without constrains: 

          2)(
2
1)

2
1min( VVFKVV gT

ext
T δ+=    .                                 (2.61) 

 In penalty method formulation for the frictionless problem (2.59) parameter δ  represents a 

positive scalar value of the penalty coefficient. It has arbitrary value chosen by the user in 

dependence on the problem conditions. The ratio 
2
1 is introduced here only with the purpose to give 

to the parameter δ  the meaning of the normal contact stiffness. The problem (2.59) can be solved, 

for example, by application of the gradient-search method of function optimisation. 

  
  Augmented lagrangians method 
 
 The method of augmented lagrangians is the modification of penalty method presented 

previously. The object of the method is always same – seeking of the total potential energy 

minimum. In this case classic lagrangian is presented as: 

                            ) (),( VVFKVVV gL TT
ext

T λ+−=λ .                                 (2.62) 
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 Then augmented lagrangian will be expressed in the following manner: 

                    2)(
2
1) (),( VVVFKVVV ggL TT

ext
T δ+λ+−=λ ,                     (2.63) 

where δ is the penalty coefficient. In this case, it can be said that such formulation represents by 

itself the penalisation with use of Lagrange’s multipliers. 

 Augmented lagrangians are generally utilized in the iterative methods developed with the 

purpose to find exact Lagrange’s multipliers. If to suppose kλ is Lagrange’s multipliers vector on k-

th iteration [58], then the system to be solve will be: 

                                     ext
k g FVKV =δ+λ+ )) (( .                                            (2.64) 

 By the strategy of non-linear problems solution, vector of Lagrange’s multipliers is updated 

by expression: 

                                           ) (1 Vgkk δ+λ=λ + .                                                        (2.65) 

 Penalty coefficient is chosen arbitrary and remained constant through all solution procedure. 

If to accept as initialization 00 =λ , it will correspond to the penalty method. It should be noted that 

value of penalty coefficient should not be chosen too big because it will lead to high computation 

time expenses at required iterations number.  

  
 Frequency domain methods of contact problem solution 
 
Separate subchapter will be devoted to such category of methods when cracked blade model 

will be considered. Here, only short overview will be presented. 

Calculation of the steady-state response of the non-linear system can be sufficiently long 

because all transient responses should be calculated. Frequency domain methods allow direct 

calculation of the non-linear system steady-state response supposing it to be harmonic and that 

system response contains same harmonics as the excitation. 

The most widely used method representing such approach is harmonic balance method, 

which proposes projecting equation of system motion on the base of some harmonics. Also it is 

very close to Galerkin method. In all cases, the harmonic balance method is formulated analytically 

for each problem.  

 

As it was said in conclusions to chapter 1, fundamentals of contact analysis should be 

followed by consideration of fracture mechanics elements. It will allow investigation of functional 

dependences between crack parameters and amplitude of force response that can be used for crack 

presence/development analysis. 
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2.2 Fatigue and endurance calculation of structure elements 
 

 It is known that blade failures in aircraft gas-turbine engines have a severe impact on the 

engine operability and, consequently, on aircraft airworthiness. Blade failures can be caused by 

different mechanisms under engine operating conditions. In general, blade failures can be grouped 

into two categories: fatigue, including both high [40] and low cycle fatigue [81] and creep rupture 

[110].  

 In the maintenance experience numerous cases of the structural elements and assemblies 

faults due to fatigue of material are known. Such faults are caused by the alternating or repeated 

loadings. For fatigue caused failures the considerably smaller maximum load is required than at 

failure due to static loading. In operation many gas-turbine engine details and components are 

subjected to the alternating loads action. And though their low nominal values, they can lead to 

fatigue fracture. Almost always it is possible to observe the fatigue failures and it is very the 

failures due to static loadings. Different theories of fatigue failures were developed to the present 

time [25]. 

The fatigue failure peculiarity is strains absence in the fracture zone. Similar appearances 

are observed even in such materials as the soft steels, which have high-plasticity at the static failure. 

 It is dangerous attribute of fatigue failure because there are any indications of the possible 

fractures. Originating fatigue indications usually are very difficult for detection, while they will not 

reach the macroscopic size. Further they develop very quickly and in short period the full failure 

occurs. Thus, timely detection of fatigue cracks becomes very challenging problem. Most often the 

fatigue cracks originate in the deformation zones or in the zones of surfaces defects. 

 Such defects and also infinitesimal change of structure working section do not affect on 

static strength because plastic deformations reduce the stress concentration influence. At the same 

time at fatigue failure the plastic deformations, as a rule, are insignificant. Owing to what, stress 

decrease in the concentration zone does not occur and stress concentration assessment becomes 

very important. 

As it is known, the static failure is generally determined by probability of major loading 

origination in flight, for example, from air gust, when acting on aircraft loading exceeds limit of the 

static structural strength. Thus, possibility of static failure is, in essence, the problem of probability 

of major loading occurrence. 

The fatigue failure, at the given assumptions, is caused by application of certain number of 

loading cycles or accomplishing of certain number of flights on certain distance. 

The main distinction between fatigue and static loadings consists in the following: 
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− Fatigue strength main factor at the given loadings distribution, even taking into 

account data variability, is the number of loading variations or expected service life; 

for the static strength it is operating loading; 

− Character of probabilistic approach to fatigue loading considerably differs from 

character of probabilistic approach to static loading. For particular operation 

conditions the probability to meet single major loading does not depend on time. It can 

happen at the beginning and at the end of operation life. The probability of fatigue 

failure varies while in service, considerably increasing to the end of the service life. 

Thus, designers and scientists assume that the assigned resource and probability level 

should be such that the frequency of fracture recurrence has a small enough value. 

Such probability value is 10-9, as it is accepted by leading aviation corporations.  

 
  2.2.1 Alternating loads  

 
 All gas-turbine engine blades undergo cyclic loading resulting in structural deterioration, 

which can lead to failure. It is highly required to understand the importance of the probable damage 

at any particular time to monitor the health of the blade [56, 72]. Failure at variable loads has local 

character and it does not affect all entire material. 

An experience shows that gradually developing cracks originate only at alternating stresses. 

In most cases the consideration is limited only by alternation of stress in time (Fig. 2.8): 

)sin( ϕ+ωσ+σ=σ tac ,             (2.66) 

where σ is the alternating stress, σc is the mean stress, σa is the stress amplitude, ω is circular 

frequency, ϕ is the initial phase, t - time. 

 
Fig. 2.8. Cycle of alternating stresses 

 
Value 

ω
π

=
2T               (2.67) 

is termed as period. Stress change during the period is termed as stress cycle.  
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The greatest stress of cycle is marked out as σmax (or τmax), and the minimum – σmin (or τmin). 

 Mean stress σc (or τc): 

          
2

minmax σ+σ
=σ c .                                                  (2.68) 

Amplitude of cycle: 

     
2

minmax
maxmax

σ−σ
=σ−σ=σ−σ=σ cca .           (2.69) 

It is obvious, that  

ac σ+σ=σmax ; ac σ−σ=σmin .            (2.70) 

Value 
max

min

σ
σ

=r is termed as cycle ratio. 

In some cases it is more convenient to use concept of the cycle performance: 

с

а
ck

σ
σ

= .              (2.71) 

Stress cycles, for which the cycle ratio (or performance) values are equal termed as the 

similar. If r = - 1 (kc=∞) the cycle is called symmetrical (Fig. 2.9); if r ≠-1 (kc≠∞) the cycle is 

unsymmetrical (Fig. 2.10). 

 
Fig. 2.9 Symmetrical loading cycle  

 
Fig. 2.10. Asymmetrical loading cycles  

 

Unsymmetrical cycle can be of alternating or of constant sign. Special case of constant sign 

cycle is the pulsing cycle, at which σmax = 0 or σmin = 0. 

Values σmax, σmin, σa, σc and r (kc) are parameters of alternating stresses cycle. Each cycle is 

completely determined by any two of its parameters. 
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 2.2.2 Fatigue curve and limit stresses diagram 
 
 Ability of the material to perceive the long-term action of the alternating stresses is known 

as endurance. Special endurance tests (on fatigue) are performed to obtain material mechanical 

characteristics required for strength calculations at alternating stresses.  

Endurance (fatigue) curves matching to adopted value of the mean stress σc are obtained on 

the basis of experimental results. 

 
Fig. 2.11. Fatigue curve 

 
On Fig. 2.11 the fatigue curves for steel at σc = 0 (curve 1 – symmetrical cycle) and σc = A 

(curve 2) are presented. 

Fatigue curve displays that with σmax decrease the number of cycles, at which the material 

fracture appears, increases. Each fatigue curve has horizontal asymptote. Stress σmax equal to 

asymptote ordinate is termed fatigue limit (or fatigue value).  The fatigue limit is marked out as σr, 

and at symmetrical cycle it is marked out as σ-1 (r = - 1). 

During material tests on fatigue the number of cycles is limited to Nb, which is known as the 

base number of cycles. For steel – Nb = 107. 

 Practically, the greatest value of the maximum stress σmax, at which the material withstands 

the base number of cycles (at the given r value) without failure, is accepted as the fatigue limit.  

Fatigue curve for non-ferrous metals and alloys do not have horizontal asymptote. 

Therefore, the concept of fatigue limit for these materials is conventional. Basically, this limit is 

determined at very big number of base cycles (to Nb = 108). 

Influence of the cycle type on the strength of material at alternating stresses can be described 

by limit stresses diagram (Fig. 2.12). Each fatigue curve (Fig. 2.11) allows one point calculation of 

the limit stresses diagram. The abscissa of this point is equal to the value of mean stress σc, 

matching to the given fatigue curve. The ordinate of this point is equal to limit cycle amplitude σa, 

i.e. such cycle, at which σmax is equal to the fatigue limit σr. 



                   Chapter 2.  Contact analysis and fracture mechanics elements application                      _ 

 

55 

It is required a significant number of experiments to build-up the limit stresses diagram. 

Often the true limit stresses diagram is substituted by schematised, which uses one (σ-1) or two (σ-1 

and σ0) parameters determined experimentally. 

 
Fig. 2.12. True limit stresses diagram 

 
Let's observe the schematised limit stresses diagram (Fig. 2.13) offered by Serensen and 

Kinasoshvili [70]. This diagram can be built, if fatigue limits are determined experimentally at 

symmetrical (σ-1) and pulsing (σ0) cycles. We note point A matching to the limiting symmetrical 

cycle. Point Е corresponds to the limiting pulsing cycle and it has abscissa and ordinate equal 

to
2

0σ
. In this case: 

max2
1

σ
=σ=σ ca .             (2.72) 

 
Fig. 2.13. Schematised limit stresses diagram 

 
 At the limiting pulsing cycle σmax = σ0. Let’s draw the line АЕ up to the interception in the 

point C with the line of yield strengths ВD. The area of safety operation (at which there are no 

fatigue failure and plastic deformations) is cross-hatched. 

The equation of direct line AC looks like: 

ca σψ−σ=σ σ−1 ,                                                         (2.73) 

where 

       1
2

0

1 −
σ
σ

=ψ −
σ .              (2.74) 
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By formula (2.73) it is possible to determine amplitude of the limiting unsymmetrical cycle. 

 Further: 

      cac σψ−+σ=σ+σ=σ σ− )1(1max .            (2.75) 

Since for the limit cycle σmax = σr, it can be obtained obtain: 

                                                 cr σψ−+σ=σ σ− )1(1 .                                                    (2.76) 

By the formula (2.76) it is possible to determine the fatigue limit of the standard specimens 

at unsymmetrical cycle. 

 

 2.2.3 Distribution curve of cyclical durability 

 

The curve of cyclical durability characterises dependence of the cyclical durability on the 

fracture probability. It is built using the results of fatigue tests at constant values of amplitude and 

mean stress of the cycle. As example, in Fig. 2.14 the distribution curves of cyclical durability are 

presented for different values of σmax. 

 
Fig. 2.14. Curves of cyclical durability distribution for different σmax 

 
Having curves of cyclical durability distribution, it is possible to build curves of the equal 

probability of fatigue failure, which are the base for practical calculations on fatigue. 

The curve of equal probability of fatigue failure is the graph characterising relation between 

the maximum stress or cycle stress amplitude and durability, which corresponds to the given 

probability of the fatigue failure. Curves of equal probability of fatigue failure can be built using the 

curves of cyclical durability distribution (Fig. 2.14) at various probability values. At the same time, 

parameters σmax and N are fixed (Fig. 2.15).  
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Fig. 2.15. Curves of equal probability of fatigue failure 

 
It is known that "reliability" R is determined as value, which is equal to unity minus 

probability of fracture Р, i.e.: 

R = 1 - P.               (2.77) 

It means, for example, that curve of 1 % of probability of fatigue failure (Fig. 2.15, curve 1) 

can be called as the curve of reliability of 99 % (R = 0.99). Curves of equal probability of fatigue 

failure are used, in particular, for durability estimation of the structures subjected to the cyclical 

loadings. 

 
 2.2.4 Damage accumulation. Durability estimation 

 
More often in practice, stress cycle amplitude does not remain constant and it varies under 

some law forming so-called loading spectrum. Therefore, it is impossible to use the fatigue curve at 

calculations directly, since they are under construction at the fixed stress cycle amplitude σa. 

Effect of cyclical stresses leads to accumulation of the fatigue damages. When accumulated 

damage attains some critical value the fatigue failure occurs. To the present time some hypotheses 

of damage accumulation are offered. We will consider the hypothesis of Palmgren-Miner or rule of 

the linear damage summation.  

 
Fig. 2.16. Fatigue curve for durability estimation 



                   Chapter 2.  Contact analysis and fracture mechanics elements application                      _ 

 

58 

At loading with constant stress amplitude σa1 the fracture will happen in N1 cycles. As a 

result of the same stress σa1 during n1 cycles (n1 <N1), there will be the fault characterised by 

number D1, which is termed damage. The hypothesis of the linear damage summation supposes that 

damage at any fixed value σa1 is ratio of n1 to N1, i.e.: 

        
1

1
1 N

nD = .              (2.78) 

Fracture will happen, when: 

         D1 + D2 + … + Dm ≥ 1,              (2.79) 

where m – number of various loading levels.  

Thus, the rule of linear damage summation can be written as: 

∑
=

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛m

i i

i

N
n

1
1.                                                            (2.80) 

According to this rule, the fatigue failure will happen, if the requirement (2.80) is satisfied. 

Owing to the simplicity, the rule (2.80) has found wide application in the practice. However, it has 

number of deficiencies, main of them that the loading sequence effect is not considered. 

Experimentally it has been established, that process of damage accumulation can be 

dissected into phase of crack origination and phase of its development up to definitive fracture. 

Considering this condition, Manson applied the rule of linear damage summation to each of these 

phases separately and he offered the bilinear rule of damage summation. 

The fatigue crack originates at: 

∑
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛m

i i

i

N
n

1
1 1 . 

  Consequently, the fracture owing to the crack presence happens at: 

∑
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛q

j pj

j

N
n

1
1.                                                         (2.82) 

 Here N1 is the number of cycles before crack origination; Nр is the number of performed 

cycles during crack development. Values N1 and Nр are determined by following relations: 

                                             f
fp

ff Nt
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 > 730 cycles, 

where Nf  is the full number of cycles before fracture. 
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Thus, before crack origination it is necessary to use the formula (2.81) and then to estimate 

fracture possibility by expression (2.82).  

 
2.3 Structure crack resistance calculation  
 

 For maximal usage of strength properties of a structure it is necessary to be able to 

determine such a state of the structure, which could extend the period of up to crack development 

and resistance. The main parameter used in such calculations is the stress intensity coefficient 

allowing elaboration of different failures criteria.   

 

 2.3.1 Stress intensity coefficient 

 

Let's observe an infinite elastic body subjected to the plane problem of elasticity theory. In 

the body a small narrow interior crack of length 2а (Fig. 2.17) is present. Let the crack to propagate 

under the pressure p(x), which varies along the crack sides. Axis х is the symmetry axis. Therefore, 

the problem is reduced to displacements and stresses determination in the elastic half-plane y≥0. 

Boundary conditions in this case look like: 

 

       τху −∞ < х < ∞, 

σу = −р(х),      x ≤ а;                                               (2.84) 

                   y = 0,         x ≥ а. 

where σy are normal and τху tangential stresses, y is the displacement along y axis. 

 
Fig. 2.17. Crack in elastic body 

 
 It is considered the case when pressure distribution is applied to the crack sides, i.e. р(х) = р 

= const at x < а. Solving the boundary value problem (2.84), which is the plane problem of 

elasticity theory, we discover: 

σу (х,0)  = ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
12/122 ax

x
p   at x > а.                                (2.85) 
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The stress σy diagram obtained by formula (2.85) is displayed  in Fig. 2.17. Stress σy is 

going to infinity near the crack tip, i.e. has singularity in the tip. For character determination of the 

normal stress near the crack tip it is necessary to find asymptotic representation for σy at х →+ 0. 

Letting in the formula (2.85) х to a + 0 and rejecting fixed item, it will give: 

σу (х,0)  ≈ 2/12/1

2/1

)(2 ax
pa

−
,         х → а + 0.                                (2.86) 

 If to introduce:  

К1 = р(πа)1/2,                                                           (2.87) 

 Expression (2.86) becomes: 

σу (х,0)  = 2/12/1
1

)()2( ax
K

−π
,       х → а + 0.                              (2.88) 

Value К1 is termed the stress intensity coefficient of normal separation. The formula (2.87) 

determines the stress intensity coefficient for plate with individual crack when uniform pressure р is 

applied to crack or when the plate is subjected to the uniform extension normal to the crack line. In 

this case the stress intensity coefficient depends on pressure and crack size. It is possible to display 

that (2.88) is also valid when the crack is in elastic finite body and pressure р is not constant. 

However, in these cases expression for К1 will differ from (2.87). For finite body the stress intensity 

coefficient also depends on the body size. 

The concept of stress intensity coefficient is appeared rather useful in the linear fracture 

mechanics. 

The stress intensity coefficient can be calculated by known stresses or displacements. From 

expression (2.88) it is derived: 

К1 = ( ) ( )[ ])0,(2lim 2/12/1

0
xax e

ax
σ−π

+→
 .                                      (2.89) 

Expression (2.89) allows calculation of the stress intensity coefficient of normal separation 

by known stress. Value К1 can be also calculated by known displacements: 

К1 = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−−+
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 ,                                  (2.90) 
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2 2/12/1

0
xvxv

x
xa

ax
,                   (2.91) 

where χ  = 3 −4v – for plane deformation and χ  = (3 − v)/(1 + v)  – in the case of generalised plane 

stress problem. 

There are similar formulas for stress intensity coefficients definition of transversal shear К2 

and longitudinal shear К3. 
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Stress intensity coefficient plays the main role in the fracture mechanics. Essential part of 

problems solutions within the limits of the linear fracture mechanics consists in determination of the 

stress intensity coefficient dependence on crack length for a given structure. Different analytical, 

numerical and experimental methods are applied to calculate the stress intensity coefficient. During 

analytical and numerical methods application it is necessary to obtain the solution of corresponding 

boundary values problem.  

For simplification of the problem linked with definition of the stress intensity coefficient it 

is possible to use principle of Bueckner [13]. The principle consists in substituting of more complex 

problem with loading applied in arbitrary points by the simplified problem when the loading is 

applied to crack sides (Fig. 2.18).  

Let the right-angled plate with crack to be extended by forces Р applied in points А1 and А2  

(Fig. 2.18). It is required to determine the stress intensity coefficient. Firstly, we consider the same 

plate, but without crack. Stress σy distribution in the crack section (in this case at y = 0, x <a) is 

determined theoretically or experimentally (Fig. 2.18). Then the stress σy distribution is applied to 

the crack sides and the stress intensity coefficient is calculated. It will be of the same value as for 

initial problem.  

 
(a)                   (b)            (c )  

Fig. 2.18. Idea of Bueckner's method: (a) initial plate with crack, (b) same plate  without crack and σy 

diagram, (c) calculated plate with crack and σу diagram  

 

 Reference data on stress intensity factors are found in the works [10, 79, 93]. Also the work 

[78] is devoted to the questions of their determination.  

Let’s consider the stress intensity factors determination for the most often encountered 

cases. 
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1. Uniform tension of the plate with single crack.The load is applied normally to the crack 

location (Fig. 2.19а). In this case [44, 71]: 

      ( ) 2/1
1 aK πσ= .             (2.92) 

2. Plate with central traversal crack at axial extension (Fig. 2.19b). In this case [44, 71, 96]: 

( ) ( )απσ= 1
2/1

1 FaK , Wa /2=α .            (2.93) 

Approximate solution: 

( )
2/1

1 2
sec ⎟

⎠
⎞

⎜
⎝
⎛ απ

=αF ,             (2.95) 

 More exact solution: 

                                                        ( ) ( )
2/1

42
1 2

sec06,0025,01 ⎟
⎠
⎞

⎜
⎝
⎛ απ

α+α−=αF   .                        (2.96) 

3. Plate with eccentrically located traversal crack at extension (Fig. 2.19c). In this case [71]: 

                                      ( ) 2/1
1 aK A πσ= ( )βα,1AF ; ( )eWa 2/2 −=α ; We /2=β .                          (2.98) 

             ( )
2/1

1 2
2sin

2
sec, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
αβ

αβπα
=βαAF .                                             

 
(a)              (b)                                      (c)                  (d)        

Fig. 2.19. Crack location cases: (a) plane with crack, (b) plate with central crack,  

(c) plate with eccentrically shifted crack, (d) plate with edge cracks 

 

4. Plate with two symmetrical edge cracks at axial extension (Fig. 2.19d). In this case [10–

11, 71, 86]: 

    ( ) 2/1
1 aK A πσ= ( )αAF1 ; Wa /2=α ;            (2.99) 

( )
2/1

2
1 2

tg2
2

cos122,01 ⎟
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⎞

⎜
⎝
⎛ πα

πα
⎟
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⎞

⎜
⎝
⎛ πα

+=αF . 

The greatest practical interest is represented by the elements with determined dimensions at 

least in one direction. To gain the exact solution for elements with cracks it is necessary to use 
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complex mathematical methods. However, in variety of cases, it is enough to gain approximate 

solution. One of such approaches is the modified method of sections [93]. 

The main idea of the modified method of sections consists in the use of solution of problem, 

which is close to the considered. 

Let’s consider the plate with central traversal crack at axial extension  

(Fig. 2.19b). As the close problem the analogous problem of the elastic plate is taken (Fig. 2.19a). 

For the elastic plate subjected to the uniform stress applied to the crack side: 

                                                   σу (х,0)  = ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
σ 12/122 ax

x
,       x  > а.                               (2.100) 

Using Bueckner's principle to transfer to the scheme of loading displayed  in Fig. 2.19a, we 

will gain: 

σу (х,0)  = ( ) 2/122 ax

x

−

σ
,      x  > а.                                     (2.101) 

Substituting this expression in (2.88): 

( ) 2/10
1 aK πσ= . 

Taking into account the ratio (2.88) the expression (2.101) becomes: 

σу (х,0)  = 
( ) ( ) 2/1222/1

0
1

axa

xK

−π
,         x  > а.                               (2.102) 

It corresponds to the elastic plate with crack (Fig. 2.19a). In order to transfer to problem 

about elastic plate (Fig. 2.19b), we suppose for the plate: 

σу (х,0)  = 
( ) ( ) 2/1222/1

1

axa

xK

−π
,         x  > а.                           (2.103) 

where К1 is the stress intensity coefficient for the plate with crack (Fig. 2.19b).  

Value К1 can be calculated using equilibrium condition. Let’s throw out lower symmetric 

part of the plate from Fig. 2.19b. Equilibrium state of the upper part is shown in Fig. 2.20.  

 
Fig. 2.20. Upper part of the plate with crack 
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The equilibrium equation ∑ = 0Y  becomes: 

( )∫ =σ−σ
2/

00,2/
W

a
y dxxW .           (2.104) 

Substituting here expression (2.102), we will have: 

( ) ( )∫ α−πα
=σ

2/

2/1222/1
12/

W

a x
xdxKW .          (2.105) 

 

Computing integral, we obtain: 

( ) 2/1
1 aK πσ= ( )α1F ; Wa /2=α ; 

( ) 2/12
1 1 −

α−=F .                                                    (2.106) 

On Fig. 2.21 the dependence of correction factor F1 on parameter α is displayed; curve 1 – 

practically exact solution by (2.96) and curve 2 – solution by (2.106). 

As it seen from Fig. 2.20, the method of sections leads to satisfactory results. 

 
Fig. 2.21. Correction function F1: curve 1 – the exact solution, curve 2 – approximate solution 

 

 2.3.2 Force criterion of cracked structures strength 

 

In 1920 Griffiths using the energy approach gained the fracture condition of the infinite 

plate (Fig. 2.19) with slotted crack of length l: 
2/14

⎟
⎠
⎞

⎜
⎝
⎛

π
γ

=σ
l
Е

к  ,                                                              (2.107) 

where Е is the modulus of elasticity; γ  is the material surface energy; σk is the critical stress 

corresponding to unstable crack origination. The requirement (2.107) determines catastrophic crack 

distribution and it is valid for brittle materials or ceramics. 
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By this approach the crack will not propagate with increase of the stress until it will not 

attain some value σk, which is critical for the given crack. As soon as it will be attained, there will 

be unstable, spontaneous propagation of the crack. 

 
Fig. 2.22. Infinite plate with crack 

 
 Theory of Griffiths did not allow consideration of some prominent aspects of the fracture 

process. Therefore, Orovan and Irwin [10, 43, 79] revealed that "brittle" fracture of the high-

strength materials is accompanied by essential plastic deformations in the lamina near the crack 

surface. Such fracture has been termed pseudo-brittle. They proposed the concept of pseudo-brittle 

fracture. Its main idea consists in considering of the energy required for plastic deformation. 

For the problem simplification the case of normal separation will be considered. The stress 

state at the front of crack for elastic body is completely determined by the stress intensity 

coefficient К1. Therefore, its value underlies force criterion of the linear fracture mechanics. The 

first criterion of such type was offered by Irwin for pseudo-brittle fracture. 

Criterion of Irwin is formulated as follows: crack begins to propagate in the elastic body 

when value of the stress intensity coefficient attains some critical value for the given material. 

Value К1, at which the crack will propagate in the unstable way, is the constant of material 

termed as fracture toughness or critical stress intensity coefficient. The critical stress intensity 

coefficient is designated as К1С in the case of static load application in the conditions of plane 

deformation. In the case of generalised plane stress state it is designated as КС.  

Thus, requirement of the cracked body fracture looks like: 

                                                              К1 = К1С or К1 = КС.                                                      (2.108) 

Hence, the crack will not grow if К1 < К1С or К1 < КС.  

The coefficient К1 depends on loading, crack size and cracked structure geometry. It is 

determined, as a rule, theoretically using methods of the elasticity theory. К1С and КС values are 

determined experimentally and they are the material constants. Values of К1С and КС depend on 

temperature and strain velocity and КС also depends on plate width. Therefore, it is necessary to 

consider the problem of these values definition. 
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Measured values of КС essentially differ with thickness of samples and this difference is 

related with fracture character determined by the fracture surface. For example, the fracture surface 

of the flat sample with crack consists of two parts. Edges of such sample contain sharp parts, 

whereas the middle part is destroyed in brittle way by flat surface, which is perpendicular to the axis 

of load application (Fig. 2.23a). With increase of plate thickness t the share of brittle failure 

increases and value of parameter КС (Fig. 2.23 b) decreases.  

 
Fig. 2.23. Fracture of plate sample with crack 

 
With the increase of the plate thickness the material state becomes more and more closer to 

the straight type of fracture surface and КС value reaches its minimum value of К1С (Fig. 2.23). If 

the plate with crack has fracture near the crack in the form of shear the requirement of the plane 

stress state is remained valid. It corresponds to ry/t ≥ 1. This requirement is characterised by 

distribution of plastic zone through the sample thickness, fracture plane presence with angle of 450 

to direction of loadings and absence of the brittle fracture elements. The highest strength of material 

is thus reached. 

The requirement of plane deformation looks like ry/t ≤ 1/5π. Usually it exists for the samples 

of large sections. For such samples completely brittle fracture without shear is known. 

КС value can be used for strength estimation of elements only when samples from examined 

material have thickness equal to the thickness of investigated structures. 

КС and К1С values characterise ability of the material to resist to the crack propagation and 

at the same time they are included in the fracture condition. This condition establishes the value of 

stress intensity coefficient, at which uncontrollable crack growth appears. 

                                                                   

 2.3.3 Critical stress and critical length of crack. Safety factor 

 

Methods of fracture mechanics allow determination of critical crack length at which its 

inconsistent growth begins. It is possible to calculate critical stress for element with crack of the 

given length as stress, at which the immediate fracture will happen. Safety factor of the element is 

determined as ratio of critical stress (in the presence of crack of the given length) to acting loading. 
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Let’s observe plate of the finite width (Fig. 2.19b). For it (2.93):  

  ( ) 2/1
1 aK πσ= ( )α1F , Wa /2=α .  

At the moment of inconsistent crack growth beginning from requirement (2.108) we have К1 

= К1С or К1 = КС.  

Hence, during this moment: 

( ) 2/1
1 aK kC πσ= ( ),1 αF .           (2.109) 

From here we obtain: 

 
)()( 1

2/1
1

απ
=σ

Fa
K C

k .                                                      (2.110) 

By formula (2.110) it is possible to calculate critical stress σk for plate with crack of the 

given length at plane deformation. 

Analogously, at the generalised plane stress state: 

σk = )()( 1
2/1 απ Fa

KC .                                                      (2.111)      

The stresses at the crack tip exceed yield strength of material before the critical state owing 

to formation of plastic zone, in which material hardening is observed (Fig. 2.24). This zone presence 

leads to the errors of calculations. Plastic zone influence in some cases can be neglected, if some 

correction is applied. Additionally, the plastic zone influence can be neglected, if its dimensions are 

essentially small in comparison with length of crack and material thickness. 

 
Fig. 2.24. Plastic zone at crack tip 

 
The plastic zone size at the crack tip can be determined assuming σy = σ0,2 and (х − а) = r. It 

will result in expression: 

                             
2

2,0

1

2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σπ
=

Kry .                                            (2.112) 

At the moment of fracture К1 = КС and the limiting size of plastic zone will be equal to: 



                   Chapter 2.  Contact analysis and fracture mechanics elements application                      _ 

 

68 
2

2,0

*

2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σπ
= C

y
Kr .                                                         (2.113) 

Here σ0,2 is the conventional yield strength of material. 

By formula (2.113) it is possible to determine the limiting size of plastic zone in the case of 

generalised plane stress state. For the plane deformation case the limiting size of plastic zone: 
2
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σπ
= C

y
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In order to take into account the plastic zone influence in the linear fracture mechanics Irwin 

proposed to consider that crack tip located on the distance rу from the boundary line of actual 

material division. 

In the case of generalised plane stress state the correction on plastic zone size should be 

considered. Taking into account this correction formula (2.111) becomes: 

σk = ( ) ( )*
1

2/1*2/1 α+π Fra
K

y

C , ( ) Wra y /2 ** +=α .                          (2.115) 

By this formula the critical stresses σk is calculated at different values of a. Using these data, 

dependence of σk on α can be built. 

Let's consider the problem on structure safety factor definition. The actual safety factor nc of 

the cracked structure is equal to the ratio of critical stress σk (in the presence of crack of the given 

size) to acting loading, i.e.: 

σ
σ

= k
cn .            (2.116) 

It is possible to plot the dependence of safety factor on crack size (Fig. 2.25) at the set  

loading σ. It follows from this plot that safety factor decreases with increase of crack size.  

 
Fig. 2.25. Safety factor n plot 

From strength requirement the following condition should be executed: 
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 nc≥[ ]cn ,             (2.117) 

where [ ]cn is the required safety factor. 

 
  2.3.4 Example of residual strength calculation of the cracked structure 
 

Initial data for calculation: stress intensity coefficient – КС = 84.4 МPа.m1/2, conventional 

yield stress – σ0,2 = 400 МPа, loading  – σ=140 МPа, element width  – 2W = 0.20 m, height  – 2h = 

0.40 m, thickness –  t = 0.002 m, eccentricity e=0.02 m. Schemes of the cracked plates are shown  

in Fig. 2.19. The dimensions of specimen are of arbitrary values and they are not related with real 

structures. They were chosen for the purpose of presentation of the algorithm of residual strength 

and, consequently, residual durability calculation. 

For plate with central crack the relation between the stress intensity coefficient of normal 

separation К1 and the set loading intensity σ is expressed by (2.93): 

aFK πσα= )(11 , α =  
W
a  

where a initial length of crack; F1 (α) is the function, which depends on structure and crack 

geometry. 

 

 
Fig. 2.26. Relation of function F1 (α) from α 

 
 By presented above data, graphical dependence of К1 on crack length a is constructed  

(Fig. 2.27). 
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Fig. 2.27. Dependence of stress intensity coefficient К1 (MPa·m1/2) on crack length a 

 

For the analysis of stress state in the neighbourhood of crack tip is performed by formulas 

for stress σх, σy, σху calculation.  In this case the stress concentration is caused by small radius of 

crack tip rounding. 

 

 

In the case of normal separation at the plane stress state: 
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Using formulas (2.118) and plasticity of Mises, the plastic zone size near the crack tip will be: 
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At the moment of fracture К1 = КС. Then the boundary size of plastic zone at θ =0 can be 

determined by formula: 

  2
2,0

2
*

2πσ
= C

y
Kr .                                                        (2.120) 
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In this case at КС = 84.4 МPа.m1/2: 

                        m10086,7
4002
4,84 3

2

2
* −⋅=

⋅π⋅
=yr  .                      (2.121) 

For the given plate 543,3
0,2

086,7*

==
t
ry >1 that satisfies the condition of plane stress state 

(
t
ry

*

≥ 1).  

 
Fig. 2.28. Plastic zone representation for the case of the plate with central crack  
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Fig. 2.29. Plastic zone size dependence on crack length  

 

So, in this case we have the fracture in the form of shear. As a result, the plastic zone 

develops through all thickness and there is no brittle fracture. The highest strength of material is 

thus attained. 
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Critical stress is determined with plastic zone taking into account *
kσ and without it – σk. 

From Irwin criterion the criterion of crack propagation at normal separation looks like К1 = КС. So, 

at the moment of the inconsistent crack growth beginning: 

aFK kC πσα= )(1  

Then, the critical stress without plastic zone can be determined by formula (2.111): 

σk ( )απ
=

1Fa
KC . 

The critical stress taking into account plastic zone is determined by (2.115): 

( )*
1

*
*

)( α+π
=σ

Fra

K

y

C
k , 

W
ra y

*
* +

=α . 

By results of calculations it is possible to say that crack will not propagate, if Irwin criterion 

is satisfied: 

К1 < КС. 

In this case Irwin criterion is executed, if crack length will not exceed its critical length of аk 

= 0.062 m (plane with central crack). Accordingly, at the static loading application the crack will 

not increase. 
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Fig. 2.30. Dependence of critical stress σk on crack length a: continuous line – without plastic zone near 

crack tip, hatched line – taking into account plastic zone 

 

The safety factor nc in the case of a=0.04 m and σk = 211.529 МPа –  

[ ] 5.151,1
140

529,211
=≥== cc nn   
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Admissible value of critical stress will be [ ]kσ = [ ]cn .σ. In this case, 

[ ] MPa2101405.1 =⋅=σk . Then, according to Fig. 2.30, it is possible to make conclusion that in 

the observed cracked plate the length of crack аі should not be more than admissible value 

[ ] m04045.0=a  at [ ] MPa210=σ k . 
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Fig. 2.31. Dependence of safety factor nc on crack length a: continuous line – without plastic zone near crack 

tip, hatched line – taking into account plastic zone near crack tip 

  

 2.4 Residual durability of structure with crack  
 

It was said before that stress originating in machine components while in service in most 

cases varies in time. If level of alternating stress exceeds certain limit, the process of gradual 

damage accumulation begins. It will lead to crack initiation, propagation and definitive fracture of 

the structure.  

Some researchers on the basis of various physical representations obtained dependences of 

the crack growth rate on number of applied loading cycles and crack length. Deficiency of these 

relations is that they well present only some certain sites of fatigue crack growth curves and do not 

describe their common character. With development of fracture mechanics it became possible to 

observe process of fatigue cracks growth from common positions. It has been established that crack 

growth rate is the function of stress intensity coefficient K. 

Some relations linking among themselves crack growth rate vc and stress intensity 

coefficient were offered. The most known are: 

Paris’ equation [80]: 

vc = С1(ΔК)n                                                           (2. 122) 
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Erdogan’s equation [80]: 

vc = С2
m
maxK (ΔК)n =  С2 ( )nN rK −+ 1m

max                                      (2. 123) 

Forman’s equation [27]: 

vc = ( )
( ) KKr

KC

C

n

Δ−−
Δ

1
3 ,                                                    (2. 124)  

where К = К1; ΔК = Кmax − Кmin; Кmax and  Кmin  are stress intensity factors consequently at the 

maximum and minimum cycle loading, r is the cycle asymmetry factor; С1,  С2,  С3, m, n are 

empirical constants. 

Fatigue crack at cyclical loading will continue propagating up to the moment when it will 

reach its critical size. After it fast propagation will take place up to the failure. Usually, time of 

fatigue crack propagation takes main time part of the structural element operation time. 

 

 2.4.1 Diagram of material cyclical crack resistance 

 

Generally, the experimental data about fatigue development in materials are presented in the 

form of diagram of material fatigue failure, also known as diagram of material cyclical crack 

resistance. This diagram relates crack growth rate vc with stress intensity coefficient in cycle ΔK, or 

its maximum value Кmax. At the alternating loading cycle the fracture diagram is built using Кmax. 

The diagram is built in logarithmic co-ordinates (Fig. 2.32) and consists of two curvilinear 

parts (1) low crack growth rate (vc >10-6 m/cycle) and (3) high vc >10-6 (vc >10-6 m/cycle) crack 

growth rate and the middle site (2) approximated by straight line.  

 

 
Fig. 2.32. Diagram of fatigue failure  
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Since the cycle asymmetry coefficient r remains constant during experiments, diagrams of 

fatigue failure are equivalent and they differ only by scale on abscissa axis. 

The diagram of fatigue failure gives the fullest information about material resistance to 

crack development at cyclical loading. It establishes following basic performances of material 

fatigue crack resistance: 

- threshold of stress intensity coefficient Кth is the maximum value of the greatest stress 

intensity coefficient of cycle, at which the crack does not propagate during the given 

number of cycles; 

- critical stress intensity coefficient (cyclical fracture toughness) КfС is the maximum 

cycle stress intensity coefficient, at which sample fails; 

 Approximated middle site of the diagram of fatigue failure can be represented by 

expression: 

            v = 10-7(Кmax/К*)n,                                                    (2.125) 

where К* and n are relation parameters. 

Additional performances of the material crack resistance at cyclical loading are values of the 

maximum stress intensity coefficient of the cycle. They define the beginning (К1-2) and the end  

(К2-3) of the middle site of the diagram of fatigue failure. 

Selection of parameters n and К* is due to the fact that with their help (independently on Кth 

and КfС values) it is possible to present middle site of the diagram of fatigue failure. This site is the 

most important from the application point of view and, generally, researches confine themselves to 

its definition. 

Use of equations (2.122–2.124) for the diagram of fatigue failure is less convenient because 

coefficients С1, С2, С3 are not independent values and, consequently, they can not be accepted as 

material properties. In expression (2.125) parameters n and К* are parameters of material cyclical 

crack resistance. Parameter К* has accurate physical sense of the greatest stress intensity coefficient 

of cycle at crack growth rate of 10-7 m/cycle. Velocity v* = 10-7 m/cycle is always within middle 

site of majority of known diagrams of fatigue failure.  

For the analytical presentation of fatigue failure diagram in the full range of Кmax change 

(Кth < Кmax < КfС) it is possible to use the equation:  
q

t
cc KK

KKvv ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

max
*
fC

*
hmax

0 .                                                     (2.126) 

If values Кth and КfС are known, it is accepted that *
thK = thK и *

fCK = fCK . Otherwise values 

*
thK  *

fCK  are also determined together with constant values vc0 and q.  

On the basis of fatigue failure diagram the performances of materials cyclical crack 

resistance are established. Using these parameters the materials selection and estimation of 
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operation conditions are performed. With fatigue failure diagram it is possible to determine 

durability of element with crack, i.e. number of cycles before fracture. 

 
 2.4.2 Definition of residual durability of structure with crack  
 
Usually, during fatigue calculations the stage of fatigue crack growth is considered, whereas 

the stage of fatigue crack origination is not taken into account. It is supposed, hence, that initial 

cracks are already present in the structure or they appear at early operation stage. 

Thus, the primal problem consists in describing fatigue crack growth kinetics and expected 

service life estimation. 

Expression (2.126) is used for structure durability calculation. Considering that vc = da/dN, 

it is represented as: 

( )nKK
dN
da *

max
7 /10−= .                                                (2.127) 

where N  is the number of loading cycles and a  is the crack length (semi-length) . 

 Equation (2.127) is the differential equation of crack propagation. It links among themselves 

crack length a and number of cycles N. Equation (2.127) should be rewritten in order to be integrated: 
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Integrating this equation, we will gain: 
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where а0  is the  initial crack length corresponding to the number of cycles N0; аk is the critical 

crack length corresponding to the number of cycles at the moment of fracture Nk. 

Then, it is necessary to specify cracked structure geometry. For example, we take plate with 

central crack at axial extension (Fig. 2.19a). In this case: 

К1 = σ(πа)1/2F1(α), α =  2a/W, 

where function F1 (α) is given by ratio (2.96). 

In the case of alternating stresses:  

К1max = Кmax = σmax(πа)1/2F1(α).                                       (2.130) 

Substituting (2.130) in (2.129) and transferring to integration variable α we will obtain: 
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where Wa /2 00 =α  and WaKK /2=α . 

The difference ( 0NNK − ) represents the residual durability of the structure with crack. 
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The integral in expression (2.131) can be computed in the closed form. Therefore, for its 

calculation it is necessary to apply one of quadrature formulas (for example, Simpson formula). 

Usually the main part of durability (service life) is within the period of crack growth initial 

stage. In the process of crack propagation its growth rate increases and only small part of service 

life falls on high growth rate stage. 

 

 2.4.3 Example of cracked structure residual durability calculation 

 

Calculation of the number of cycles before fracture (residual durability) and the analysis of 

cracked structure state at different initial crack lengths are performed (Fig. 2.29) Unsymmetrical 

cycle of loading is accepted to be applied to the structure. 

Initial data for calculation: stress intensity coefficient – КС = 84.4 МPа.m1/2, conventional 

yield strength – σ0,2 = 400 МPа, maximum stress intensity coefficient of cycle – К*=92.3 МPа. m1/2, 

parameter – n=4, cycle asymmetry coefficient – r = 0.33, maximum loading – σmax =140 МPа; 

width – 2W = 0.2 m, height – 2h = 0.4 m, thickness – t = 0.002 m. Schemes of the cracked plates 

cases are shown in Fig. 2.19. 

Crack growth rate is computed as: 
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where Δa is the crack length increment, ΔN is loading cycles increment, Кmax = r
K

−
Δ

1
 is the stress 

intensity coefficient of the cycle, which has maximum algebraic value at maximum loading, Кmin  is 

the stress intensity coefficient of cycle, which has minimum algebraic value at minimum loading,  

ΔK = Кmax −Кmin  is the stress intensity coefficient span. 

Formula (2.132) can be presented as: 
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From problem statement:  

σmin = rσmax = 0,33σmax, 

 Then, the stress range of the cycle is calculated: 

Δσ  = σmax  − σmin = (1 − r) σmax. 

Substituting expression (2.130) to (2.133), we will gain the differential equation of crack 

propagation rate:  
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or 
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Integrating (2.135) and considering initial conditions, it is possible to obtain the number of 

cycles before fracture (residual durability of cracked structure): 
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Fig. 2.33. Dependence of crack growth rate on initial crack length 

 

Accepting 
W
a

=α , the integral (2.136) turns to: 
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Critical crack length аk is determined from the fracture criterion of Irwin, when К1 = КС 

(Fig. 2.28) or σk =σmax (Fig. 2.29). In this case К1 = КС = 84.4 МPа, σk =σmax = 140 МPа. 

Using Simpson's formula, the integral from (2.137) is computed. 

The label is inducted: 
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Then: 
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where m  is the number of points, in which values of sub-integral function are known. 

After integral calculation, expression (2.137) is used to calculate the number of cycles 

before fracture: 
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Analysis of the cracked structure state subjected to asymmetric loading cycle is performed 

varying crack initial length. In this case, changing initial crack length from minimum to admissible 

value (a=0.04 m), it is possible to gain functional dependence of residual durability (number of 

cycles before fracture) on initial crack length ΔN = f (а0). Obtained data are illustrated in Fig. 2.34. 
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Fig. 2.34. Dependence of remained cycles number on initial crack length 
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Conclusions 

 
The chapter was devoted to consideration of the contact analysis elements, because namely 

such approach will be used for creation of the cracked blade model in the following chapter. Main 

attention was paid to the frictionless case of contact interaction as only normal contact without 

sliding will be considered at crack breathing process simulation.  

Reviewed aspects of fracture mechanics and cracked structure durability under alternating 

loading help to establish the main idea of the study – try to predict residual service life of cracked 

blade, which has been detected by measures of engine health monitoring. Shown results of the 

simple examples are close by their nature to the more complex ones, which will be interrogated in 

the following chapters.  

Conjunction of the fracture mechanics elements with further presented cracked blade model 

will be presented in chapter 3. It will be used to estimate dependence of durability parameters of 

considered cracked blade model (stress intensity coefficient and number of remained cycles) on 

crack length. Also it will be used for proper selection of crack parameters (crack length and 

location) for cracked blade modelling. Having justified chosen crack parameters, simulation of 

cracked blade identification would be performed. Its goal is to show ability of cracked blade 

identification with residual durability allowing safety operation of gas-turbine engine or its well-

timed maintenance. 
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Generally the non-linear dynamic systems are not easy to analyse because there are not any 

common problem-solving approaches among variety of different methods. The non-linear problems 

posed by a crack presence are not an exception. 

For numerical calculations of the non-linear forces occurring in the crack contact zone some 

methods applicable for a non-linear system can be used. Most of the methods allow calculation of 

the non-linear forces only in a time domain and they are not applicable for a frequency domain.  

This chapter describes a possible solution to a non-linear problem of the cracked blade 

behaviour in the frequency domain. It can be considered as the easiest and most efficient approach 

to obtain a periodic solution to the problem. The approach is based on application of the harmonic 

balance method. An assessment of the approach will be done by its comparison with a solution 

obtained by the direct time integration. 

Usually, a cracked blade presentation consists in simulation of the crack presence supposing 

the crack to be always open. In this case, crack influence on forced response is simulated by 

stiffness reduction when solving the eigenvalues problem. Most researchers use always-open crack 

models in their studies and claim that the change in natural frequencies might be a parameter of 

crack detection. However, the assumption that the crack is always open subject to a vibration is not 

realistic as compressive loads may close the crack. 

 The crack models can be divided into two categories:  

− open crack models - linear statement; 

− breathing crack models - non-linear statement [18, 54, 57].  

The main results obtained through simulations or experimental studies showed that the 

observed decrease of natural frequencies is not sufficient for a description with the open crack 

model. Thus, the real resonance changes may be calculated by making use of the non-linear 

formulation of the cracked blade behaviour. In numerical presentation its solution is
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supposed to be between the linear cracked blade model solution and the one for the uncracked 

blade.  

 Two approaches of the non-linear formulation of crack presence can be used: 

− introduction of periodically varying stiffness [18, 49] 

− contact simulation between crack sides at time of crack closing [50, 54]. 

In most cases analytical solutions for the non-linear dynamic systems are practically 

impossible to obtain. As a result researchers and engineers turn to numerical techniques. At the first 

stage the systems are discretized as a set of non-linear ordinary differential equations and then direct 

time integration techniques are applied. However, the process is too time-consuming to obtain steady-

state response under periodic load. For that reason more efficient techniques are to be found to reduce 

the computational costs. One of such techniques is harmonic balance (HB) method. A reduction 

procedure should also be applied to the system under consideration. It is of critical importance 

especially for the non-linear solution because of the blade geometry requiring fine meshing.  It will 

lead to the model with a big number of degrees of freedom (DOFs). And in the case of HB method 

application number of DOFs is multiplied on (2K+1), where K is the number of retained harmonics. 

  

 

 

 

(a) (b) (c) 

Fig. 3.1. Blade finite element model: (a) realistic model, (b) simplified cracked blade model, 

(c) crack location zone (zoom) 

 
3.1 A solution to a non-linear dynamic problem 
 
Any non-linear system in its simplified description can be presented by an expression 

subjected to optimization procedure: 

                                                                  0)( =UF ,                 (3.1) 

where F is the non-linear function of U. Common methods for the equation (3.1) solution are 

presented in Annex 1. 

crack 



83                       Chapter 3.  Non-linear analysis of cracked structures dynamics                             _ 

 

 In our case the equation of motion is obtained taking into account presence of the non-linear 

member: 

                                ),(),,(KC tuut extnl FFuuuM =+++ ξ &&&&                  (3.2) 

where M is the mass matrix, K is the stiffness matrix, Cξ is the damping matrix, u is the 

displacements’ vector, Fnl is the non-linear force vector, Fext is the external excitation time-varying 

periodic force vector. 

Two approaches are commonly used for a solution to the problem: the direct time 

integration of equation (3.2) or application of the frequency domain methods. Selection of an 

approach depends on the forced response, which can be periodic, quasi-periodic or chaotic one. The 

direct time integration can be used as to the last two types of response. In this case the solution is 

preferably sought for with a frequency domain method or shooting method in the time domain.  

 

    3.1.1 Time domain methods for a solution to the non-linear problem 

 

Time integration approaches are used to work directly with differential equations, namely 

with differential equations of the second order describing system movement. The most frequently 

used are methods of Newmark, Runge-Kutta, Euler, Adams-Moulton-Bashforth, Milne-Simpson,. 

The main advantage of the time integration approach is that for its application only few hypotheses 

about system behaviour are used.  

Generally, the time-integration is performed following two principal schemes: explicit and 

implicit. In case of the implicit methods, the solution in the time point k+1 is performed when 

equation of system motion is considered at time tk+1, whereas in that of the explicit methods it is in 

the state of the time tk. Due to this fact, computational expenses under implicit formulation are 

higher because of the necessity to solve non-linear equation at each time step. The explicit 

formulation unlike avoids this, though requires a small time step to maintain the solution stable. The 

implicit schemes are usually used for structural inertial problems for which the response is 

dominated by small number of modes. The explicit solution methods are applied for solving 

problems of wave propagation (dynamic problems) with high frequency contributions. 

Additionally, each schema can be classified in accordance with the number of steps, which 

must be performed to describe system state at the time tk. A solution method can be a single-step or 

multi-step one.  

In order to solve dynamic problems, equation of motion of the system (3.2) can be presented 

in a form of the system of ordinary differential equations of the first order. This doubles the number 

of equations: 
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Equation (3.3) should be verified for consecutive time points from the interval [ ]1, +kk tt . It 

means that the incremental time integration schemes of different formulation and accuracy order are 

to be applied.  

Consider various time integration schemes. General integration scheme for all methods can 

be presented in view of the recurrent expression [73]: 
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The parameters jα  and jβ  (j = 1,…,q) are specific constants of a particular method used for the 

problem solution. Number q allows performing classification of methods by the step number (one 

step or multi-step) and scheme type (explicit or implicit). If q = 1, it means that the number of 

previous time steps is equal to one and the method is classified as the one step method. If the 

integration scheme uses more than one successive system state (q>1), it is classified as a multi-step 

method. The method of Adams is most commonly used one. A useful feature of the multi-step 

methods is a prospect to determine a local error of truncation and include a correcting term, which 

increases accuracy on each step. Besides, a step length increase is also possible to find out without 

reduction of the solution accuracy. The solution requires application of the prediction-correction 

methods, among which Adams-Bashforth-Maulton method and that of Milne-Simpson are the 

most recognized ones. 

 Both one-step and multi-step methods can either be explicit or implicit. If parameter 0β  is 

not equal to zero, the vector of system state ku at time tk depends on its own derivative at the same 

time and this makes the integration algorithm to be implicit. In the opposite case ( 00 =β ) ku  can 

be evaluated on base of the previous system of states and therefore the time integration algorithm 

can be considered to be explicit. 

Some other time integration techniques must be reviewed in brief. There are a set of 

methods based on extrapolation approach and decomposition in Taylor’s series. The method of 

Taylor’s series is used supposing displacements, velocities and accelerations in equation (3.3) to be 

known at the time moment tk and they have to be determined at the moment tk+1= tk+h: 
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The integrals in equation (3.5) can be calculated using numerical integration by quadratures 

representing )(tu&&  at time interval [ ]1, +kk tt : 

                                                     
⎪⎩

⎪
⎨
⎧

β+α−+=

β+β−++=

++

++

))1((

))1((
2

11

1

2

1

kkkk

kkk kk

h

hh

uuuu

uuuuu

&&&&&&

&&&&&
,                               (3.6) 

where coefficients α and β corresponds to a particular quadrature type. If α = β = 1/2, it means that 

constant acceleration scheme of numerical integration was used at the interval [ ]1, +kk tt . In the case 

of linear acceleration scheme α = ½, and  β = 1/3. 

 Runge-Kutta methods, for example, are derived from Taylor's series method of same n-th 

order. The derivatives of higher orders have not to be computed analytically that is the main 

deficiency of the method of Taylor's series. Runge-Kutta methods are advantageous in attaining the 

highest accuracy at minimum time, but they do not always provide solution convergence for strictly 

non-linear problems. 

 
Periodic solution by time integration 
 
Time integration methods are also appropriate for problem solution under domination of the 

periodical response. The solution period [ ]T ,0  is divided into M sub-intervals [ ]1, +kk tt  (k=1,…,M). 

The main task is to find out value uk, which is approximate to uk(tk). For method of finite 

differences (central) the time derivatives are supposed to be replaced with the following 

expressions: 
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where tΔ  is the time sub-interval of constant length. 

Insertion of equation (3.5) into equation (3.2) yields the non-linear algebraic system: 

                           ,0) =+= b(UAUH(U)                                        (3.8) 

which should be solved as [ ]10 ...... −= Mi uuuU . Matrix A has block-diagonal structure and vector b 

takes into account the non-linear member. Their equivalents in the frequency domain will be 

presented at the discussion of the harmonic balance method. 

Shooting method is an appropriate scheme to look for a periodic solution to the non-linear 

problem. The method is used in mathematics for solving problems of boundary values. In the field 

of vibration mechanics the method was firstly applied to Duffing oscillator [77]. With this method 

the initialization is searched for inside of the solution period and then followed by the time 
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integration over the period that results in a stationary response. Thus, a periodic solution, which is 

unknown a priori, can be obtained.  

Normally, we perform integration of equation of motion over the interval [ ]Ttt +00 ,  with 

the set of initial conditions 00 )0(,)0( yyyy && == . It is being continued up to the moment till periodic 

solution is obtained. The operation under shooting method is restarted every time with new initial 

conditions. As a result, shooting method is an iterative like procedure, which contains time 

integration over the period at each stage. Equation (3.6) is rewritten for shooting method as: 
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 .                                 (3.9) 

If the solution to (3.9) noted as ),,( 00 yy tt is periodic, then 0000 ),,( yyy =+ tTt . In order to 

adjust initial conditions, zeros of the next function should be found: 

                                                   0),,()( 00000 =−+= yyyyH tTt .                                 (3.10) 

 

 3.1.2 Frequency domain methods for a solution to the non-linear problem 

 

For all linear systems subjected to mono-harmonic excitation their responses will also be 

mono-harmonic. This consideration is derived from the theory of linear differential equations. But it 

cannot be directly applied to the non-linear system case. It is only possible to suppose that non-

linear system response is periodic.  

Sometimes it happens that non-linear response is only quasi-periodic or even chaotic. But in 

majority of cases the periodic solution is obtained. So, the periodic solution to the non-linear system 

can be decomposed into Fourier series. The main idea of the frequency domain methods consists in 

this decomposition. 

Let’s suppose that a solution has period T of response and it is stable. The solution can be 

decomposed into the infinite base of trigonometric functions. Numerically, it is not reasonable to 

process the infinite sum and the hypothesis is suggested that the solution can be approximated by 

truncated Fourier series. To continue with the approximation we will deal with one constant term 

and K first members: 
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apprexact tkbtkaatutu             (3.11) 

where T/2π=ω is the excitation frequency. Making use of the expression (3.11), the solution is 

approximated in vector space of the finite dimension created by the base of trigonometric functions.   

The validity of the presented approximation directly depends on order of the truncated 

series: as more terms in series will be retained, thus much of )(tu appr will be closer to )(tu exact . 



87                       Chapter 3.  Non-linear analysis of cracked structures dynamics                             _ 

 

However, to provide this approximation, the base of trigonometric functions must be taken in full. It 

means that all terms of the series are to be taken into account. In some cases, it is possible that 

certain coefficients ak or bk can be almost zero or their effect will be negligible with regard to other 

coefficients. Thus, harmonics referred to these coefficients can be omitted. Unfortunately, there are 

no criteria that allow judging, which of the harmonics should be retained.  

With the approximated solution (3.11) inserted into the differential equation of system 

motion we will obtain: 

                 )(),,()(K)(C)(),( ttuuttttR apprappr
nl
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e FFuuuMU −+++= ξ &&&&          (3.12) 

[ ] ....110
T

KK babaa=U  

The non-zero residual term ),( UtR  is the error of truncation procedure, which measures the error of 

exact solution )(tu exact  approximated by )(tu appr . 

 
 Formulation of harmonic balance method  

 

 There are several ways to implement harmonic balance (HB) method and three approaches 

are particularly attractive: the classical harmonic balance method, the high-dimensional harmonic 

balance method, and the incremental harmonic balance method. HB method yields rather accurate 

results but it is difficult for implementation as to the high-dimensional systems or systems with a 

complex or non-smooth non-linearity. On the other hand, high-dimensional HB method [64] is 

easily applicable for high-dimensional systems regardless of the non-linear complexity. But it may 

produce spurious solutions in addition to the physically meaningful solutions. Besides, the 

incremental HB method is capable of dealing with strongly non-linear systems of any desired 

accuracy [19]. The classic formulation of HB method will be applied as to the problem under 

consideration.  

In non-linear case the equation of system motion is expressed by: 

                                ),(),(KC ttu extnlnl FFuuuM =+++ ξ &&&                  (3.13) 

where non-liner forces are shown to be dependent only on non-linear degrees of freedom in the time 

domain. 

The damping matrix was calculated on the base of the structural damping ratio ξ from the 

next relation: 

       KС ξ=ξ .                                    (3.14) 

Then we are searching for the u(t) in the form of the truncated trigonometric series of k = 1, 

…, K harmonics: 
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The j-th non-linear degree of freedom could be expressed in the same way as (3.16): 
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If to put equations (3.15) and (3.16) into (3.13), it will be changed to: 

                                          ,~)~(~ FubuA =+                                                  (3.17) 

where A is diagonally symmetric in the block matrix: 
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(b) non-linear member: 
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where ωπ /2 =sT  is an excitation period. 

F~  is an external excitation force member:    
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u~ is the vector of Fourier series coefficients: 
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89                       Chapter 3.  Non-linear analysis of cracked structures dynamics                             _ 

 

Any conventional numerical integration techniques could be applied for integral calculation 

in (3.20) and (3.21). The trapezoidal method will be used in our case. The procedure of Newton-

Raphson will be applied to solve the non-linear equation (3.18). 

 

 3.1.3 Methods for reduced order modelling 

 

When doing an analysis of vibration performances of a structure with essentially high-

required accuracy, we encounter the problem of the enormous number of DOFs to take part in the 

solution. For example, the three-dimensional model of the blade can have up to 60000 DOFs, which 

creates computational problems due to costs of the calculation time and memory shortage. 

Therefore, we have to reduce a system size by implementing one of the existent techniques of 

reduced order modelling based on system sub-structuring. The main advantages of the approach are 

the following: partition of the analyzed object on some independent sub-structures, modification of 

a sub-structure without influence on the remainder, working with one sub-structure in the case of a 

number of identical sub-structures (e.g. cyclic symmetry). Some well-known procedures of system 

reduction by sub-structuring are: fixed interface sub-structuring method of Craig-Bampton and free 

interface sub-structuring method of Mac Neal, reduction by substitution. 

 

 Fixed interface method 

 

This method is well known from the work of Craig and Bampton [20]. It is well adapted and 

suitable for its use in the bladed disk structures [9, 88]. Implementation of  the method involves 

defining two types of DOFs in the structure subjected to reduction: DOFs of interface with subscript 

m and internal DOFs of the structure with subscript s. 

In this case the equation of system motion (without damping) can be expressed in the 

following way: 
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Let’s approximate the movement of a sub-structure by Rayleigh-Ritz method on the base of 

eigenmodes with fixed interface Φ  (eigenvectors obtained with interface nodes  

fixed) and static modes G (they are defined as the static deformation of the structure with unit 

displacements applied to interface DOFs):  
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The normal modes of fixed interface could be obtained for condition 0=mu : 

0=+ ssssss uKuM &&  

 For the static modes of connection the equilibrium condition will be used: 
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From this we will obtain: 
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The equilibrium state can be also presented using the interface DOFs: 
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Then equation (3.23) can be written as: 
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The system transformation matrix is formed on the base of redundant static constraint modes 

and fixed-interface normal modes 
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where smsssm KKG 1−−=  are the redundant static constraint modes and ssΦ  are the fixed-interface 

normal modes. 

Using the transformation matrix from equation (3.28), it is possible to define system’s 

matrices (mass and stiffness) on the new base. For this purpose the formulations of the kinetic 

energy and energy of deformation are used: 
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where Mred, Kred – reduced mass and stiffness matrices, which can be obtained by formulas: 
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 Free interface method 

 
Another approach to system reduction is known as the method of Mac Neal or free interface 

method [68]. A movement of each sub-structure is characterized taking its eigenmodes with free 

interface Φ  and approximated by Rayleigh-Ritz method: 

     ΦqU = ,                                                             (3.33) 

where Φ  is the matrix containing the base of truncated eigenmodes with free interface for each sub-

structure. 

The truncation could cause some unacceptable errors in dynamic properties of the structure. 

So, it was proposed to take into account static effect of the higher order truncated modes by 

introducing a correction for residual flexibility. The flexibility matrix of N-th order system is 

expressed by equation: 

∑
= ω−ω

=
N

k k

T
kk

1
22

ΦΦ
G .                                                       (3.34) 

 This matrix is obtained from particular solution of the system motion equation, and then the 

forced response can be written in the form: 

                                                           GFΦqU += 00 ,                                                     (3.35) 

where 0Φq  is the solution of the homogenous equation, GF is the particular solution. 

In general, equation (3.36) is very important numerically. Using Rayleigh-Ritz 

approximation (3.34) and decomposing the exact solution in two parts (one depends on m forms of 

the interface and other is the function of the higher order forms) we obtain: 

                                                         210 UUU += ,                                                          (3.36)  

where FGqΦU 1111 +=  directly corresponds to approximation (3.33) and FGqΦU 2222 +=  is the  

difference between exact and approximated solutions.  

With the first-order approximation of the flexibility matrix (3.34), the matrix of static 

flexibility is obtained: 

                                                       ∑
= ω

=
N

k k

T
kk

1
20
ΦΦG .                                                         (3.37) 

 In reality equation (3.37) is not applicable because it requires calculation of all modes of a 

structure. Therefore, some approaches are used for flexibility matrix calculation. 

For the term 2U  it is residual flexibility, obtained from the difference between static 

flexibility and the sum of the flexibilities of the retained modes: 

                                                  ∑
= ω

−=
m

k k

T
kk

res
1

20
ΦΦ

GG                                                    (3.38)  
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Consequently, main relation for each sub-structure will be noted as: 

                                                                   FGΦqU res+= ,                                                    (3.39)  

where Φq  is the approximated solution of the forced response on the base of retained modes, 

FG red  is the correction term. 

Two coupling relations at the interface are applied to assemble the structure: 

− displacements compatibility 

− forces equilibrium. 

 
 Modal substitution approach 

 
The technique is appropriate for systems that have the principal element to which additional 

elements (called branches) can be attached [6]. The main point of the method consists in defining 

movement of the principal sub-structure on the base of its natural modes with free interface. Same 

improvements can be achieved using loaded interface. It means that mass and stiffness matrices of 

the secondary sub-structure interface are added to the mass and stiffness matrices of the principal 

sub-structure interface correspondently. 

It should be noted that principal sub-structure analysis is not longer independent of the 

branches. Its equation of motion depends on stiffness and mass matrices of the secondary sub-

structures reduced at the interface.  In order to overcome it, the reference sub-structure is often used 

for principal sub-structure calculation. Then, to take into account the differences between branches, 

the perturbation technique is used. Reduction of the secondary sub-structures is in most cases 

performed by fixed-interface method using natural modes at fixed interface and static modes of 

junction. 

 

3.2 Cracked blade dynamic model 
 

 Let the cracked blade non-linear dynamic behaviour be described by the equation: 

                             ).()(KC tu extnlnl FFuuuM =+++ ξ &&&                             (3.40) 

where M, Cξ, and K are the symmetric mass, damping, and stiffness matrices of the blade model, 

Fext is the amplitudes’ vector of external excitation forces, nlF  is the non-linear forces vector, which 

depends on non-linear DOFs unl.   

 In the linear case we assume that 0)( =nlnl uF  and crack is always open. The system 

response is steady-state and it has the form tiet ω= uU )( that yields to the set of algebraic equations  

                                  FHu = ,                                           (3.41) 
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where ξω+ω−= CMKH i2  is the impedance matrix at the excitation frequency ω . 

 Application of external excitation forces is shown in Fig. 3.2. Forces are applied in the 

points of the blade tip: on the leading and trailing edges.  

 
Fig. 3.2. Cracked blade model subjected to forced response analysis 

 

            
           (a)                                                 (b)                                             (c) 

Fig. 3.3. Crack location variants: 

(a) crack on trailing edge, (b) crack on leading edge, (c) symmetric cracks 

 
  Blade model geometrical dimensions: the height is H = 0.08m, the maximum width is W = 

0.03m, the crack location height is Hc = 0.10m, the maximum and minimum blade thicknesses are 

tmax = 0.006 m and tmin = 0.003 m, excitation force amplitude Fa=0.3N. Cross-section area of the 

blade profile is changed depending on equation (1.1) in dependence on blade height. Material 

Restrained root section 

Crack 

F
F 

Leading edge  
measurement point 

Trailing edge  
measurement point 

External face 
(suction face) Internal face  

 

F=Facosωt 
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properties of the blade model: Young’s modulus – 2·1011 Pa, Poisson’s ratio – 0.3, material density 

– 7.8·103 kg/m3. 

 The finite elements model of the cracked blade (Fig. 3.1b) was created in ANSYS 

environment with following meshing parameters: number of elements divisions along blade height 

– 5, number of elements divisions along blade width – 15, number of elements divisions along 

blade thickness – 1. Meshing of the crack zone supposes one element per 1mm of crack length. 

 Eigenproblem solution to the cracked blade in linear formulation is presented in Table 3.1. 

Two main hypotheses are accepted: the crack is initially open (with gap) and gyroscopic effect is 

not considered during solution.  From its results we can easily see a decrease of eigenfrequencies 

caused by a crack presence.  

Table 3.1 

Change of the cracked blade eigenfrequencies due to crack presence 

Deviation from uncracked blade model, % 
Crack on trailing edge  Crack on leading edge 

 
Crack 
location 
Hc, mm 

 
Crack 
size a, 
mm 1st 

mode 
2nd 

mode 
3rd 

mode 
4th 

mode 
1st 

mode 
2nd 

mode 
3rd 

mode 
4th 

mode 
2 0.0035   0.0203   0.0297   0.3186 0.3664 0.2729 0.1949 0.8465 10 
4 0.0247   0.1503   0.1781   2.1491 2.3357 1.7400 1.1844 5.1722 

 

In non-linear case the blade resonance frequency can be obtained only from frequency 

response analysis requiring problem non-linear formulation. The non-linear member )( nlnl uF in 

equation (3.40) is the force of contact interaction between the crack sides, with unl representing a 

displacement between them. These displacements are selected as non-linear one at the non-linear 

problem solution by harmonic balance method.  

The motivation to use HB method for our problem solution comes from inside crack contact 

process caused by crack breathing. It induces non-linear behaviour of the cracked blade subjected to 

periodic external excitation. The response of the system is supposed to be periodic. Earlier a simple 

mathematical model to simulate such a non-linearity had been created [54]. In such a way it was 

possible to prove correctness of the method formulation by comparing its results with direct 

integration of equation (3.43). Now this approach can be projected on more complex cracked blade 

model.  

  

 3.2.1 Reduction of the cracked blade model 

 

Fig. 3.4 shows sub-structures of the cracked blade model.  The crack location forms an 

interface between two sub-structures. The lower sub-structure is restrained at the root section. In our 
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case we do not have a classical sub-structuring because upper and low sub-structures share some 

DOFs of the interface uncracked partition. To continue with the model size reduction, the fixed 

interface method was implemented.  

 
Fig. 3.4. Cracked blade model sub-structuring 

 
In order to facilitate calculation, the relative displacements were introduced for each contact 

pair. The contact pair is defined by two nodes subscribed as the reference node and observed node. 

Thus, the relative displacement can be described as (Fig. 3.5): 

 ref
j

obs
j

rel
j uuu −= ,   (3.42) 

where the subscripts ref and obs refer to the reference and the observed nodes respectively, j -  

index of j-th contact pair. 

 
Fig. 3.5. Relative displacements between contact nodes 

 
In the case of cracked blade we do not have a classical sub-structuring because some DOFs 

remain shared between the upper and lower sub-structures. The fixed interface modes are presented 

by the modes of the blade uncracked state. The static modes are the modes of the crack opening, as 

unit displacemets are applied to the crack relative DOFs.  

Upper 
“sub-structure” 

Low “sub-structure” 

Interface 
(crack zone) 
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The initial full model consisted of 588 DOFs (a=4 mm) and it was reduced to the model of 

23 DOFs (12 DOFs describing relative displacements of four contact pairs, 6 DOFs in two points of 

external loading application and 5 additional modes). Reduction of uncracked blade model was 

performed using reduced cracked blade model by deleting from its mass and stiffness matrices 

elements, which correspond to relative DOFs. Results of the reduction procedure application to the 

cracked blade model are shown in Tables 3.2–3.3. 

Cracked blade model eigenfrequencies (in Hz) 
Table 3.2 

Crack on trailing edge Mode 
number 

a=2 mm a=4 mm uncracked blade 

 Full 
model 

Reduced 
model 

Full 
model 

Reduced 
model 

Full 
model 

Reduced 
model 

1 566.9 566,9 566.8 566.8 566.9 566,9 
2 2455.7 2461.1 2452.4 2457.9 2456.2 2461.6 
3 3029.5 3031.8 3024.8 3027.3 3030.4 3032.7 
4 4433.1 4536.3 4354.8 4453 4446.7 4550.8 
5 7053.2 7110.5 7030.4 7084.9 7058.5 7116.5 
6 8135.5 8252.9 8135 8252.4 8135.6 8253.1 
7 13272 14373 13220 14332 13285 14383 
8 15032 17799 15025 17794 15034 17800 
9 15950 29950 15925 29582 15957 30006 
10 17232 37587 17178 37181 17241 37638 

 
Cracked blade model eigenfrequencies (in Hz) 

Table 3.3 
Crack on leading edge Mode 

number 
a=2 mm a=4 mm uncracked blade 

 Full 
model 

Reduced 
model 

Full 
model 

Reduced 
model 

Full 
model 

Reduced 
model 

1 564.85 564.9 553.9 554 566.9 566.9 
2 2449.5 2454.9 2413.9 2419.5 2456.2 2461.6 
3 3024.6 3026.8 2995.1 2997.2 3030.4 3032.7 
4 4411.2 4512.6 4237.9 4327 4446.7 4550.8 
5 7054.5 7112.5 7033.7 7091.6 7058.5 7116.5 
6 8125 8241.4 8070.9 8181.5 8135.6 8253.1 
7 13269 14366 13191 14282 13285 14383 
8 15030 17800 15011 17799 15034 17800 
9 15954 29833 15935 28602 15957 30006 
10 17225 37389 17086 36082 17241 37638 

 

To continue with the subsequent dynamic analysis, all vertical DOFs of all contact pairs 

were accepted as the non-linear DOFs. It halves the number of non-linear DOFs and adequately 
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reduces the calculation time cost for the non-linear problem solution. It is also much easier to 

control displacements between nodes in contact with the use of relative displacements. The relative 

contact displacements simplify the non-linear force formulation for application of the harmonic 

balance method.  

 
 3.2.2 Application of the penalty method for non-linear force representation 

 
Representation of the non-linear force is one of the most important tasks in any non-linear 

solution procedure or in the harmonic balance method. In our case, we have some non-linear 

contact force, the Lagrange multipliers or penalty methods could be used [57]. The easiest way is to 

use the penalty method to approximate this force by the following expression: 

                                                          ,
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
⋅= nlnl

nlnl

uu
kF                               (3.43) 

where knl is the penalty stiffness coefficient, unl is the non-linear DOF. A penalty stiffness value 

should be chosen to provide minimum penetration in the contact zone.  

It should be mentioned that a drawback of such a non-linear force approximation appears 

when it crosses the zero. So then unl=0, nlnl uF ∂∂ / is discontinuous. It results in calculation of the 

Jacobian will be theoretically unattainable. In order to avoid this problem, the smoothing function 

should be applied. The work [19] showed how the tangent function was used for smoothing. We 

applied it with some modification and obtained the following expression: 

                                                      ,)
2

)(arctan(1
nlnlnlnl usukF π

π
−=       (3.44) 

where s is the coefficient, the sufficiently high level of which is required to accurately represent 

force-displacement relationship smoothing (Fig. 3.6) . 
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Fig. 3.6. Non-linear force smoothing representation: (a) at different values of s coefficient and fixed 

knl =1010N/m, (b) at different values of penalty stiffness knl and fixed s=1010 
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 3.2.3 Non-linear solution for the problem 

 

A non-linear solution requires taking into account the system non-linearity, in our case it is a 

non-linear contact force between two nodes (3.44). The governing equation FubuA ~)~(~ =+  of HB 

method represents by itself the system of non-linear equations. Newton-Raphson procedure of non-

linear equations system solution can be applied after some transformations: 
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                                      (3.45)   

where n is the iteration number. 

Expression (3.45) represents the local linear transformation of (3.18) and )u~(b nJ is the 

Jacobian of the non-linear member: 
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where INDOF is the unity matrix of dimension NDOF× NDOF., NDOF is the number of the system degrees 

of freedom. 

The solution vector update is calculated from the expression: 

                                      ,~ 1
nn RJu ⋅=Δ −                                    (3.47) 

where, 

                       
.~)~(~
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−+=

+=

nnn

nJ
                            (3.48) 

The non-linear solution in the time domain is reconstructed by the inverse Fourier 

transformation and shown for relative vertical displacement between two coinciding contact nodes: 

the “crack point” and the “tip point”, i.e., a horizontal displacement of excitation force application 

node (leading edge measurement point). Amplitude of response presented in all following graphs 

corresponds to the maximum amplitude in measurement point. Crack location variants are 

schematically shown in Fig. 3.3, supposing it to be either on the leading or trailing edges or on both 

edges (symmetric cracks).  
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       (a)                                                                                    (b) 
Fig. 3.7. System response in the time domain in “crack point” (trailing edge crack, ω = 3550 rad/sec):  

(a) a=2 mm, (b) a=4 mm 

From the results of the cracked blade model non-linear solution we can observe the effect of 

the contact force presence (Fig. 3.7). The set value of penalty stiffness is enough to avoid 

penetration and non-linear force approximation (3.47) and allows precisely simulate system non-

linear behavior. Five harmonics were retained in this case at excitation frequency 3500 rad/sec., 

which is close to the resonance frequency of the first flexural mode of the cracked blade model.  
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       (a)                                                                                    (b) 
Fig. 3.8. System response in the time domain in “tip point” (trailing edge crack, ω = 3550 rad/sec):  

(a) a=2 mm, (b) a=4 mm 

 
  From the results of the solution to the cracked blade model in the time domain with 

introduced crack of length = 2 mm on the trailing edge, it is seen that the influence of the crack 

presence on blade tip response is almost invisible (Fig. 3.8a). Even in linear case, the results of 

modal analysis show the minimum shift in the first eigenmode frequency for such a crack option 

(Table 3.1.) For the case, in which the crack has a length of 4 mm, we have a visually detectable 

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear

3-rd contact pair - linear
3-rd contact pair - non-linear
4-th contact pair - linear
4-th contact pair - non-linear
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difference between both linear and non-linear solutions (Figs. 3.7b, 3.8b) because of the higher 

level of stiffness  
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       (a)                                                                                    (b) 
Fig. 3.9. System response in the time domain in “crack point” (leading edge crack, ω = 3550 rad/sec):  

(a) a=2 mm, (b) a=4 mm 
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Fig. 3.10. System response in the time domain in “tip point” (leading edge crack, ω = 3550 rad/sec):  

(a) a=2 mm, (b) a=4 mm 

 In the case of the response in the time domain of the cracked blade with crack = 4 mm, it is 

evident that influence of the crack is much stronger (Figs. 3.9b, 3.10b). The observation is also 

valid for the case of crack location on the trailing edge.  The number of contact pairs through the 

crack thickness is two (external and internal, Fig. 3.5). This allows more accurate description of the 

displacements between the crack sides in dynamics. 

 A simulation of the cracked blade response with two symmetrically located cracks was 

performed as well. Schematically cracks locations are shown in Fig. 3.3c. In our case we used 2 and 

4 mm cracks for simulations of the cracked blade dynamic behaviour (Figs. 3.11–3.13).  

        

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear

3-rd contact pair - linear
3-rd contact pair - non-linear
4-th contact pair - linear
4-th contact pair - non-linear

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear
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(a)                                                                                    (b) 

Fig. 3.11. System response with symmetric cracks in the time domain in “crack point” (a = 2 mm,  

ω = 3550 rad/sec): (a) crack located on trailing edge, (b) crack located on leading edge  
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       (a)                                                                                    (b) 

Fig. 3.12. System response with symmetric cracks in the time domain in “crack point” (a = 4 mm,  

ω = 3550 rad/sec): (a) crack located on trailing edge, (b) crack located on leading edge 
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Fig. 3.13. System response with symmetric cracks in the time domain in “tip point” (ω = 3550 rad/sec):  

(a) a = 2 mm, (b) a = 4 mm  

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear

3-rd contact pair - linear
3-rd contact pair - non-linear
4-th contact pair - linear
4-th contact pair - non-linear

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear

1-st contact pair - linear
1-st contact pair - non-linear
2-nd contact pair - linear
2-nd contact pair - non-linear

3-rd contact pair - linear
3-rd contact pair - non-linear
4-th contact pair - linear
4-th contact pair - non-linear
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 Reviewing the results of the response of the cracked blade with symmetric cracks, we can 

see that it is mostly influenced by the leading edge crack partition, and even the crack with the 

length = 2 mm becomes detectable. 

 It is also necessary to emphasize that considerable difference between the non-linear and 

linear solutions does not always reflect the real difference in amplitudes. It results from resonance 

shift because the excitation frequency is not far from the first eigenmode frequency of the linear or 

non-linear models. The contraposition in the time-history of relative DOFs for two blade faces is 

caused by an excited natural mode. In our case, the forces applied at two tip points (the leading and 

trailing edge force points, Fig. 3.2) excite the first flexural mode of the blade model. Frequency 

points are located in the range of this mode and it results in such difference. 

 

  3.2.4 Validation of the harmonic balance method results through direct time 

integration 

 

  Validation of the results obtained by the harmonic balance method was carried out through 

their comparison them with outcomes of direct integration of the system motion equation. A 

procedure of finding a solution for the high-dimensional structures is time consuming and therefore 

a two-dimensional model was chosen for numerical tests. 

  In our case the cracked structure is simulated by the flat 0.1*0.1 m plate restrained at its 

bottom line (Fig. 3.14a).  The presence of a crack in the structure was simulated by introducing an 

additional node that created a contact pair. The external load was applied to the top right corner of 

the plate as the point force with amplitude of 100 N and excitation frequency of 2100 rad/sec. The 

frequency is close to the first eigenfrequency of the cracked plate model (2300 rad/sec). 

  Firstly, the cracked blade forced response simulations supposing contact interaction between 

the sides of the crack were fulfilled by the finite element method. Interaction of the cracked 

interface was simulated by a node-to-node contact element with the use of the penalty method. The 

normal penalty level was assumed to be 1011 N/m. The results of the contact simulation are 

presented for small time interval that results in an unsteady response (Fig. 3.14b.) 
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Fig.3.14: (a) Simplified two-dimensional model of the cracked structure, (b) Time-history of the relative 

vertical displacement between crack tips in ANSYS 

 
   The solution to the same model was calculated in the work [57] by the direct time 

integration approach. It dealt with full and two reduced systems, obtained by the fixed and free 

interface methods of system sub-structuring. For contact simulation the Lagrange multipliers 

method and the penalty method were applied. The present work uses the Lagrange multipliers 

method for comparison with HB method. 

 An integration time interval should be sufficiently large to allow obtaining of a steady-state 

solution by direct time integration of the system motion equation. The time step should be small 

enough to provide an accurate solution. 

 Fig. 3.15 shows solutions for the system motion equation obtained by using both the 

harmonic balance and the direct time integration approach. The solutions prove that the harmonic 

balance method is more effective in terms of computation time because it is sufficient to have the 

time interval equal to the excitation period. 
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(b)                                                                                  

Fig. 3.15. Non-linear solution by HB method and direct integration approach: 

 (a) in the “crack point”, (b) in the “tip point” 

  

 3.2.5 Frequency response of the non-linear cracked blade model 

 

 Construction of the frequency response of the cracked blade model is performed for the 

same cases as it was presented in the time domain. Measurements of maximum response amplitude 

are performed in the points of external forces application. Comparison of the frequency response 

was made among the linear cracked, non-linear cracked and linear uncracked blade models. The 

frequency range covers the first three eigenmodes: first and second flexural modes and first torsion 

mode. As we did not know exactly the eigenfrequencies of the cracked blade model because of the 

crack-induced non-linearity, a frequency discretisation was done around eigenmode frequencies of 

the linear cracked model. As a result of this, the resonances peaks of the non-linear model 

sometimes appear to be not smooth and with amplitude a bit lower than it should be. Maximum 

amplitudes of the blade tip horizontal displacements are shown for graphical representation. 

 The preceding subchapter dealt with the system solution at a particular excitation frequency, 

with the non-linear procedure having been initialized by the solution to the linear system. Such an 

approach is appropriate to a frequency range distant from the resonance, where the difference 

between linear and non-linear solutions is barely visible. However, the initialization in resonance 

area can lead to a longer convergence process or even to the solution divergence. To overcome this 

problem, the non-linear solution obtained at the preceding frequency point was used as the 

initialization for a particular frequency point. One more tool to deal with the solution nom-

convergence is a frequency continuation approach, when the next frequency point is searched by a 

prediction on the base of polynomial approximation [36]. 
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Fig. 3.16. Cracked blade frequency response (a = 2 mm):  

(a) trailing edge crack, (b) leading edge crack 
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Fig. 3.17. Cracked blade response phase change (a = 2 mm):  

(a) trailing edge crack, (b) leading edge crack 
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 In a way similar to solution for the problem in time domain, the procedure starts with 

examination of the smallest crack of the length=2mm. The frequency response of the cracked blade 

with such crack size can have a visible effect of crack presence only in the leading edge crack case. 

When the crack is located on trailing edge its effect becomes more or less observable only for 

higher order eigenmodes (Fig. 3.16a.) The crack of this size can be considered to be the minimum 

crack size, when it is impossible to identify a crack presence in the blade.  

 On the next step, the case of the 4–mm crack is simulated (Fig. 3.18.) The phase change at 

force application points is shown (Fig. 3.19). 
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Fig. 3.18. Cracked blade frequency response (a = 4 mm):  

(a) trailing edge crack, (b) leading edge crack 
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       (a)                                                                                    (b) 

Fig. 3.19. Cracked blade response phase change (a = 4 mm):  

(a) trailing edge crack, (b) leading edge crack 

 In the case of the 4–mm crack the crack effect is evident at all resonance points for both 

leading and trailing edge crack locations (Fig. 3.18.) The blade tip amplitude of the cracked blade 

shows sufficiently high difference relatively to the uncracked blade even in the case of the trailing 

edge crack. The crack presence detectability grows due to shift of the resonance peaks in case of the 

crack location on the leading edge (Fig. 3.18b.) This crack size will be used in the following studies 

in combination with the tip-timing method simulation as the most representative one. It will be also 

used at development of the bladed disk model with the cracked blade.  

 A sufficient difference between solutions for the cracked and uncracked blade models (Fig. 

3.19.) can be observed from alterations of the cracked blade response phase. It is only fixed for the 

4–mm cracks, while the difference is almost unobservable for smaller crack sizes.    

 In addition to crack locations on the trailing or leading edges, a case of symmetric cracks is 

shown  in Figs. 3.22–3.23. Fig. 3.3c shows a schematic arrangement of the cracks.  
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Fig. 3.20. Cracked blade frequency response (symmetric crack, a = 2 mm) 
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Fig. 3.21. Cracked blade frequency response (symmetric crack, a = 4 mm) 
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       (a)                                                                                    (b) 

Fig. 3.22. Cracked blade response phase change (symmetric crack): (a) a = 2 mm, (b) a = 4 mm 

 

 From simulation of the cracked blade frequency response, supposing presence of two 

symmetrically located cracks, a conclusion can be drawn that the case under consideration is the 

most severe one for the structure. Even presence of 2–mm cracks becomes evident.  The response of 

the system to such cracks is mostly evoked by the cracks located on the leading edge. 

 All above simulated cases show that response of the non-linear cracked blade model has an 

intermediate position between responses of the linear cracked and uncracked blade models. During 

crack closure the added energy dissipation is expected that results in lower magnitude of cracked 

blade at its non-linear formulation. The crack detectability will apparently be affected further when 

a crack blade is considered within frameworks of the bladed disk model. 
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 3.2.6 Centrifugal forces effect on cracked blade non-linearity  

 
The above-considered simulation assumed a cracked blade to be the fixed one. It portrays 

laboratory conditions of the clamped and excited blade. Effect of the gyroscopic N and centrifugal 

P matrices can be neglected (1.16).  

Estimation of an effect of centrifugal forces is quite a challenging task in an attempt to 

expose precisely all physical phenomena associated with the bladed disk dynamics and to improve 

the non-linear cracked blade model used in forced response predictions [33]. The centrifugal forces 

reveal themselves in the analysis of the cracked blade by affecting the vibration response of the 

non-linear cracked blade model. A few numerical examples are used to prove the theoretical 

assumption and a successful application of the suggested model lends some validity to the 

approach.  

Effect of the centrifugal forces will be studied in the following way. The centrifugal forces 

act radially outward and develop a gap between the crack sides. The gap can be assumed to be a 

crack initial opening during its breathing process. The initial value of the gap depends on: 

− crack length 

− crack location (either on the trailing or leading edge) 

− amplitude  of an external loading 

− rotor frequency. 

 The estimation procedure takes the finite element model of the cracked blade used in the 

previous simulation. Fig. 3.23 presents results of the crack initial opening simulation for different 

rotor frequencies. The solution is shown for all contact pairs assuming presence of the 4–mm crack 

either on the trailing or leading edges.  
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       (a)                                                                                    (b) 

Fig. 3.23. Initial crack opening due to effect of centrifugal forces:  

(a) trailing edge crack, (b) leading edge crack 
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Table 3.4 

Crack initial opening at different rotor frequency, m 

Trailing edge crack Leading edge crack  

Rotor frequency, Hz 

Contact 

pair 

10 20 30 50 70 10 20 30 50 70 

1-st 2.6·10-8 9.5·10-8 2.1·10-7 5.6·10-7 1.1·10-6 2.1·10-8 7.7·10-8 1.7·10-7 4.5·10-7 8.7·10-7 

2-nd 2.9·10-8 1.0·10-7 2.3·10-7 6.2·10-7 1.2·10-6 5.9·10-8 2.2·10-7 4.8·10-7 1.3·10-6 2.5·10-6 

3-rd 2.2·10-8 7.9·10-8 1.7·10-7 4.6·10-7 9.0·10-7 1.6·10-8 5.6·10-8 1.2·10-7 3.3·10-7 6.5·10-7 

4-th 2.4·10-8 8.9·10-8 1.9·10-7 5.2·10-7 1.0·10-6 4.8·10-8 1.7·10-7 3.8·10-7 1.0·10-6 2.0·10-6 

 
 The data from Fig. 3.23 and Table 3.4 will be used to calculate a forced response of the 

cracked blades by means of the harmonic balance method. Initial gap values are substituted in the 

equation of contact force approximation (3.47). Simulation of the cracked blade response in a time 

domain will be presented at different gap values with fixed excitation frequency. In this case engine 

order of excitation will be changed in order to provide constant excitation frequency. By this 

approach it will be possible to vary gap value and, at the same time, rotor frequency Ω. Excitation 

frequency of 3500 rad/sec was maintained constant for all simulation cases. 
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       (a)                                                                                    (b) 
Fig. 3.24. Non-linear solution by HB method at initial crack opening (Ω=10 Hz):  

(a) trailing edge crack, (b) leading edge crack 
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       (a)                                                                                    (b) 

Fig. 3.25. Non-linear solution by HB method at initial crack opening (Ω=20 Hz):  

(a) trailing edge crack, (b) leading edge crack 
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       (a)                                                                                    (b) 

Fig. 3.26. Non-linear solution by HB method at initial crack opening (Ω=30 Hz):  

(a) trailing edge crack, (b) leading edge crack 
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       (a)                                                                                    (b) 

Fig. 3.27. Non-linear solution by HB method at initial crack opening (Ω=50 Hz):  

(a) trailing edge crack, (b) leading edge crack 
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       (a)                                                                                    (b) 

Fig. 3.28. Non-linear solution by HB method at initial crack opening (Ω=60 Hz):  

(a) trailing edge crack, (b) leading edge crack 

  Main conclusion, which may be drawn upon analyzing the outcomes presented in 

Figs. 3.24–3.28, is that taking into account an effect of the centrifugal forces leads to useless non-

linear formulation of the cracked blade dynamic behaviour. Such a phenomenon is observed with an 

increase of rotor frequency. It becomes evident earlier for the trailing edge crack due to its smaller 

opening in comparison with the initial crack one. Still, the crack induced non-linearity should be 

taken into account at all presented rotor frequencies for the crack on the leading edge.  

 The simulation performed above is very important from the point of view of the 

computation time cost as it allows using the cracked blade linear model in some range of the rotor 

frequency change. 

 

3.2.7 Fracture mechanics elements application to cracked blade model 

 

 The present subchapter is provided to show applicability of considered in subchapters 2.3–

2.4 formulations to cracked blade model. Regarding to the main task of the study, it is required to 

estimate, at least approximately, influence of the considered crack cases on blade durability. It will 

allow understanding how far we are from the possible damage of the blade during engine operation. 

Additionally, such estimation can be integrated as a module to the overall engine health monitoring 

system based on tip-timing measurements.  

 Equations (2.92)–(2.99) were elaborated for some simplified cases of cracked structures. 

Stress intensity factor derived from them is the main parameter used for calculation of residual 

durability of cracked structure (2.127). In the case of considered 3d model of cracked blade, these 

equations are not applicable due to complexity of blade geometry.  

 To overcome the problem of stress intensity coefficient determination, it was proposed to 

use simplified brick-type finite elements model of the blade (Fig. 3.29). It does not have twisting 
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and it is of constant thickness along the height. The model has overall dimensions, which are the 

same with used through the chapter. The cracked blade scheme corresponds to the scheme shown in 

Fig. 3.3b (crack on leading edge). The crack length is set to vary between 0.001 m and 0.005 m.  

 

 

 

 

a b 

Fig. 3.29. Brick-type cracked blade model subjected to durability analysis:  

(a) finite elements model, (b) stress deformed state around crack tip 

  
 Using finite elements model from Fig. 3.29a, it is possible to approximately calculate stress 

intensity coefficient at the crack tip using finite elements software. The main loading is imposed by 

centrifugal forces leading to crack opening (Fig. 3.29b). In this case, first crack mode will be 

dominant. Varying crack length, stress intensity coefficient dependence on crack length can be 

constructed (Fig. 3.30a). Number of remained cycles to structure failure was calculated by equation 

(2.127). Initial data for cyclic loading correspond to those from subchapter 2.4.3. 
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Fig. 3.30. Cracked blade durability parameters dependence on initial crack length:  

(a) stress intensity coefficient К (Pa·m1/2), (b) remained cycles number dN 
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 From the results of approximated calculation of residual durability (Fig. 3.30b), we can 

make conclusion that studied cracked blade with crack lengths of 2 or 4 mm is within the 

frameworks of safety operation. Number of remained cycles is of order of 107 cycles that 

corresponds to number of base cycles used for calculation of fatigue limit of materials (107 cycles –

for steel and 108 cycles – for alloys and non-ferrous materials). Moreover, it is evident that crack 

growth rate will be much less then of order of 10-7m/cycle that is average order of fatigue crack 

growth rate.  

 It should be noted that such kind of simulation should be accomplished for realistic model. 

Since realistic loading data (engine operation mode, external conditions) and material properties 

will definitely change results and, very likely, in direction of decrease of residual durability.  

 As far as crack parameters used in preceding simulations provide cracked structure safety 

operation, they can be retained for following development of bladed disk model containing cracked 

blade. After that, analysis of cracked blade detectability by tip-timing method will be performed 

using the bladed disk model. Preliminarily, it is possible to say that successful detection of cracked 

blade with considered crack parameters makes possible normal engine monitoring in operation and 

its well-timed maintenance planning. 

 

 3.3 Dynamic model of bladed disk with a cracked blade  

 
The bladed disk dynamic problems in themselves are cases for application of the cyclic 

analysis technique because of their behaviour symmetry in the circumferential direction. The 

presence of mistuning, alias spread of structural properties from one blade to other, or in cyclic 

representation among the sectors, disrupts the symmetry. And even in this case, there is an 

opportunity [9] to continue with cyclic analysis of the mistuned bladed disks. The present study is 

not limited with just a mistuning caused by manufacturing inequalities. The crack presence in the 

blade induces its non-linear behaviour that makes impossible to use the cyclic analysis and requires 

a full-assembled disk model to simulate the crack effect on the disk forced response. 

In order to create a full bladed disk model containing one or several cracked blades, the 

finite element model of the disk sector with a cracked blade was initially developed in ANSYS (Fig. 

3.32a). Then its structural matrices were transferred to MATLAB to continue sequential assembling 

process. The disk with 31 blades is used for the simulation (Fig. 3.32b). It has the same material 

properties of the blades and disk: Young’s modulus – 2·1011 Pa, Poisson’s ratio – 0.3 and material 

density – 7.8·103 kg/m3. Geometrical data of the model: disk radius – 0.3 m, crack length – 0.004 m 

or 0.002 m located on leading edge. Excitation force has amplitude of 0.3N. 
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For a simple illustration of the assembling, let a circular symmetric structure to contain 4 

identical sectors. The displacement vector of the j-th sector can be partitioned in detail as: 

                                                              [ ]TjRjjLj uuu ,int,int  , ,=u ,                                                 (3.49) 

where, jLu ,int , jRu ,int  are the left and right interfaces of DOFs partitions; ju  is the interior DOFs 

partition. The interior DOFs partition consists of physical displacements when assembling is 

performed using the full model of the disk sector. They can also be presented by physical 

displacements of master DOFs and contain a certain number of retained modes, if assembling is 

accomplished using the reduced model of the disk sector. 

After assembling the displacement vector of the bladed disk model will be: 

[ ]TLRLRLRRL uuuuuuuu 44,int3,int33,int2,int22,int1,int14,int1,int  , ,,, , , ++++=u .            (3.50) 

  It is necessary to use the transformation matrix for calculation of mass M and stiffness K 

matrices of the assembled bladed disk model. This matrix can be obtained from a comparison of the 

two disk models: the fully assembled and partially opened one, which does not have a connection 

between the first and last (4-th) sectors. The displacement vector of the partially opened model and 

its relationship to the fully assembled model are: 

[ ]TRLRLRLRL uuuuuuuuu 4,int44,int3,int33,int2,int22,int1,int11,int
*  , , ,,, , , +++=u  

                        Buu =*                                                       (3.51)               

where, (B) is the transformation matrix.  

 The transformation matrix can be expressed as: 

     
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00int

full

I

I
B ,                               (3.52) 

where, fullI is the unity matrix with dimensions corresponding to the fully assembled disk model; 

intI  is the unity matrix with dimensions corresponding to the number of interface DOFs. 

Assembling of the structural matrices will consists in summing the DOFs partitions of 

corresponding interfaces of each sector. In this way, mass M and stiffness K of the fully assembled 

bladed disk model are obtained. Then with the expression of system kinetic energy uMu &&&& T
cE

2
1

= , 

the expression allowing calculation of the structural matrices with the use of the transformation 

matrix B can be written as: 

                                                        BKBKBMBM **  , TT == .                                             (3.53) 
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Fig. 3.31. Bladed disk assembling  
 

The expressions (3.53) are applied to obtain the bladed disk model for its deployment 

through all succeeding analyses. Earlier it was already elucidated that the sector with a cracked 

blade was taken as the initial one. In order to obtain the disk model with one or some cracked 

blades it is enough to merge DOFs in the cracked areas of the blades accepted as uncracked. This 

procedure is simplified with the use of the relative DOFs between crack sides (Fig. 3.5). They 

present by themselves displacements between nodes, which comes into contact at the crack 

breathing. By this approach, elements corresponding to the relative DOFs are deleted from 

structural matrices of the bladed disk model to pass to the uncracked state.  

 
       (a)                                                                                    (b) 

Fig. 3.32. Bladed disk finite-elements model:  

(a) sector with cracked blade, (b) assembled disk with applied external forces 

  
 It should be noted that main source of excitation for the bladed disk in our case is the 

preceding stator vane. Number of stator blades is always different from the number of rotor (disk) 

blades that result in excitation forces phase lag for each blade individually. 
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  3.3.1 Reduction of the bladed disk model  

 

 In the case of the disk model with a cracked blade, the sub-structuring approach can be 

explained on the individual cracked blade. The crack location forms an interface between two blade 

parts (Fig. 3.4) It should be noted that in this case there is no classical sub-structuring because these 

parts are not fully independent. Some DOFs remain shared between upper and lower blade sub-

structures (subchapter 3.2.1). 

 In the case of the bladed disk model it is possible to apply two approaches to the system 

reduction using sub-structuring: 

−  The reduction on the base of the fully assembled system. Here the low sub-structure is 

represented by a cracked blade partition under the crack interface and the bladed disk 

(Fig. 3.33a). The upper sub-structure is the cracked blade partition over the interface.  

− The reduction on the base of the disk sector (with a cracked blade, Fig. 3.33b). In this 

case the cracked blade sector is reduced and then assembling of the whole system is 

performed. This approach is more preferable when the initial disk sector has an 

essentially big number of DOFs and the assembling process is very expensive in time. 

To continue with the model analysis the second stage of reduction is required in order 

to obtain the system size, which will be comparable with the previous approach. 

 
       (a)                                                                                    (b) 

Fig. 3.33. Bladed disk model sub-structuring: 

(a) on the base of the full assembled system, (b) on the base of the disk sector 

 
 Having established two ways of reduction for the bladed disk model, the fixed interface 

method may be applied. A relative displacement between contact pairs was accepted as the interface 

or master DOFs. Additionally, a certain number of modes were retained that describe behaviour of 

the uncracked bladed disk. DOFs of nodes of external forces application were added to this set as 

well. The initial full model of the assembled bladed disk contained 28284 DOFs. It was reduced to 
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the model with 136 master DOFs. The eigenvalues problem was solved by varying the number of 

the additionally retained modes (Fig. 3.34)  
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Fig. 3.34. Eigenfrequencies distribution at different number of retained modes 

 Fig. 3.34 shows that it is sufficient to retain 50 additional modes to attain proper 

approximation of the dynamic behaviour of the full model within the range of the first blade 

flexural mode. This range was selected because of a greater effect of the crack presence and 

sufficiently high resonance amplitudes. It will be shown that these stipulations are quite adequate 

for simulation under application of blade tip-timing method. Ultimately, the system size after 

reduction is 186 DOFs. The eigenfrequencies of both full and reduced bladed disk model is 

presented in Table 3.5.  

 Comparison of the full and reduced system frequency responses is performed supposing the 

linear cracked blade behaviour and 4–mm leading edge crack (Fig. 3.35). Application of the 

external excitation forces is shown in Fig. 3.32b. The system frequency response is calculated 

within the range that also covers the first flexural modes of blades.  
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Fig. 3.35. Full (a) and reduced (b) bladed disk models frequency responses 
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Bladed disk model eigenfrequencies (in Hz) 
Table 3.5 

 
Mode number 

 

 
Full model 

 
Reduced 

model 

 
Uncracked model 

Mode 
(dominated 

nature)  

5 472.44 472.81 472.89 disk 
6 472.78 472.88 472.89 disk 
7 508.77 509.91 514.31 blade 
8 509.42 514.31 514.31 blade 
9 513.88 514.62 516.3 blade 

10 514.11 516.3 516.3 blade 
11 514.89 516.34 516.43 blade 
12 515.07 516.43 516.43 blade 
13 515.4 516.47 516.56 blade 
14 515.49 516.56 516.56 blade 
15 515.74 516.6 516.67 blade 
16 515.94 516.67 516.67 blade 
17 515.99 516.7 516.74 blade 
18 516.06 516.74 516.74 blade 
19 516.1 516.77 516.8 blade 
20 516.16 516.8 516.8 blade 
21 516.24 516.82 516.84 blade 
22 516.26 516.84 516.84 blade 
23 516.29 516.85 516.86 blade 
24 516.32 516.86 516.86 blade 
25 516.36 516.87 516.87 blade 
26 516.38 517.03 517.06 blade 
27 516.39 517.06 517.06 blade 
28 516.4 517.69 517.78 blade 
29 516.41 517.78 517.78 blade 
30 516.42 519.25 519.43 blade 
31 517.12 519.43 519.43 blade 
32 517.15 521.27 521.43 blade 
33 520.89 521.43 521.43 blade 
34 520.96 525.15 525.56 blade 
35 524.51 525.56 525.56 blade 
36 524.86 525.87 526.02 blade 
37 541.77 542.7 542.92 blade 
38 542.83 543.49 543.55 disk 
39 543.34 543.55 543.55 disk 

  
 Under absence of the phase lag of excitation forces (all forces applied to blades have the 

same phase) two response peaks of the system are observed: a principal peak of all blades and an 

additional peak, which corresponds to frequency localization of the cracked blade.  

 The localization phenomenon is very important diagnostic sign, which will give us the most 

information about crack presence in the blade. Simulations for cases of the cracked blade 

localization will be treated in combination with mistuning and excitation forces phase lag in 

subchapter in 3.3.4.  
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 Also it should be noted the good agreement of results of bladed disk and uncoupled 

cantilevered blade. For example, frequency response of the first mode of the cracked blade  

(Fig. 3.18b, first bending mode) can represent qualitatively forced response of the bladed disk for 

the same crack case (leading edge crack of 4 mm) and such particular dynamic behaviour (blade-

dominated first bending mode).  

 
  3.3.2 Choosing the number of retained harmonics for the bladed  

disk model 
 
 The outcomes of application of HB method to the non-linear model of uncoupled cracked 

blade make evident that the number of retained harmonics directly affects the computational time 

cost. The dependence will be more sizeable in case of the bladed disk model.  
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       (c)                                                                                    (d) 
Fig. 3.36. Non-linear solution by HB method for different harmonics numbers: (a) “crack point”, (b) “tip 

point”, (c) “tip point” (zoom), (d) frequency response at “tip point”  

 Fig 3.34 shows the simulations made for different numbers of retained harmonics (3.15–

3.16.) The non-linear model with two harmonics will be used for all subsequent simulations as it 

quite exactly describes the system non-linear behaviour. The system response at the blade tip is 
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observed to remain practically sinusoidal and this will be used for a simpler formulation of the tip-

timing method governing equation. 

 
3.3.3 Effect of the phase lag of excitation forces on the bladed disk forced response 
 

 A phase lag between the forces applied to different blades must be taken into account on 

constructing a vector for the external excitation forces of the bladed disk model because of a 

difference between numbers of blades of the rotor wheel and preceding stator vane.  An engine 

order excitation is assumed, which is harmonic in time and differs only in phase from blade to 

blade. The excitation force on j-th blade can be expressed as: 

                                                     )1(2  ,  −π=ψ= ωψ j
n
n

ee
r

stii
jaj FF ,                                             (3.54) 

where ja F , is the excitation force amplitudes vector of j-th blade; ψ  is the phase; ω  is the 

excitation frequency; sn  is the number of stator blades; rn is the number of rotor blades.  
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Fig. 3.37. Effect of the phase lag of excitation forces: (a) ns=28, (b) ns=25, (c) ns=23, (d) ns=20  
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  The simulations of the bladed disk frequency response are shown by varying number of 

stator blades (Fig. 3.37). The bladed disk response with a cracked blade subjected to linear 

formulation is shown on all graphs as the reference one (dashed line). 

The results (Fig. 3.37) provide evidence that maximum of the cracked blade response 

increases with arising difference between numbers of the stator and rotor blades. It becomes 

comparable with the maximum of principal response of all blades. It is caused by an increase of the 

number of excited diameters (1.31) that results in decrease of coupling between neighboring blades. 

Consequently, it results in a more independent behaviour of the localized cracked blade. 

Furthermore, it should be explained the appearance of two additional resonances in the case 

of 28 stator blades (Fig. 3.37a). They are disk-dominated modes of three nodal diameters, which are 

excited by the rules of zig-zag diagram [17, 104]. 

 

 3.3.4 Mistuning effect on the bladed disk forced response 

 

 The reasoning discussed as to simulation of the mistuned bladed disk vibration is aimed at 

perfection of the suggested non-linear bladed disk model. 

 Having discussed effect of the phase lag of the excitation force, the next must be examined a 

mistuning effect on the bladed disk forced response. A possibility to localize the cracked blade 

forced response will be simulated at a certain level of mistuning. Absence of the cracked blade 

frequency localization will be studied as well. In this case, it seems to be that only a difference 

between amplitudes can be used for identification of the crack presence. The procedure seems to be 

hardly possible even at a low mistuning level. 

 Many writers admit that prediction of the mistuning effect on the bladed disk response is a 

challenging problem [9, 62, 69, 82, 87]. There are two main things that arise the difficulties: 

− a random nature of the blade-to-blade structural properties variation, and 

− the fact that mistuning corresponds to fluctuations in the system properties, i.e., stiffness, 

mass and damping. 

 The mistuning presence in the bladed disk can be represented by a mistuning of the blade 

stiffness. As far as the range of the blade the first flexural mode is considered in the analysis, the 

mistuning can be simulated by perturbation of the individual blade partition of the bladed disk 

stiffness matrix:  

     bjjbmj m KK )1( += ,             (3.55) 

where,  mj is the mistuning coefficient relatively to the first blade and it is randomly generated by 

normal low with mean 0=μ and standard deviation σ . 
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 With the fundamental mistuning model obtained, a major concern is an ability to detect a 

cracked blade on the base of the mistuned bladed disk forced response. It can be easily achieved, if 

we have an event of the cracked blade frequency localization. As it was shown, the cracked blade 

frequency localization resulted in appearance of the additional resonance peak caused by the crack 

presence (Fig. 3.38). At the linear formulation the crack presence can be equated to the blade 

mistuning. Therefore, a frequency localization of the uncracked blades can be obtained at a certain 

mistuning level. This may also arise some problems for detection of the cracked blade. 

 

       (a)                                                                                    (b) 
Fig. 3.38. A bladed disk natural mode: (a) a case of cracked blade frequency localization,  

(b) a case of absence of the cracked blade frequency localization 

 

 The maximum forced vibration response of a blade of a mistuned structure is often larger 

than that of a perfectly tuned structure. Mechanical energy of this blade is different from that of 

other blades, which is identified as the vibration localization of the mistuned structure. The 

phenomenon of the vibration localization is expected to occur in any nearly periodic structure for 

which perfect periodicity is disrupted by small irregularities (mistuning). In the case of localization, 

the energy is simply absorbed in particular area within the structure. Localization occurs because 

the waves propagating away from the energy source are rejected by a boundary between slightly 

different subsystems constituting a nearly periodic structure. The resulting energy accumulation 

may locally cause much higher amplitudes than it can be predicted if perfect periodicity has been 

supposed. This possibly can have disastrous effects, for example in turbomachinery [76]. 

 Simulations of the bladed disk frequency response are performed at different mistuning 

levels and excitation forces phase lag (Figs. 3.39–3.40). The mistuning levels used in the 

simulations: 1% and 2% that corresponds to σ = 0.01 and σ = 0.02. 
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       (c)                                                                                    (d) 
Fig. 3.39. Effect of mistuning on the bladed disk forced response (ns=28): 

(a) σ = 0.01, (b) σ = 0.02, (c) σ = 0.01 (zoom), (d) σ = 0.02 (zoom)  
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       (c)                                                                                    (d) 

Fig. 3.40. Effect of mistuning on the bladed disk forced response (ns=23): 

(a) σ = 0.01, (b) σ = 0.02, (c) σ = 0.01 (zoom), (d) σ = 0.02 (zoom)   

   

  The results of simulations of different mistuning levels (Figs. 3.39–3.40) prove evidence to 

what has already been stated: if the cracked blade non-linear behaviour is taken into account, it 

arises difficulties in identification of a cracked blade. Sometimes it becomes impossible to 

distinguish cracked blade vibration localization. The linear formulation of the crack presence in the 

blade allows cracked blade identification even at the mistuning of 2%, while the non-linear 

formulation makes this process unachievable at this mistuning level. 

  With the cracked blade localization achieved some questions still remain. Will the mistuning 

level be more critical for cracked blade detection under absence of the localization phenomenon? 

Will it be necessary to simulate the crack behaviour by non-linear approach? The problem is as it 

was before, in spite of the fact that the crack length decreased to the length of 2 mm. 
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       (c)                                                                                    (d) 
Fig. 3.41. Effect of mistuning on the bladed disk forced response (ns=28): 

(a) no mistuning, (b) σ = 0.005, (c) no mistuning (zoom), (d) σ = 0.005 (zoom)   

   

  A conclusion can be drawn that under absence of frequency response localization even a 

relatively small level of the mistuning makes impossible to separate the cracked blade response 

from those of the rest of blades (Fig. 3.41). Moreover, no resonance shift is observed by comparing 

results of the linear and non-linear model solutions. Only a small difference in amplitude levels is 

seen between both model solutions under absence of mistuning. These observations allow the 

following use of the linear formulation of the crack presence in the blade under absence of 

localization of the cracked blade vibration. 
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3.3.5 Prediction of mistuned bladed disk frequency response 

 

  For this purpose zig-zag diagram presented in the subchapter 1.1.3 can be used. recently it 

has been considered in conjunction with cyclic symmetry analysis. Since presence of the cracked 

blade disrupts cyclic symmetry, equation (1.31) is not longer valid. However, it can be expected the 

dominance of the number of excited nodal diameters even in such case. To confirm it the time 

history of bladed disk forced response should be shown graphically at the resonance frequency of 

all-blades principal response (Figs. 3.42–3.47). These figures present bladed disk forced response in 

time domain in the view of 3D surface, where diagonal lines correspond to disk nodal diameters.  

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

Time, sec

B
la

de
 n

um
be

r

Disk rotation
speed

Disk eigenmode
rotation speed

Zoom

 
Fig. 3.42. Time-history of bladed disk forced response (ns=28, no mistuning): 

(a) full 3D view, (b) view in 2D 

 
 Time period of simulation of the bladed disk forced response is calculated using disk 

rotation speed corresponding to particular resonance frequency:  

                                                           
)/(

22

sres n
T

ω
π

=
Ω
π

=  ,                                                      (3.56) 

where resω  is the resonance frequency. 

 At the absence of mistuning (Fig. 3.42) the strict dominance of the number of excited 

diameters at the resonance frequency is seen. From this plot, three nodal lines corresponding to 

three excited nodal diameters are distinguished. Such kind of plot can be more readable, if in all 

following figures zooms of small time intervals will be shown. These time intervals match the time 

period of eigenmode rotation. The time period (3.56) depends on disk rotation speed, which is much 

less then speed of disk eigenmode rotation.  
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(a)                                                                            (b) 

Fig. 3.43. Time-history of bladed disk forced response (ns=28, no mistuning):  

(a) through the time period, (b) at time t=0 

 
 In Fig. 3.43a three nodal lines corresponding to the mode with three excited diameters are 

present. They have same direction of rotation as disk rotation speed. Same results showing 

dominance of the number of excited diameters are derived from Fig. 3.43b at time t=0. 

  Figs. 3.44–3.45 are devoted to the same simulation approach as Figs. 3.42–3.43, but with 

presence of mistuning. Two levels of mistuning are accepted as in previous section: σ=0.01 and 

σ=0.02. The increase of mistuning level leads to appearance of horizontal lines corresponding to 

localized behaviour of mostly mistuned blades. Such blades will represent by themselves the 

interfaces between blade sectors, where accorded behaviour of blades with known diameters 

number should be preserved. 

0 1 2 3 4 5

x 10
-3

5

10

15

20

25

30

Time, sec

B
la

de
 n

um
be

r

0 5 10 15 20 25 30 35
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Blade number

A
m

pl
itu

de
, m

 
(a)                                                                            (b) 

Fig. 3.44. Time-history of bladed disk forced response (ns=28, σ=0.01):  

(a) through the time period, (b) at time t=0 
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(a)                                                                            (b) 

Fig. 3.45. Time-history of bladed disk forced response (ns=28, σ=0.02):  

(a) through the time period, (b) at time t=0 

 
  Figs. 3.44–3.45 show that mistuning leads to difficulties of identification of number of 

excited diameters. Increase of mistuning level will make vanish eigenmode rotation. 

  It can be supposed that effect of mistuning would be more representative in the case when 

number of stator blades is bigger then number of rotor blades (Figs. 3.46-3.47). To consider such 

situation, 34 blades of stator vane and 31 rotor blades were chosen as initial data. Equation (1.31) 

will also give the mode with three excited diameters. 
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Fig. 3.46. Time-history of bladed disk forced response (ns=34, no mistuning) 

 
  Same ratio between disk eigenmode rotation speed and speed of bladed disk rotation is 

observed from Fig. 3.46. Excited eigenmode has opposite direction of rotation. This can be 

explained by the fact that excitation forces vector (3.54) change its rotation direction when numbers 

of stator blades exceeds number of rotor blades.  
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(a)                                                                          (b) 

Fig. 3.47. Time-history of bladed disk forced response (EO=34, σ=0.02):  

(a) through the time period, (b) at time t=0 

 

 Results from Fig. 3.47 show that effect of mistuning makes almost invisible the presence of 

nodal lines. This fact can be explained by higher frequency of excitation that results in higher 

sensibility of the structure to mistuning presence.  
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Conclusions 

 

 Development of the cracked blade non-linear model and its application to the bladed disk 

dynamic model were discussed. 

 The cracked blade non-linear dynamic model was created with the use of the harmonic 

balance method in combination with contact approach of the crack breathing process simulation. 

This model allows simulation of the cracked blade behaviour at any loading amplitude and 

excitation frequency. We can more or less accurately observe the crack influence on the blade 

model dynamic behaviour. It is possible to derive some very important factors from the developed 

model, which can be used for detection of a crack presence:  

− eigenmode frequency reduction 

− increase of the blade tip amplitude 

All these factors are very important and can be accepted as diagnostic signals and used for 

simulation by means of the tip-timing method. An effect of the centrifugal forces was also 

simulated. The crack initial opening was found to lead to the crack non-linear representation, which 

is useless at some rotation frequencies.  

Also it was shown that crack induced non-linearity influence is: 

− easily detectable in the zone of crack and; 

− almost unobservable at the blade tip, where forced response remains to be 

fundamental.  

The influences of the phase lag of the combined excitation forces and bladed disk structural 

mistuning were studied within the framework of the bladed disk dynamic model. A certain level of 

mistuning was found to be critical for the cracked blade detection. The cracked blade non-linear 

behaviour taken into account decreases opportunity for detection of a cracked blade. It is caused by 

a shift of the cracked blade resonance peak closer to the resonance of the uncracked state. 

Furthermore, presence of mistuning was found to make almost invisible a cracked blade presence 

under absence of its frequency localization. In this case the linear model can be used for simulation 

of a crack presence.  

 The bladed disk forced response prediction using zig-zag diagram was performed. Its results 

highlight the diagram applicability for structures with disrupted symmetry and moderately low level 

of mistuning.  
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 It is well known that the common failure mode for aircraft gas-turbine engines is the high-

cycle fatigue of the turbine and compressor blades. It is caused by dynamic loading resulting in 

resonance blade vibration within operating range of rotor frequency. Majority of engine shut-downs 

are caused by blade failures due to resonance vibration or flutter. 

 Therefore, it is very urgent for aviation engine health monitoring to have reliable 

information about blade vibration state. This information can be acquired through the measurement 

of blade dynamic performances. The conventional practice of the vibration measurement consists in 

utilization of strain gauges mounted on the blade surface [31, 60]. The testing signal is received 

using a wireless telemeter system [89]. By this approach the responses of the selected blades can be 

captured continuously. However, such system requires a costly installation and must withstand the 

centrifugal forces and high temperatures. It provides only few data points simultaneously. Also for 

working wheel vibration measurements the holographic interferometry can be used. The 

measurements are based on the feature that light reflected by rotating structure leads to wave length 

alternation. 

Nowadays, researches in the field of possibility to use non-invasive methods have gained 

wide spread. Some of them are based on measurement of blade tip deflections using blade tip 

arriving time when blade tip passes the probe(s). These probes are stationary installed on engine 

casing. Such technique is known as blade tip-timing method (BTTM) [5, 22, 107, 111]. Without 

vibration blade tip arriving time depends on rotor rotation speed only. But, if blade vibrates, it will 

also depend on vibration amplitude. Tip-timing method can be used to create an on-line system of 

blade dynamic performances definition. This system should be able to solve the following tasks: 

− initial data measurement (time of the blade tip passing through the probe) using single 

probe or multi- probes measurements; 

 

Chapter 4 
 

Tip-timing method application for cracked blade detection 

 



                                 Chapter 4.  Cracked blade detection by tip-timing method                                      d               

 

134 

− calculation of characteristic parameters (vibration amplitude, blade tip deflection) on the 

base of the measured data; 

− processing of characteristic parameters in order to describe a chosen blade dynamic 

behaviour. 

 In tip-timing analysis we should assemble the nature of blade responses into two groups: 

synchronous and asynchronous vibrations [22].  

 Asynchronous vibrations mainly occur because of aerodynamic instabilities. Thereby, both the e 

frequency and the phase of response can be arbitrary. Flutter instabilities, rotating stall or acoustic 

resonance also lead to such type of vibration. In this case, the main goal of the tip-timing measurements 

is to determine blade tip amplitude and resonance frequency. Probes are repartitioned regularly 

ensuring regularity of signal sampling.  

 Synchronous (or integral order) vibrations are excited by multiples of the rotor rotation speed. 

They are mainly caused by mechanical (number of obstacles before working wheel) and aerodynamic 

(irregular pressure distribution in air flow) effects. At given speed, the phase of the response remains 

fixed relatively to a stationary probe. The case of synchronous vibrations will be considered through 

this chapter. 

  It is essential to pay attention to the hardware of blade tip-timing system where the main place 

is taken by probes. They are subjected to some requirements: operational temperatures range, high 

definition accuracy, possibility to avoid engine casing preparation, withstandability to different 

contaminations, etc. At the present time, the following probe types are used: eddy-current probes, 

capacitance probes and optical probes. Short analysis of the probes performances is presented in Table 

4.1 

Table 4.1 

Sensor type Advantage/disadvantage 

Eddy current 

[26-27] 

Advantage: Simple structure, light weight, durable, unaffected by gas stream 

properties (contamination, water vapour, moisture etc.) 

Disadvantage: Measuring signals depend on material properties of the blade 

Capacitive 

[88, 110] 

Advantage: Simple structure 

Disadvantage: Durability and changing dielectric properties of the gas stream can 

cause problems, needs high voltage power supply 

Optical 

[95, 109] 

Advantage: High precision, direct measurement of the position 

Disadvantage: Cooling requirements and associated added weight; installation 

complexity and susceptibility to optical contamination 
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 It should be mentioned the problem, which appears during tip-timing measurements. It is known 

as under-sampling of the measured data. It comes from the fact that frequency of sampling is always 

less then frequency of the first natural mode of the blade. The problem can be avoided by applying an 

interpolation procedure of the under-sampled signals [92] for proper reconstitution of the blade 

vibration signal. 

 

 4.1 Blade amplitude reconstruction from multi-probe 

measurements data 
 

 Blade tip-timing method can be used for both single blade and for multi-blades measurements. 

Firstly, the approaches for one blade measurement simulation were developed [107].  

Let’s consider Fig. 4.1b. There is the blade rotating at speed Ω and shown for two positions in 

time. It is further assumed that the origin is chosen such that the blade is at angular position ε at time t 

= 0. Time required for the blade without vibration to pass through the probe in k rotations is equated: 

                                                                 
Ω
π

+
Ω
φ+ε

=
ktuv

2 ,                                                       (4.1) 

where Ω is the frequency of rotor rotation. 

   
 

       (a)                                                                                    (b) 
Fig. 4.1. Blade tip-timing method presentation: 

(a) blade behaviour as the subject to BTTM procedure, (b) blade positioning 

 
 It will be accepted during consequent simulations that “Origin” coincides with angular position 

of the first probe. 

 The blade response is assumed to be synchronous and of EO-th engine order. Forced excitation 

for the blade at the arbitrary angular position could be expressed as follows: 

                                                            )sin( ε+ω= EOtFF a                                                    (4.2) 
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To measure the blade synchronous resonance vibration it is enough to have one probe installed 

in the circumferential locationφ . Assuming that the blade response amplitude-phase relationship can be 

approximated to that of a single degree of freedom system, its tip displacement on k-th rotation can be 

expressed as: 

                                                       ))(sin()()( ωψ+ε+ωω= EOtAtx kk                                            (4.3) 

where )(ωA and )(ωψ are the amplitude and phase of the complex frequency response, EO is the engine 

order, Ω=ω EO  is the excitation frequency. 

During rotation the blade passes the following angular distances:  

− to probe – kc π+φ+ε= 2 ;  

− due to rotation – tdr Ω= ;  

− due to vibration – ⎥⎦
⎤

⎢⎣
⎡ ωψ+ε+ωω

=
R

EOtAdv
))(sin()( . 

 Accepting vr ddc +=  , the governing equation of blade tip-timing method will be derived to 

calculate actual arriving time [38]: 

                                      0
))(sin()(

)2( =⎥⎦
⎤

⎢⎣
⎡ ωψ+ε+ωω

+φ+ε+π−Ω
R

EOtA
kt k

k .                       (4.4) 

Equation (4.4) is solved by a method of non-linear equation solution (Newton’s method) in 

order to obtain arriving time of each blade tip at each probe.  

Let’s consider a rotor with N blades and n installed probes. The location of probe is referenced 

by angular position φ  on the engine casing. Angular position of the first probe is set to 0º. From this 

reference the angular positions of the remained probes are calculated.  

Rotor speed is assumed constant in each measurement point. But in reality such supposition is 

not longer valid. Rotor speed changes during one rotation resulting in a change of excitation frequency. 

In the case of high rate of rotor acceleration, the error in amplitude calculation will not be negligible. It 

means that a blade will pass through the probes at different frequencies of excitation.  It can be avoided 

by decreasing rotor acceleration or approximation of the rotor acceleration curve by step-function. I.e., 

during each measurement the rotor speed should be maintained constant, especially in the resonance 

area. Such conditions can be performed during engine maintenance procedures aimed on determination 

of bladed disk vibration performances and possible damages detection. 

In our case, the origin coincides with first probe and all measurements are performed supposing 

the fact that first impulse belongs to the first blade. It results in the offset angle ε to be calculated as: 

                                                      ),1(2
−

π
=ε j

Ni                                                            (4.5) 

where j=1…N.  
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 The linear distance passed by the tip of j-th blade without vibration is equal to i
pktR ,Ω , which is 

measured for p-th probe at k-th rotation of the working wheel. Without vibration this distance will be 

constant. But, if the blade is subjected to vibration, it will be possible to capture the arriving time 

difference and to reconstruct blade tip amplitude. The numerical expression of blade response captured 

by p-th probe using arriving time data can be written in the following manner: 

     npNjtRa j
pk

j
pk ...1,...1,,, ==ΩΔ=                         (4.6) 

where p
j

uvk
j

vk
j

pk ttt )( ,,, −=Δ is arriving time difference between vibrating blade and blade without 

vibration, which is synchronized to the impulse of the first blade without vibration captured at the 

origin. 

Derivation of formula (4.6) can be illustrated using Fig. 4.2. There are curve of time-history of a 

blade tip and tracking lines of three probes presented. Since probes are fixed and we are in rotating 

reference frame, probes tracking line will have direction, which is opposite to the rotor rotation.  

 

(a)                                                                                    (b) 
Fig. 4.2. Tip-timing measurements presentation: 

(a) amplitude of blade tip measurement by three probes, (b) zoom around first probe measurement 

 Amplitude of blade tip vibration is presented in Fig. 4.2 by section DE. Section EF is arriving 

time difference i
pkt ,Δ  measured by a probe. From this geometrical presentation, we can easily obtain 

presented above equation (4.6). 

  Also it is necessary to accentuate that in the case of synchronous vibrations the reconstruction 

of the blade tip amplitude depends on engine order and number of probes used in simulation [111]. For 

example, using three probes, all speed synchronous vibrations can be measured, except for the engine 

orders 3, 6, 9 etc. These will remain invisible, since in these cases, the blades pass all probes in the 

same state of vibration (Fig. 4.3). When five probes are used, the engine orders 5, 10, 15, etc are 

omitted.  
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(a)                                                                                    (b) 

Fig. 4.3. Disability of uniformly spaced probes to capture amplitude of blade tip at EO,  

which is multiple of probes number: (a) EO=6, (b) EO=9 

 
  Using expression (4.6), it is possible to calculate maximum tip amplitude of each blade [53, 55]. 

As it was mentioned previously, during each rotation we have n data points of blade tip response (n - 

number of probes). It was supposed that tip response is sinusoidal and it can be represented in the point 

D (Fig. 4.2) as: 

         npNjtAa kvkk
j

k
j
p ...1,...1),sin( , ==ψ+ω=                    (4.7) 

where j
kA is maximum amplitude of j-th blade tip in k-th measurement point and kψ is the phase. 

  In the case of three probes, equation (4.7) leads to the system of three equations with two 

unknowns A andψ , which corresponds to blade tip amplitude and phase. For a blade at particular 

frequency (measurement point) the system to solve will be: 

          
⎪
⎩

⎪
⎨

⎧

−Ω=ψ+ω
−Ω=ψ+ω
−Ω=ψ+ω

)()sin(
)()sin(

)()sin(

333
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uvvv

uvvv

uvvv

ttRtA
ttRtA
ttRtA

                                          (4.8) 

  System (4.8) can be rewritten in the following way in order to apply a solution method of 

system of linear equations: 

        

)/arctan(,

)()sin()cos(
)()sin()cos(
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22

3333

2222
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=ψ+=

⎪
⎩

⎪
⎨

⎧

−Ω=ω+ω
−Ω=ω+ω
−Ω=ω+ω

                                    (4.9) 

 Structurally process of the blade tip amplitude reconstruction consists of: 

− blade tip arriving time generation with and without vibration using equation (4.4); 

− synchronizing of arriving time to the arriving time of first blade without vibration captured 

by first probe; 



                                 Chapter 4.  Cracked blade detection by tip-timing method                                      d               

 

139 

− calculation of blade tip amplitude captured by a probe using formula (4.6); 

− reconstruction of the maximum blade tip amplitude using system of equations (4.9). 

 

 

Fig. 4.4. Simulation of blade tip-timing procedure  

 
  During the simulation process it is possible to make k measurements of each blade vibration 

state, which is equal to the rotor rotations number accomplished in the time of rotor acceleration: 

            
2

)(
2 121

2
12

1
TrTrTr

Tr
Trk Ω−Ω+Ω=⎟

⎠
⎞

⎜
⎝
⎛ Ω−Ω

+Ω= ,                          (4.10) 

where 12 ,ΩΩ  are the rotor rotation frequencies at the end and beginning of the rotor acceleration time, 

Tr is the rotor acceleration time. Rotation speed is supposed to be changed linearly during rotor 

acceleration. 

 

  4.2 Blade tip-timing method application to the bladed disk model 
 

 Simulations of the tip-timing method applications will be performed using the same crack 

locations cases as it was considered in the chapter 3 (Fig. 3.3). Each crack location case corresponds to 

the bladed disk model containing one cracked blade and subjected to the loading mode shown in Fig. 

3.32.   

 On Fig. 4.5 the general structure of research is presented. At the absence of experimental 

validation only simulation of the process of the cracked blade identification was performed. The 

dynamic model of the bladed disk was developed in the previous chapter with theoretical background 

presented in chapters 1 and 2. The last stage consists in application of the tip-timing method, which 

will be considered in this chapter. 
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Fig. 4.5. The research structural scheme 

 
  4.2.1 Simulation of tip-timing measurements 
 

 The initial data for blade tip-timing method simulation are: 

− engine acceleration time – Tr=2 sec.; 

− rotor frequency range –  Ω=20…25 Hz; 

− engine order of excitation – EO=23; 

− excitation force amplitude – Fa=0.3N; 

− rotor radius – R=0.38 m.; 

− number of measurements – k=21; 

− number of probes – n=3. 

 
 For each simulation case the comparison of the frequency response obtained using arriving time 

data and harmonic balance method will be performed. All-blades response in particular measurement 

point (excitation frequency) will be presented in order to test the ability to distinguish cracked blade.  It 

will show us the possibility to identify cracked blade by tip amplitude difference not only near the 

resonance peak.  An attention should be paid to the engine acceleration time, which is urgent to 
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properly follow frequency response curve of the investigated object. Some numerical tests were 

performed to confirm correctness of the chosen value of rotor acceleration time.  

 

Measurement points of blade tip-timing method simulation 

Table 4.2 

Measurement 

number 
Rotor frequency Ω, Hz Excitation frequency ω, rad/sec 

1 20.0 2889 

2* 20.2 2924 

3 20.5 2961 

4 20.8 2998 

5 21.0 3033 

6 21.2 3069 

7* 21.5 3105 

8 21.8 3142 

9* 22.0 3178 

10 22.3 3214 

11* 22.5 3250 

12 22.8 3287 

13* 22.0 3322 

14 23.2 3358 

15 23.5 3394 

16* 23.8 3430 

17 24.0 3467 

18 24.3 3503 

19 24.5 3539 

20 24.8 3575 

21 25.0 3611 

*) measurement points used for graphical presentation 
 

 For presentation on graphs the measurement points 2, 7, 9, 11, 13, 16 were chosen to describe 

the bladed disk frequency response: next to cracked blade localized response, all-blades principal 

response and at the frequencies distant from the resonance peaks (Table 4.2). By formula (4.9) the 

maximum number of measurements k will be equal to 45.  

 It should be noted that all following simulation presented in this subchapter are performed 

having supposed mistuning absence and the linear formulation of cracked blade behaviour. The linear 

formulation was used due to necessity of only blade tip-timing method simulation in the subchapter. In 

the next sections, where mistuning influence on cracked blade detectability will be examined, the non-

linear model formulation will be applied for simulations performing.  
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 Each plot representing blade tip amplitudes in particular measurement (excitation frequency) 

point contains three curves: “cracked by FRF” – bladed disk response calculated by frequency response 

function (linear formulation of the crack presence), “cracked by TTM data” – bladed disk response 

calculated using blade tip arriving time data and “uncracked by FRF” – bladed disk response without 

any cracked blade calculated by frequency response function. The bladed disk model used in this 

subchapter is supposed to have no mistuning (except cracked blade presence, which in linear case can 

be considered as mistuned one). 
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Fig. 4.6. All-blades response in the measurement point: trailing edge crack, a=2 mm. 
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 Results of blade tip-timing method simulation show possibility to distinguish the blade with 

crack of 2 mm length and located on the trailing edge (Fig. 4.6). The cracked blade is easily detected in 

each measurement point. It should be noted that the model does not contain mistuning and this fact is 

favourable for cracked blade identification.   
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Fig. 4.7. Trailing edge crack (a=2 mm.): (a) frequency response of all-blades by tip-timing method data,   

(b) arriving time differences of all-blades captured by probes 

  

 Frequency response of the bladed disk (Fig. 4.7a) does not have cracked blade frequency 

localization. In this case bladed disk frequency response can be used only for estimation of blade 

amplitudes levels and resonance frequencies calculation. Cracked blade can be separated from it, if 

sufficiently big number of measurements was performed during rotor acceleration. On Fig. 4.7b 

differences between arriving time of vibrating blade and blade without vibration are presented, which 

are used for calculation of blade tips amplitudes by expression (4.6). Their functional dependence on 

excitation frequency (rotor frequency) has the same form as the bladed disk frequency response. 

Consequently, it can be directly used for resonance frequencies determination. 
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Fig. 4.8. All-blades response in the measurement point: trailing edge crack, a=4 mm. 
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 Tip-timing method simulation results of trailing edge crack option with increased to 4 mm. 

crack length (Fig. 4.8) allow cracked blade identification using all-blades response at particular 

frequency. It is possible in all presented measurement points. At the same time, there are some 

difficulties of cracked blade identification in the point #11 (Fig. 4.8 d), which is located close to the all-

blades principal resonance. It is caused by effect of excitation forces phase lag, when different blades 

resonate at different frequencies, which are very close to each other. This also leads to impossibility to 

distinguish cracked blade by the resonance frequency shift at the absence of cracked blade frequency 

localization. Additionally, the shortage of measurement points plays his role in reduction of cracked 

blade identification possibilities. 
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Fig. 4.9. Trailing edge crack (a=4 mm.): (a) frequency response of all-blades by tip-timing method data,   

(b) arriving time differences of all-blades captured by probes 

   

 Frequency response of the bladed disk (Fig. 4.9a) also does not provide information required for 

cracked blade presence identification in the disk. It can be used for calculation of blade tip amplitudes 

and resonance frequencies determination. Resonance frequencies can be determined, as well, by 

differences of arriving time measured for each probe (Fig. 4.9b). 
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Fig. 4.10. All-blades response in the measurement point: leading edge crack, a=2 mm. 
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 Crack located on the leading edge can give much more information for the cracked blade 

identification. Response of the blade tip becomes more distinguishable. It was well illustrated during 

the simulations of uncoupled cracked blade dynamic behaviour (Figs. 3.8, 3.10). Blade tip-timing 

method results at different measurement points (Fig. 4.10) are very similar to the 4 mm. trailing edge 

crack location option. Cracked blade identification is possible in all measurement (excitation 

frequency) points without any difficulties.  

 

2800 3000 3200 3400 3600 3800
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

Excitation frequency ω, rad/sec

Ti
p 

am
pl

itu
de

, m

cracked
blade 2
blade 3
blade 4

(a) 

0 5 10 15 20 25
0

1

2
x 10

-5

dt
, s

ec

Probe 1

0 5 10 15 20 25
0

1

2
x 10-5

dt
, s

ec

Probe 2

0 5 10 15 20 25
0

2

4
x 10

-5

Measurement number

dt
, s

ec

Probe 3

cracked
blade 2
blade 3
blade 4

(b) 

Fig. 4.11 Leading edge crack (a=2 mm.): (a) frequency response of all-blades by tip-timing method data,   

(b) arriving time differences of all-blades captured by probes 

 

 Frequency response of the bladed disk in the case of leading edge crack is very interesting and 

informational. At certain crack length it is possible to reach cracked blade frequency localization 

occurrence.  But in the case of 2 mm. crack length (Fig. 4.11a) this phenomenon is not reached. 

Anyway crack identification from the frequency response is achievable when sufficiently big number 

of measurements is performed.  In this case it is possible to smoothly trace the frequency response 

curves of all blades. 
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Fig. 4.12. All-blades response in the measurement point: leading edge crack, a=4 mm. 
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 Leading edge crack of 4 mm. length, as it is known from dynamic analysis of the bladed disk 

model (subchapter 3.3, Fig. 3.35), produces cracked blade frequency localization. Owning to the bigger 

crack size and its effect on the blade stiffness we have higher tip amplitude of the cracked blade in 

comparison with previous simulations. In this case crack identification is possible in all presented 

measurement points without any difficulties (Fig. 4.12).  
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Fig. 4.13. Leading edge crack (a=4 mm.): (a) frequency response of all-blades by tip-timing method data,   

(b) arriving time differences of all-blades captured by probes 

 

 Cracked blade frequency localization seen from the bladed disk frequency response  

(Fig. 4.13a) can be directly used as the diagnostic sign of the cracked blade presence in the disk. The 

same results of the cracked blade localization we can derive from Fig. 4.13b, where time differences 

captured by the probes are shown. Here achieving of the localization phenomenon is very important 

event in the view of mistuning presence in the real disk assemblies. Without mistuning presence 

cracked blade identification can be performed in all considered cases. Whereas, mistuning allows 

separating cracked blade response only in the case of cracked blade frequency localization. 
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Fig. 4.14. All-blades response in the measurement point: symmetric cracks, a=2 mm. 
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 Presence of the second symmetrically located crack of the same size essentially facilitates 

cracked blade identification. It is mostly owing to the influence of the leading edge crack partition. In 

the case of 2 mm. symmetrically located cracks we do not have occurrence of cracked blade frequency 

localization. At the same time the presentation of blade tip amplitudes in particular measurement point 

(Fig. 4.14) provides the possibility to identify cracked blade presence by its increased tip amplitude 

response. 
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Fig. 4.15. Frequency response function (symmetric cracks, a=2 mm.): (a) frequency response of all-blades by 

tip-timing method data,  (b) arriving time differences of all-blades captured by probes 

   

 Both frequency response of the bladed disk (Fig. 4.15a) and arriving time differences (Fig. 

4.15b) can be also used for cracked blade identification only at sufficiently big number of measurement 

points that allows distinguishing of the differences between resonance frequencies. It is also observed 

that tip amplitude of the cracked blade differs from the rest of blades at the resonance frequency. 
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Fig. 4.16. All-blades response in the measurement point: symmetric cracks, a=4 mm. 
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 Results of tip-timing method application in the case of 4 mm. symmetric cracks permit to 

distinguish cracked blade tip amplitude response among the rest of the blades in all presented 

measurement (frequency) points (Fig. 4.16).  
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Fig. 4.17. Frequency response function (symmetric cracks, a=4 mm.): (a) frequency response of all-blades by 

tip-timing method data,  (b) arriving time differences of all-blades captured by probes 

 
 Frequency response of the cracked blade (Fig. 4.17a) is clearly distinguished among the all-

blades frequency responses of the bladed disk model. It is due to cracked blade frequency localization 

and blade tip amplitudes difference. 

 General conclusion about results of blade tip-timing method simulation can be formulated in the 

following way. Looking on its results with different crack location options we can continue with said in 

chapter 3. Only cracked blade frequency localization can provide in almost all cases cracked blade 

detection. Frequency response of the bladed disk obtained on the base of the time data has not precise 

view due to shortage of measurement points. But it can be easily used for resonance frequencies 

calculation. 

 We can divide all our simulation cases on 2 main categories: 

− with cracked blade frequency localization; 

− without cracked blade frequency localization  

  crack size allows cracked blade response identification; 

 numerical errors makes cracked blade identification unattainable due to low blade tip 

amplitude in measurement points distant from the resonance peak. 

 Cracked blade identification for the second category seems to be impossible at further 

introduction of mistuning.  
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4.2.2 Comparison of frequency response reconstructed by tip-timing method data 

with harmonic balance method results 

 
  In order to validate measured data obtained from blade tip-timing method simulation the 

harmonic balance method results are used. For comparison process only cracked blade frequency 

response of the bladed disk model is taken.  

  Initial data for tip-timing method are the same as in previous subchapter with only one 

difference: simulations are accomplished for different numbers of measurement points k = 21 and k=45 

(maximum possible number at the set rotor frequency range and rotor acceleration time). On each 

graph three curves are presented: “FRF by HBM” corresponds to cracked blade frequency response 

calculated by harmonic balance method, “FRF by TTM (k=21)” and “FRF by TTM (k=45)” show 

results of cracked blade frequency response calculated by arriving time data at different k numbers. 

Graphical comparison is presented for the frequency range covering all-blades principal response. 
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Fig. 4.18. Cracked blade frequency response (trailing edge crack): (a) a=2 mm, (b) a=4 mm 
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Fig. 4.19. Cracked blade frequency response (leading edge crack): (a) a=2 mm, (b) a=4 mm 

 



                                 Chapter 4.  Cracked blade detection by tip-timing method                                      d               

 

155 

3150 3200 3250 3300 3350

2

4

6

8

10

12

14

16

18
x 10

-4

Excitation frequency ω, rad/sec

Ti
p 

am
pl

itu
de

, m
FRF by HBM
FRF by TTM (k=21)
FRF by HBM

 
a 

3050 3100 3150 3200 3250 3300 3350

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
-3

Excitation frequency ω, rad/sec

Ti
p 

am
pl

itu
de

, m

FRF by TTM (k=21)
FRF by TTM (k=45)
FRF by HBM

 
b 

Fig. 4.20. Cracked blade frequency response (symmetric cracks): (a) a=2 mm, (b) a=4 mm 

 

  From the comparison of cracked blade frequency response obtained by tip-timing measurements 

and harmonic balance method (Figs. 4.18–4.20) we can conclude following: both methods give almost 

same results near the resonance peak and they are sufficiently different at the resonance frequency. The 

last one is caused by shortage of points of tip-timing method measurements. Their maximum number is 

limited by rotations number accomplished by the engine rotor. Besides it should be noted the 

possibility to determine accurately enough the resonance frequency by blade tip-timing method. 

  Anyway, such comparison shows validity of blade tip-timing method simulation and proposed 

approach of blade tip amplitude response reconstruction on the base of arriving time data. 

 
4.3 Tip-timing measurements simulation at different mistuning 

levels 
 
  4.3.1 Presence of cracked blade frequency localization  

 

  For blade tip-timing method simulation in the case of mistuning application following initial 

data were chosen: engine order – EO=28, rotor frequency range – Ω =16…20 Hz, rotor acceleration 

time – Tr=5 sec., rotor radius – R=0.38 m., number of probes – n=3. The bladed disk model contains 

cracked blade with 4 mm. leading edge crack. Engine order 28 was chosen for the reason to compare 

bladed disk frequency response obtained during non-linear analysis and presented in Fig. 3.39. The 

mistuning levels used for analysis are 0.5% (σ=0.005), 1% (σ=0.01) and 2% (σ=0.02). In this case 

blade tip-timing method simulation is performed using non-linear formulation of the cracked blade 

behaviour within the frameworks of the bladed disk dynamic model. Non-linear formulation was used 

because of two factors affecting the crack identification: presence of mistuning and shift of the non-

linear cracked blade response close to the uncracked one. Both of these factors can lead to impossibility 
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to separate cracked blade response. As we know, during tip-timing measurements we are limited by 

maximum number of measurements, which also can reduce the quality of reconstructed bladed disk 

frequency response.  

  Maximum number of measurements by equation (4.9) at the set rotation frequency and engine 

acceleration time will be 90. To each measurement point an excitation frequency value corresponds. It 

was mentioned during the bladed disk model elaboration that cracked blade was supposed to be the 

first. Consequently, first blade is designated as cracked on all plots. 
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(a)                                                                                 (b) 

Fig. 4.21. Blade tip timing method application results (0.5% of mistuning): 

(a) arriving time differences “seen” on the probes, (b) bladed disk frequency response by TTM data 
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Fig. 4.22. Blade tip timing method application results (1% of mistuning): 

(a) arriving time differences “seen” on the probes, (b) bladed disk frequency response by TTM data 
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       (a)                                                                                    (b) 

Fig. 4.23. Blade tip timing method application results (2% of mistuning): 

(a) arriving time differences “seen” on the probes, (b) bladed disk frequency response by TTM data 

  

 Simulation of bladed disk forced response measurement with 0.5% of mistuning (Fig. 4.21) is 

the reference to the case of bladed disk frequency response without cracked blade frequency 

localization. Mistuned bladed disk measurements at absence of the localization will be discussed in the 

next subchapter. 

 In Figs. 4.21–4.23 the results of tip-timing measurements at different levels of mistuning are 

presented. They show blade tip-timing method applicability to the blade tip amplitude measurements 

and construction of the bladed disk frequency response.  The results confirm stated in the subchapter 

3.3.4 that mistuning level of 2% makes unachievable the task of cracked blade identification, whereas it 

is possible at the mistuning level of 1% (Fig. 3.39a). We observe again the deterioration of cracked 

blade detectability applying the non-linear formulation of cracked blade behaviour. It was shown 

earlier that at its linear formulation we are still able to distinguish cracked blade response at 2% of 

mistuning, but the non-linear formulation makes this process unfeasible (Fig. 3.39b).  

Blade tip-timing method simulation allows comparison of maximum amplitude responses of all 

blades in each measurement point (Figs. 4.24–4.25). For such purposes, four measurement points were 

chosen: before cracked blade localized response (Fig. 4.24a, point #30), around cracked blade localized 

response (Fig. 4.24b, point #52), around all-blades principal response (Fig. 4.24c, point #59), after all-

blades principal response (Fig. 4.24d, point #82). Each measurement point is described by three curves 

showing blade tip amplitude responses calculated by harmonic balance method (“by HB method”), 

using tip-timing method data with non-linear (“by TTM data (non-linear case)”) and linear formulation 

of cracked blade behaviour (“by TTM data (linear case)”). 
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Fig. 4.24. All-blades response in the measurement point (1% of mistuning): 

(a) ω=3044.2 rad/sec, (b) ω=3218.1 rad/sec, (c) ω=3273.5 rad/sec, (d) ω=3455.3 rad/sec 
 
Analyzing results of mistuned bladed disk response in each measurement point, we can see 

again the decrease of the cracked blade detectability at the mistuning presence. In the case of the 

mistuning level of 1% (Fig. 4.24) it is still remained possible to separate the amplitude of cracked blade 

tip in almost all measurement point except #59 (Fig. 4.24c). This point is located close to the all-blades 

resonance peak, which is the most mistuned. 

We can see from more detailed look on all-blades amplitudes distribution that cracked blade 

amplitude response is the highest before the all-blades principal response. Around it the cracked blade 

is almost impossible to be detected. While after it the blades respond in more structured manner and we 

are able again to separate cracked blade, because its response is the lowest.  

The comparison of measurement results with the non-linear and linear formulations of the crack 

shows that linear formulation simplifies cracked blade identification in all measurement points. It is not 

possible only in the point #52 (Fig. 4.24b), which lies close to the resonance frequency of cracked 

blade in non-linear formulation.  
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Fig. 4.25. All-blades response in the measurement point (2% of mistuning): 

(a) ω=3044.2 rad/sec, (b) ω=3218.1 rad/sec, (c) ω=3273.5 rad/sec, (d) ω=3455.3 rad/sec 
 
If to increase the mistuning level up to 2% (Fig. 4.25) even the results in the measurement point 

do not permit the separation of cracked blade tip amplitude. The random nature of mistuning leads to 

reduction of certain blades stiffness up to values, which are comparable with crack induced stiffness 

reduction. Also it is confirmed the stated in the subchapter 3.3.4. Linear formulation allows cracked 

blade identification at the higher mistuning level then it can be performed, if non-linear cracked blade 

model is used. 

Generally speaking, study of the mistuning influence on the cracked blade detectability is very 

demanding problem. In most cases it leads to total inability of cracked blade identification, even if its 

frequency localization was reached.  
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 4.3.2 Absence of cracked blade frequency localization  

 
The bladed disk model containing leading edge crack of 2 mm. length was used to simulate blade 

tip-timing measurements of the model, which does not produce the cracked blade frequency 

localization. Initial data of blade tip-timing method are the same as for the previous simulations. Earlier 

it was supposed that even very small mistuning level can lead to the impossibility of cracked blade 

identification. Here two cases will be presented: blade tip amplitude measurements of the model 

without mistuning (Fig. 4.26) and tip-timing measurements of the bladed disk frequency response with 

presence of mistuning level 0.5% (Fig. 4.27).  
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       (a)                                                                                    (b) 

Fig. 4.26. Blade tip timing method application results (no mistuning): 

(a) arriving time differences “seen” on the probes, (b) bladed disk frequency response by TTM data 

 
 Model of the bladed disk without mistuning presence, which does not produce frequency 

localization, has been studied earlier during description of blade tip-timing method simulation. It is 

shown only for comparison with the same, but mistuned model. 
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Fig. 4.27. Blade tip timing method application results (0.5% of mistuning): 

(a) arriving time differences “seen” on the probes, (b) bladed disk frequency response by TTM data 
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(d) 

Fig. 4.28. All-blades response in the measurement point (0.5% of mistuning): 
(a) ω=3044.2 rad/sec, (b) ω=3218.1 rad/sec, (c) ω=3273.5 rad/sec, (d) ω=3455.3 rad/sec 

 
 Measurement results of blade tip amplitudes in the case of absence of the cracked blade 

localization (Fig. 4.28) confirm stated above: even very small mistuning (0.5%) induces such spread of 

blade tip amplitudes, which makes impossible identification of the cracked blade. This proceeds from 

mistuned all-blades principal response (Fig. 4.27) and from possibility to identify cracked blade only 

on the base of tip amplitude differences. 

 

 4.4 Measurement performances influence on cracked blade 

detectability 
 

 Under measurement performances we understand time resolution of the probes. Simulation of 

time resolution influence is very important task because it directly influences on accuracy of tip-timing 

method measurements. Three resolution levels are used in simulations: 10-8, 10-7, 10-6 and 10-5 sec. It 

means that arriving time differences less then probe time resolution are thrown out. For all simulation 

cases bladed disk model with the leading edge crack was accepted (a=4 mm.). Number of 
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measurements was set to 90. Initial data: engine order – EO=28, rotor frequency range – Ω =16…20 

Hz, rotor acceleration time – Tr=5 sec., rotor radius – R=0.38 m., number of probes – n=3, mistuning 

level – 0.5% (σ=0.05). The reference amplitude curve on the comparison graphs supposes infinite 

resolution ability of the probe (Fig. 4.29–4.33). Measurement points are the same as in subchapter 4.3. 
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(d) 
Fig. 4.29. All-blades amplitudes distribution in a measurement point (resolution level 10-8): 

(a) ω=3044.2 rad/sec, (b) ω=3218.1 rad/sec, (c) ω=3273.5 rad/sec, (d) ω=3455.3 rad/sec 

 

At the set resolution level of 10-8 sec., it is seen from the blade tip amplitudes distribution that 

all measurement points give us the possibility of accurate amplitudes calculation by measures of tip-

timing method. Only some inessential difficulties appear at the frequencies before cracked blade 

localized response (Fig. 4.29a). They are caused by low level of blade tip amplitudes in these points. 

 



                                 Chapter 4.  Cracked blade detection by tip-timing method                                      d               

 

163 

 
Decreasing the resolution of the probes the problems of amplitude identification appear. It is in 

measurement points located far from the resonance frequencies (Fig. 4.30a, 4.30d). But anyway, both 

of them allow cracked blade identification owing to its higher amplitude response level. It is remained 

visible, even if some neighbouring blades amplitudes are calculated incorrectly. 
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Fig. 4.30. All-blades amplitudes distribution in a measurement point (resolution level 10-7): 

(a) ω=3044.2 rad/sec, (b) ω=3218.1 rad/sec, (c) ω=3273.5 rad/sec, (d) ω=3455.3 rad/sec 
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Fig. 4.31. All-blades amplitudes distribution in a measurement point (resolution level 10-6): 

(a) ω=3044.2 rad/sec, (b) ω=3218.1 rad/sec, (c) ω=3273.5 rad/sec, (d) ω=3455.3 rad/sec 

 

The resolution level decreased to the value of 10-6 sec. can provide blade tip amplitudes 

calculation only in measurement points, which are located close to the resonance frequency (Fig. 4.31b, 

4.31c). Other points make available improper results or sometimes zero amplitudes (Fig. 4.31a). Also 

they do not allow even cracked blade amplitude separation, whereas it was possible in the previous 

case. 
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Fig. 4.32. All-blades amplitudes distribution in a measurement point (resolution level 10-5): 

(a) ω=3044.2 rad/sec, (b) ω=3218.1 rad/sec, (c) ω=3273.5 rad/sec, (d) ω=3455.3 rad/sec 

   
  The resolution level of 10-5 sec. is presented only for the reference purposes because it does not 

permit proper amplitude calculation in any measurement point. It can be used only for the cracked 

blade presence identification, if the resonance frequency is within the range of tip-timing measurements 

(Fig. 4.32c). Also such resolution level can be applicable for resonance frequencies calculation. 

General conclusions concerning examination of probe time resolution influence on blade tip 

amplitude reconstruction consist in following. Time resolution applied to our model is sufficient for all 

measurements points, if it provides ability to capture arriving time differences under 10-8 sec. Reducing 

time resolution, some points will be loosen. Normally, such points are located before or after resonance 

peaks where blade tip amplitudes are of comparatively low level. At the same time, it is remained 

possible to calculate blade tip amplitudes near the resonance peaks. The smallest resolution level does 
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not allow amplitude calculation even around resonances. Only cracked blade presence identification is 

possible. It is achieved because of higher amplitude response of the cracked blade.  
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Fig. 4.33. Cracked blade frequency response at different probe resolution levels 

  

 Fig. 4.33 presents cracked blade frequency response of bladed disk model at different resolution 

levels. We can see again the ability to accurately calculate blade tip amplitude only at sufficiently high 

time resolution of the probe. The smallest, respectively to our model, resolution level is useful only for 

cracked blade identification, but not for amplitude calculation at particular frequency of excitation 

(rotor rotation).  

The presented above simulations can be used for probes performances specification of the 

engine health monitoring system based on blade tip-timing method. Generally, probe time resolution 

abilities can be grouped in three categories:   

− probe time resolution allows accurate blade tip amplitudes calculation in all measurement 

points; 

− probe time resolution makes possible amplitudes reconstruction around resonance peaks; 

− probe time resolution allows only resonance frequency determination or cracked blade 

presence identification in the case of its frequency localization.  
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 Conclusions 

 

 All dynamic simulation of the bladed disk model was fulfilled within the frameworks of blade 

tip-timing method application. The benefits of this method are easy formulation and complete control 

of all blades. The fulfilment of the study concerning implementation of blade-tip timing method 

permits us to: 

− control vibration state of each blade individually and, thus, to have a more complete 

knowledge about engine dynamic state; 

− calculate blade tip amplitudes on the base of  data delivered by the probes; 

− calculate resonance frequencies; 

− detect localized cracked blade in the assembly. 

 Some problems can arise during implementation of the health monitoring system based on tip-

timing method. They can be grouped around low crack presence influence on overall blade dynamic 

performances. This phenomenon directly depends on crack size, crack location through the blade 

height and the order of the excited eigenmode. Also the measurement system (probe) time resolution is 

very important parameter. The higher time resolution will be required with increase of resonance order.  
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Conclusions and perspectives 

 
 It is very often happened with majority of research studies that as many questions are raised 

as we try to answer on. And the studies presented in this thesis are not the exception. Nevertheless, 

in the general conclusions to all the work it is intended to estimate the progress made in this work. 

It was aimed on elaboration of new advanced presentation of the cracked aircraft engine structures 

dynamics and they behaviour identification in operation.  

 Within the bounds of the presented doctorate different aspects associated with dynamics of 

the cracked blade behaviour and its identification in engine operation were studied. In the general 

way all accomplished studies can be divided into two main phases: theoretical development of the 

methods of the set problems solution and validation of these method applications by numerical 

simulation.  

 
 General conclusions 
 

 The most ambitious objective of the study is to develop the fundamentals of aircraft gas-

turbine engine health monitoring system responsible for cracked blade identification in operation. In 

order to come nearer to this problem solution of two sub-tasks must have been solved: 

− cracked blade dynamic model development; 

− application of blade tip-timing method to blade tip amplitudes calculation. 

 Cracked blade dynamic model elaboration dealt with non-linear analysis methods 

application because it was required to take into account crack induced non-linearity influence on 

entire structure dynamics.  

 It is necessary to simulate crack presence in the blade using crack breathing model. It is 

caused by the fact that during engine operation compressor or turbine blades are subjected to 

periodically varying loads. Such formulation leads to contact interaction between crack sides. 

Elements of contact analysis were examined to be able to properly describe such crack behaviour. 

Frictionless contact elements were applied as it dominates during crack breathing process 

considering first bending mode.  

 Elements of fracture mechanics were considered as playing very important role and 

explaining physics of crack initiation, propagation and final fracture of the cracked structure. The 

simplified plane models of cracked plates were used, which can be considered as the reference ones 

for the cracked blade geometry.  They allow simple and representative calculation of crack 

propagation rate, plastic zone development and remained cycles number before failure. The last one
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is very important because it can complement our hypothesized health monitoring system with the 

calculation module responsible for cracked structure service life prognosis.  

 Having considered elements of contact analysis and fracture mechanics it became possible 

to directly proceed with elaboration of non-linear cracked blade model. Harmonic balance method 

was chosen as the tool for non-linear problem formulation. This method gained wide spread in 

solution of complex engineering problems, which do not allow their analytical formulation. It is 

known that harmonic balance method is very critical to the problem size. In order to overcome this 

issue, fixed interface method was applied to reduce system size. Different crack location cases were 

considered for investigation of the crack influence on forced response of the blade: trailing edge 

crack, leading edge crack and symmetric cracks. Furthermore the effect of centrifugal forces 

forming initial gap between crack sides was studied. It was concluded that at certain crack location 

and frequency of rotation it is useless to apply non-linear formulation of the crack behaviour. All 

these simulations were accomplished having supposed the cracked blade to be uncoupled.  

  Then the bladed disk model was created on the base of finite element model of the sector 

containing cracked blade. Reduction procedure was applied for a second time to be able to proceed 

with its non-linear analysis. The excitation model of the bladed disk is able to take into account 

external forces phase lag caused by difference between number of rotor and stator blades. After this 

the mistuning model based on the blade structural properties variation was added. It can directly 

affect cracked blade detectability. Cracked blade frequency localization plays here very important 

role. At certain level of mistuning it seems to be impossible to identify the cracked blade presence 

even in the case of its frequency localization. 

 Finally, the simulation of blade tip amplitudes measurement by tip-timing method was 

performed utilizing the developed disk model. It gives the possibility to measure amplitudes on the 

base of arriving times of the blades experiencing vibration. Depending on the level of vibration the 

arriving time will change and this will give the possibility to trace amplitude changes. The proposed 

approach allows amplitude reconstruction using 3, 5 or 7 probes. The only restriction is that 

synchronous vibration order (engine order) must not be the integer of probes number. Also some 

specifications are presented for probes recognition performances specifications. At its certain level 

it is impossible to accurately calculate blade tip amplitudes in measurement (excitation frequency) 

points located far from the resonance peak. 

 All performed studies can be summarized in the form of the main phases: 

1. Cracked blade model development. 

2. Crack presence non-linear formulation within frameworks of uncoupled cracked blade 

model. 

3. Development of the bladed disk model containing the cracked blade. 

4. Fixed interface method application to the bladed disk model. 
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5. Formulation of the blade tip-timing method and its application to the bladed disk model. 

6. Algorithm development of blade tip amplitudes reconstruction using tip-timing 

measurements. 

7. Simulation of the cracked blade identification using blade tip-timing method: 

− generation of blade arriving times; 

− blade tip amplitudes calculation by arriving times.  

 

 Perspectives 
 

 All perspectives concerning to the presented research can be generally considered in the 

view of two main directions. They are extension of theoretical developments and experimental 

validation of the proposed models.   

 Theoretical developments can be pursued in the field of amelioration of the bladed disk 

model like that: 

− more deep insight to mistuning influence; 

− trying to be able to distinguish between responses of mistuned and cracked blades. 

 Respecting to the theoretical fundamentals of blade tip-timing method some questions must 

be studied. They are blade installation angles error, problems related with signal under-sampling. 

Also it will be necessary to consider the possibility to take into account multi-harmonic excitation. 

 Experimental validation of the developed models is considered as the most important 

perspective objective. It can be realized using either simplified test bench consisting of the working 

wheel with probes installed around it. Simulation of the cracked blade presence can be 

accomplished by stiffness reduction of a blade. Also, at the higher level, such validation can be 

done using realistic aviation gas-turbine engine of the engine test facility of National Aviation 

University.  
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Nomenclature 
 

A – structural matrix of linear system state   

Ac – matrix of contact stresses   

B – transformation matrix  

Cξ – structural damping matrix  

E – elasticity matrix  

F~  – externat excitation forces vector in harmonic representation   

Fc –  vector of contact forces  

Fext – externat excitation forces vector   

G – vector of initial separation distances between contact elements (chapter 2)  

G – static modes (chapter 3, reduced order modelling methods)  

H – impedance matrix  

I –  unity matrix  

J – Jacobian matrix  

K – stiffness matrix  

M – mass matrix  

N – centrifugal matrix  

P – gyroscopic matrix   

R – rotational matrix  

T – transfer matrix  

W – global wave transfer matrix  

Φ  – matrix containing base of truncated eigenmodes  

b – non-linear forces vector  

q – generalized displacements vector  

r – radius–vector  

s – translation vector between fixed and rotated coordinates system  

u – displacements vector  

u~   – vector of Fourier series coefficients  
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v –  waves amplitudes vector  

w – nonconservative forces vector  

A  – amplitude of the complex frequency response  

D – damage estimation parameter  

E – modulus of elasticity  

Ed
 – energy of deformation (chapter 3)  

Ec –  kinetic energy   

Ep – potential energy   

EO – engine order   

Fd – dissipation function of Rayleigh   

Fnl – non-linear force  

K – admissible displacements field  

K1 – stress intensity coefficient   

K1C – critical stress intensity coefficient   

L – lagrangian of the system   

Ndof – number of degree of freedoms   

Nb – base number of cycles  

N1 –  number of cycles before crack origination  

NP – number of performed cycles during crack development  

Nf – full number of cycles before fracture  

Nk – number of cycles at the moment of fracture  

P – fracture probability of structure  

R – reliability of structure (chapter 2)  

R – rotor radius (chapters 3–4)  

T – solution period   

Tr – rotor acceleration time  

V – displacements field    

Wi – i–th modal strain energy  

a – crack length  

i
pa  – i–th blade tip amplitude captured by p–th probe  
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c – angular distance passed by blade to probe  

d – distance between contact surfaces  

dr – distance passed by blade due to rotation  

dv – distance passed by blade due to vibration  

fn – normal contact friction force  

ft – tangential contact friction force  

i – imaginary unit  

kc – stress cycle performance   

k – spring stiffness   

knl – penalty stiffness coefficient   

nl – normal to the body l.  

nc – safety factor in fracture mechanics  

n – number of probes   

p – pressure loading  

r – cycle ratio  

ry – plastic zone size  

t – time variable  

u – normal displacement   

unl  –  non-linear displacement  

v – tangential displacement (chapter 2)  

vc – crack growth rate   

x, 

y, 

z 

 

– 

 

coordinates in stationary reference frame or fixed coordinates system 

 

x1, 

y1, 

z1 

 

– 

 

coordinates in rotated coordinates system 

 

σ – normal stress   

σ – standard deviation of normal distribution (chapter 3)  

σc  – mean stress of cycle  

σa – stress cycle amplitude  

σ–1 – fatigue limit at symmetrical stress cycle  

σk – critical stress  

σ0,2 – conventional yield strength of material  
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ξ – structural damping coefficient  

Ω – rotor frequency  

ε – deformation (chapter 1)  

ε – blade installation angle (chapter 4)  

φ – probe installation angle  
ψ  – phase of the complex frequency response(chapter 4)  

ϕ – phase angle   

.ϕh –  interblade phase angle  

λi – i–th eigenvalue   

λ – multiplier of Lagrange (chapter 2)  

kγ  – i–th Lyapunov exponent   

jΛ  – j–th modal stiffness  

ω – excitation frequency  

ωi – i–th natural frequency  

τ  – tangential stress  
μ   – friction coefficient  

dμ  – dynamic friction coefficient  

δ – mistuning parameter  

δ – penalty coefficient (chapter 2)  

∇  – differentiation operator  

⋅⋅,  – denotes inner product  

⊗  – denotes Kronecker product  

x&  – denotes time derivative of variable x  

XT – operator of matrix or vector transposing  

X–1 – operator of matrix inversing  
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Annex 1 

 

Methods of non-linear problems solution 
 
Any non-linear system in its simplified description can be presented by expression subjected 

to optimization procedure: 

                                                                       0)( =UF ,                            (a1.1) 

where F is non-linear function of U. Equation (a1.1) represents by itself the system of non-linear 

equation of dimension equal to the system size. 

One of the methods of non-linear equations solution is the method of simple iteration. The 

system of non-linear equations can be represented as:  
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 The system is considered to be solved, if each equation for the given variables x, y, …, w 

turns to identity. Generally, the system of equations can have 0; 1; 2;... radicals. To solve this 

problem numerical, analytical or graphical methods are used. Numerical methods allow 

determination of one radical of non-linear equations system by means of iterations starting from the 

point x0, y0, …, w0, ... 

In the method of iterations of Zeidel the solution is searched in the form of 
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 k=0,1,2, … (2...4)  (a1.3) 

where, unlike the first method, on each iteration in the second equation of system value of  variable 

xk+1 is calculated by first equation of the same iteration, in the third – variables xk+1, yk+1 are 

computed by first two equations, etc. And in the last equation all variables, except w, are computed 

by previous equations of the same iteration. 

Non-linear equations system solution by Newton method we shall consider on the example 

of the second order system: 
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which could be considered as transformation of the plane xOy  into the plane .uOv  We are interested 

in the reversion of this transformation near the point ( 00 , yx  ), which image is the point ).,( 00 vu  If 

two functions have the continuous partial derivatives, so using the differential, it is possible to note 

the system of the linear approximations 
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This system is the local linear transformation which relates small changes of independent 

variables with small changes of dependent variables. 

If to take advantage of Jacobian matrix ),,( 00 yxJ  these relations can be rewritten easily in 

the form of: 
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To solve the system of the non-linear equations it is necessary to consider small deviations of 

the function near the point ),( 00 yx . Let’s have: 
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Using these equations for definition of the argument increments, it is possible to gain linear 

transformation:  
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If Jacobian is non-singular, the system solution can be noted in the form of: 

          ),,(),( 00
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where [ ] [ ] [ ] .,,, 00
TTT yxyxyx −=ΔΔ  

The first approximation 1X  to 0X  looks like 
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and k –th  approximation  
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