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Abstract 

Propagation of nonlinear acoustic signals in randomly inhomogeneous moving media is 
one of the most important problems in many modern applications of theoretical and experimental 
acoustics. For example, a detailed knowledge of the acoustic field structure is necessary in order 
to predict peak positive pressure levels caused by supersonic flights near the ground surface. Up 
to date, distortions of the acoustic wave in media with turbulent flows have been studied only in 
the linear parabolic approximation or in the approximation of nonlinear geometrical acoustics. In 
this context, investigation of nonlinear acoustic fields taking into account wave diffraction effect 
and influence of both longitudinal and transverse components of medium motion is of great 
importance. 

In this work, propagation of nonlinear acoustic signals in randomly inhomogeneous 
moving media is studied numerically and experimentally. The nonlinear evolution equation of 
Khokhlov-Zabolotskaya-Kuznetsov type, which accounts for both longitudinal and transverse to 
the wave propagation direction components of the inhomogeneous velocity field, is derived. An 
effective numerical algorithm is developed to simulate the propagation of acoustic shock waves 
with narrow fronts in inhomogeneous media. Advantages of the derived parabolic equation 
compared to the geometrical acoustics approximation are shown based on numerical modeling. It 
is shown that the characteristic structure of the acoustic field in turbulent media is mainly 
determined by the longitudinal component of the velocity field. However, under certain 
conditions, the transverse velocity fluctuations lead to essential distortions of the acoustic field. 
The influence of nonlinear effects on acoustic wave random focusing in turbulent medium is also 
studied. 

The laboratory scale experimental setup is designed to investigate the multiple focusing 
effects on the intense N-wave propagation in turbulent flow. Statistical distributions of acoustic 
wave parameters are measured up to distances longer than the distance of first caustic 
occurrence, determined by the outer turbulence scale. In order to interpret correctly the distortion 
introduced by the measuring system, a method of wide band high frequency microphone 
calibration based on nonlinear lengthening of the acoustic pulse in absorptive media is 
developed. It is shown that in turbulent medium, acoustic wave mean peak positive pressure 
decreases and mean rise time increases faster than in homogeneous air. However, in turbulent 
medium acoustic pressure amplitudes, 3-4 times higher than that measured in homogeneous air, 
are observed. Results of numerical modeling appear to be in a good agreement with the 
experimental data that confirms the validity of the developed theoretical model. 





Nomenclature of main used notations 

Romanic letters 
 
A  dimensionless parameter of absorption 
b coefficient of viscosity 
Cn complex amplitude of the nth harmonic 
с local sound speed 
с0 ambient sound speed 

ν
∞c  frozen sound speed for νth relaxation process 

ec   effective sound speed 
dν relaxation parameter of νth process 
Dν dimensionless relaxation parameter of νth process 
E kinetic energy spectrum of the turbulent field 
fν relaxation frequency of νth process 
f longitudinal two-point correlation function 
g transverse two-point correlation function 

θh , σh , ρh  temporal and spatial grid steps  
k acoustic wave vector 
K  wave vector of the turbulent field 
L, l characteristic scale of inhomogeneity 
Lf , Lg longitudinal and transverse integral length scales of turbulent inhomogeneity 
l0, L0 inner and outer scales of turbulent inhomogeneity 
М hydrodynamic Mach number  
n  unit vector, showing the direction of wave propagation and transverse to its front 
n  refraction index of the medium 
N  dimensionless nonlinear parameter 
p acoustic pressure 
р0 atmospheric pressure level 
p+ peak positive pressure of the wave 

0
+p  peak positive pressure of the wave, propagating in motionless medium 

r radial propagation coordinate 
r0 reference distance 
R, Q geodesic elements 
t time coordinate 
t0.1-0.9 rise time of the acoustic wave shock front 
T half duration of the acoustic wave 
T0 initial half duration of the acoustic wave 



u, (ux, ⊥u ) medium velocity 

rmsu  standard deviation of medium velocity fluctuations  
Ujet  flow velocity at the exit of the jet 
Umean local mean velocity of the turbulent flow 
U|| , U⊥ normalized longitudinal and transverse flow components 
V  dimensionless acoustic pressure 
w  vibrational velocity of medium particles 

grw  sound wave local group velocity 
х longitudinal coordinate  
xi  components of a position vector ),,( zyx=r , (i = 1, 2, 3) 

sx   shock formation distance (harmonic plane wave), characteristic nonlinear distance 
y transverse coordinate 
 
 
Greek letters 
 
β  acoustic nonlinearity coefficient  
Г Goldberg number 

ijδ   Dirichlet function 
ε   small parameter 
λ wavelength or length of the acoustic pulse 
λf, λg longitudinal and transverse Tailor scales of random inhomogeneity 
ρ  dimensionless transverse coordinate 
ρ0 ambient medium density 
σ dimensionless propagation coordinate 
τ retarded time 
τν relaxation time of νth process 
θ dimensionless retarded time 
Δθ arrival time shift 
θ0.1-0.9 dimensionless rise time of the acoustic wave shock front 
θ0  dimensionless initial half durations of the acoustic wave 
θ j    angle between ith random Fourier mode and x axis 
φ j phase of the ith random Fourier mode  
ψ  eikonal 
ω characteristic frequency of the acoustic wave 



 

Introduction       

Propagation of intense acoustic waves in inhomogeneous moving media is one of the 

most important problems in many modern applications of theoretical and experimental acoustics, 

such as propagation of intense ultrasound in inhomogeneous biological tissues with blood 

vessels [1], propagation of nonlinear acoustic pulses in atmospheric turbulent layers near the 

ground [23 4- 5 6 78], propagation of shock waves and waves from explosive sources in fluctuating 

ocean [9]. In aeroacoustics, a great interest to this problem is caused mainly by the development 

of the supersonic civil transport aviation, which is inseparably related to the sonic boom 

propagation in the atmosphere. Sonic boom pulses or N-waves, formed during supersonic jet 

flights, propagate in the atmosphere in the direction of the ground surface and under the 

influence of atmospheric inhomogeneities form an acoustic field with a very complex structure. 

This structure is strongly dependent on the presence in the atmosphere of various types of 

inhomogeneities including constant winds and flows, random temperature and velocity turbulent 

fields, and also gradients of density and temperature [10, 11]. 

For the applications already mentioned, a detailed knowledge of the acoustic field 

structure is necessary. For example, it allows estimation of the acoustic pressure level near the 

ground surface or estimation of the ultrasonically induced biological effects in tissue.  At the 

same time, it is desirable to predict peak and average values of acoustic pressure and rise time of 

the shock front in order to evaluate possible damages. For this purpose a theoretical model, 

which takes into account the effects introduced by the inhomogeneities of the medium, 

diffraction, acoustic nonlinearity, thermoviscous dissipation and relaxation processes, should be 

developed. 

Despite a diversity of the previously mentioned examples of sound wave propagation in 

inhomogeneous media, theoretical models to govern the acoustic field, are very similar to each 

other, and the problems to solve can be classified into two types depending on the nature of the 

inhomogeneities.  The inhomogeneities can be of scalar nature, i.e. spatial fluctuations of the 
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sound speed and density, for example, due to variations in temperature or salt concentration in 

the ocean or variations in tissue type; and of vector nature, i.e. spatial fluctuations of the 

background particle velocity, for example, due to the presence of vortices, wind, or flow in the 

medium.  A complete theoretical model, derived from the fundamental equations of the fluid 

mechanics and that incorporates the vector type inhomogeneities, is very complicated for 

analysis. A common approach is to replace the real moving medium with a hypothetical 

motionless medium with an effective sound speed, which takes into account only the velocity 

component along the direction of propagation, that is, the moving medium is modelled as having 

scalar type inhomogeneities. A detailed analysis of this approach can be found in Refs. [4, 12, 

24]. However, in many problems, refracted sound waves and those scattered by inhomogeneities 

propagate in directions, which may significantly differ from the initial one.  Furthermore if the 

transverse component of the velocity field has a non-zero mean component this may result in the 

shift and distortion of the caustics, and therefore may have a strong effect on propagation of the 

acoustic wave.  

Theoretical investigation of intense sound wave propagation in inhomogeneous moving 

atmosphere is a very difficult problem. In case of a medium including vector-type 

inhomogeneities only simplified models, generally under the assumption of nonlinear 

geometrical acoustics (NGA) [1314-15 1617], can be found in recent literature. The propagation both in 

media with scalar and vector inhomogeneities has been considered in NGA approximation [18, 

19]. Nevertheless, analytical solutions have been obtained only for stratified media [20, 21, 22]. 

The main limitation of the geometrical acoustics approach is that it does not account for the 

diffraction effects. Only recently, due to the growing computational power and the development 

of efficient numerical methods for solving differential equations, the nonlinear-diffraction 

problems had started to be considered. Parabolic equations have been derived for linear sound 

propagation in inhomogeneous moving media [2324 25- 26 27 2829] which do maintain the vector properties 

of the velocity of the medium. Nonlinear propagation in media with scalar inhomogeneities has 

been also considered in parabolic approximation [3031-3233]. It is worth to note, that vector 

inhomogeneities like vortices of various scales and winds or flows, which do contain the 

transverse component of medium velocity, in nonlinear parabolic approximation have been not 

considered. The combined effect of acoustic nonlinearity and different type inhomogeneities has 

been investigated for only several specific problems [3435 36- 37 3839].  In general, to the best of our 

knowledge, nonlinear propagation of diffracting sound beams in random inhomogeneous moving 

media has not been previously studied. 
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Experimental studies of acoustic signal propagation in turbulent atmosphere are 

complicated because field experiments are not well controlled and not all the varying parameters 

of atmosphere could be measured.  Moreover, field experiment is very expensive. That is why 

experimental efforts of the acoustical community in investigation of sonic boom problem are 

pointed on the conduction of laboratory scaled experiments that have been shown to be a good 

alternative to the field measurements. The results of such experiments are published in the papers 

of different authors, who used for generation of high amplitude shock N-waves either spark 

sources [7, 4041 42- 43 4445], or lasers [46]. In laboratory scaled experiments the acoustic sources are well 

controlled, that gives an opportunity to conduct measurements that are more accurate.  The 

results of such experiments will allow to not only qualitatively describe the general features of 

acoustic pulse propagation in inhomogeneous moving media, but also, by comparison with the 

numerical simulations, to verify the validity of the derived nonlinear parabolic equation and built 

numerical algorithm. In future, it will also allow quantitative estimations of the statistics, peak 

and average values of the main parameters of the acoustic field that is formed during the 

propagation of high amplitude acoustic pulses (sonic booms) in the turbulent atmosphere. 

 

Aims of the dissertation 

The general aim of the dissertation is to develop experimental and theoretical methods 

and, based on these methods, to investigate nonlinear acoustic wave propagation in 

inhomogeneous moving media.  According to this aim, the following tasks can be outlined: 

1 Development of the laboratory scale experimental setup and investigation of high 

amplitude acoustic N-pulse propagation in turbulent airflow. 

2 Development of the theoretical model for the description of nonlinear acoustic signals 

propagation in inhomogeneous moving media taking also into account the combined 

effects of diffraction, thermoviscous absorption and relaxation processes.  

3 Development of the numerical algorithm that allows modelling the problems of 

nonlinear propagation of periodic and pulsed signals with a steep front in 

inhomogeneous moving media.  

4 Determination of the relative influence of nonlinear, thermoviscous, and relaxation 

processes on the N-wave propagation in homogeneous air under laboratory experiment 

conditions with the aim to develop calibration method of the measuring system. 

5 Experimental and theoretical investigation of both nonlinear-diffraction and random 

focusing effects in inhomogeneous turbulent medium on the statistics, peak, and 

average values of the acoustic field parameters. 
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Dissertation scientific novelty 

1 A new term that accounts for the component of the medium velocity fluctuations 

transverse to the direction of the wave propagation was introduced into the Khokhlov-

Zabolotskaia-Kuznetsov type equation.  

2 A new numerical algorithm to solve the derived nonlinear parabolic equation for the 

periodic and pulsed signals with steep fronts was developed.  

3 Propagation of high amplitude acoustic signals in inhomogeneous moving media was 

investigated in details: with account for nonlinear and diffraction effects, thermoviscous 

absorption and relaxation processes, and effects related to the presence of transverse 

and longitudinal components of inhomogeneous medium velocity field fluctuations.  

4 It was shown that transverse fluctuations of randomly inhomogeneous velocity field 

might lead to the sufficient changes in acoustic field structure both in longitudinal and 

transverse directions. 

5 A new experimental method of calibrating the broadband measuring system based on 

the nonlinear N-pulse lengthening in homogeneous absorptive air and using the 

determination of the pulse duration by the positions of nulls in its spectrum, was 

proposed and validated. 

Reliability of the results presented in dissertation is verified by the benchmark numerical 

and physical experiments, and by the agreement of the results of these experiments to a priory 

known information, to the theoretical data, and numerical simulations, obtained in the papers of 

other authors. 

 

Dissertation scientific and practical amount 

1 A new theoretical model and a set of numerical algorithms developed to govern 

nonlinear acoustic propagation in inhomogeneous moving media allow to compute 

simultaneously the statistical distributions, peak and average characteristics of the 

acoustic field. 

2 The optimisation of the numerical algorithm allows modelling of shock wave fields 

with minimal computational time.  

3 The experimental setup built in this work allows conducting laboratory scale 

investigations of high amplitude acoustic pulse propagation in turbulent atmosphere and 

studying the formation of the random foci of the first and higher orders. 
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4 Numerical modelling of physical processes during the propagation of N-waves in 

inhomogeneous moving media allows predicting the characteristic values of acoustic 

pressure amplitude and shock rise time fluctuations.  This may help to avoid possible 

negative influence of intense ultrasound on biological tissue during ultrasound surgery 

and negative influence of sonic booms on human being and environment at the ground 

surface.  

5 Developed experimental method of broadband microphone calibration - based on the 

analysis of measured N-pulse lengthening with propagation distance in homogeneous 

air compared to theoretical prediction of acoustic pulse nonlinear lengthening with 

account for the relaxation effects - allows obtaining in the laboratory environment the 

frequency response of the measuring system. This allows on-place calibration, which is 

necessary due to possible changes in the system components, or system geometry, or 

due to changes in characteristics of the system with time. 

 

Presentations and conferences 

The results included into the dissertation have been presented at the XII Scientific School 

«Nonlinear waves 2004» (Nizhniy Novgorod, Russia 2004); at the International Symposium 

CFA/DAGA'04, (Strasbourg, France 2004); at the Young Scientist Conference «Lomonosov 

2004» (Moscow, Russia 2004); at the Conference «Wave phenomena in inhomogeneous media» 

(Zvenigorod, Russia 2004); at the International Conference IEEE UFFC (Montreal, Canada 

2004); at the 2nd International Conference "Frontiers of Nonlinear Physics" (Nizhniy Novgorod, 

Saint-Petersburg, Russia 2004); at the International Conference Forum Acusticum (Budapest, 

Hungary 2005); at the Russian French seminar RAS/SFA (Moscow, Russia 2005); at the Session 

of the French Acoustical Society “CFA06” (Tour, France 2006); at the XVIII Session of the 

Russian Acoustical Society (Tagnrog, Russia 2006); at the Conference «Waves 2006» 

(Zvenigorod, Russia 2006); at the international school-seminar “Waves 2006” (Coarse, France 

2006); at the International Conference AIAA/CEAS (Rome, Italy 2007); at the XIX Session of 

Russian Acoustical Society (Nizhniy Novgorod, Russia 2007).  All the results obtained have 

been also discussed at the scientific seminars of the Department of Acoustics of the Moscow 

State University and at the seminar of the Acoustical Institute (Moscow). 

This work was partially supported in by the grant of the president of the Russian 

Federation RF № НШ-4449.2006.2, by the grant RFBR №06-02-16860, by the grant INTAS 

№05-1000008-7841, by the international student award of the Acoustical Society of America. 

and by special stipend of the French Government for the preparation of the dissertation under the 
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co-supervision in the frame of the agreement between Ecole Centrale de Lyon, France and 

Physics Faculty of the Moscow State University, Russia. 

 

Publications 

Main results of the dissertation are published in 20 papers, 3 of which are pre-reviewed 

articles in journals, 13 articles in conference proceedings and 4 abstracts of conferences.  

 

Author’s personal contribution 

The author took part in all the steps of the investigation, presented in the dissertation. 

Investigation consisted of the development of the theoretical and numerical models, design of the 

experimental setup, and conduction of the experiment itself. The author in collaboration with the 

team of LMFA, Ecole Centrale de Lyon (Sébastien Ollivier, Emmanuel Jondeau, Jean Michel 

Perrin), obtains all experimental data, presented in the dissertation personally.  

 

Structure and volume of the dissertation 

The dissertation consists of the introduction and five chapters, the first of which is the 

literature review, and others are original. Each chapter contains a short introduction and 

conclusion. The references list contains 136 articles; the total volume of the dissertation is 201 

pages, including 80 figures and 6 tables. 

Figures and formulas in the dissertation are referred as (4.3) where the first number is the 

chapter number and the second number is the number of the formula or figure in this chapter.  

Dissertation content 

In the first chapter of the dissertation the published literature review, concerning 

experimental (§1.1) and theoretical (§1.2) investigation of the sonic boom propagation in 

turbulent atmosphere is presented. The review of theoretical investigations (§1.2) is dedicated to 

the description of the main mathematical models of acoustic signal propagation in 

inhomogeneous moving media. It follows from the review that the comprehensive quantitative 

description of the shock wave acoustic fields in inhomogeneous moving media has not yet been 

provided. In §1.3 the short review of existing models of randomly inhomogeneous and turbulent 

media is presented. The main part of the paragraph is devoted to the description of the model of 

randomly oriented Fourier modes, where random velocity field of the medium is modelled as a 

set of spatial Fourier modes with given Gaussian or von Karman energy spectrum, random 

direction and random phase of the wave vector. 
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Second Chapter of the dissertation is devoted to the design of the experimental setup and 

laboratory scale measurements of the statistical distributions, peak and average values of the 

acoustic wave parameters after passing the inhomogeneous turbulent layer.  The experimental 

setup designed at Ecole Centrale de Lyon allows generating fully developed turbulent velocity 

fields (§2.1) and acoustic pulses of short duration (30 μs) and very high amplitude (1000 Pa) 

(§2.2). To generate the fully developed turbulence the intense air flow (0 - 50 m/s), forced by the 

turbine, outgoing from the plane jet of 160 mm width and 1400 mm length is used.  To generate 

acoustic pulses, electric sparks are produced by applying a high voltage (15kV) between two 

tungsten electrodes. N-waves are recorded by the wideband high frequency 1/8'' Brüel & Kjær 

microphones (up to 140 kHz).  In §2.4 the characteristic scales of the turbulent velocity and 

sonic boom acoustic fields in real atmosphere and laboratory scaled experiment are compared.  

Third chapter of the dissertation is devoted to the development of a method to calibrate 

the acoustic measuring system (§3.3) and to determine its spectral characteristics (§3.4).  This 

task is necessary for accurate interpretation of the experimental data for the rise time and peak 

pressure of the N-wave in the laboratory scale experiment conducted in inhomogeneous air 

(§3.1).  Numerical analysis based on extended Burgers equation is provided (§3.2) for the 

spherically divergent N-wave propagating in homogeneous air with thermoviscous absorption 

and relaxation. 

Fourth chapter of the dissertation is devoted to the derivation of the Khokhlov-

Zabolotskaya-Kuznetsov type nonlinear parabolic evolution equation, which governs the 

propagation of acoustic signals in inhomogeneous moving media with account for component of 

the medium velocity fluctuations transverse to the direction of the wave propagation (§4.1).  The 

similarity properties of the derived nonlinear evolution equation are considered in §4.2, and a 

numerical algorithm is developed (§4.3), which allows describing the propagation of periodic 

and pulsed acoustic signals with narrow fronts in inhomogeneous media with high accuracy and 

minimal CPU time consumption.  Good accuracy of the built numerical algorithm and evolution 

model is also confirmed by the benchmark simulations for the simple single Gaussian 

inhomogeneities and by comparison with the known linear results, obtained on the basis of wide 

angle parabolic equation (§4.4).  

Fifth chapter of the dissertation is devoted to the numerical simulations and investigation 

of nonlinear acoustic propagation in inhomogeneous moving media.  The propagation of both 

periodic waves (§5.1) and acoustic pulses in the form of N-waves (§5.2) is considered.  

Numerical results are obtained for the peak and average characteristics and statistical 

distributions of acoustic wave parameters.  The influence of nonlinear and diffraction effects on 
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the formation of the acoustic field structure and formation of the random caustics is investigated. 

Randomly inhomogeneous velocity fields with both Gaussian and modified von Karman energy 

spectrum are considered. The effects of the turbulent field intensity and characteristic length 

scales, as well as the effect of the transverse component of the medium velocity on the acoustic 

field is studied.  Finally, in §5.3, experimentally obtained data are compared to the results of 

simulations under the conditions of the laboratory scale experiment.  

. 



 

 

 

 

Chapter 1 

Chapter 1 NONLINEAR SOUND WAVES IN INHOMOGENEOUS 
MOVING MEDIA (REVIEW)                             

§ 1.1 Sonic boom in turbulent atmosphere 

1.1.1 Ecological aspects of the problem 

In 2003 when the Concorde flights were cancelled the interest of the acoustical 

community to the problem of sonic boom propagation in turbulent atmosphere was significantly 

diminished.  However, nowadays, following the development of the small civil supersonic jets of 

new generation, the investigations in this area arose with the new force.  The problem itself is 

due to the fact, that during the supersonic flight of the airplane, intense acoustics waves are 

generated by different parts of the fuselage.  The resulting shape of that disturbance has a 

complex structure with multiple high amplitude fronts that, due to the strong nonlinear 

phenomenon, coalesce during propagation to a single shock front.  The waveform thus is finally 

transformed into a classical N-wave [47,48].  Propagating further to the ground surface through 

the turbulent atmosphere, the N-wave continues to be distorted by numerous physical effects.  

This distortion is determined by the combined influence of nonlinear effects, diffraction, and 

scattering of the wave on the atmosphere inhomogeneities, and dissipative processes: 

thermoviscous absorption and relaxation phenomena [11, 49-5051].  That is why during supersonic 

flight tests, various waveforms with distorted shapes which are far from the classical N-wave are 

observed [5253-5455].  For example, in the areas of focusing, which are also often named caustics, 

the waveform transforms to the classical U-wave with a peak positive pressure, which can be 

several times higher than the amplitude of the wave, propagating in the turbulence-free medium.  

The N-wave amplitude near the ground surface can vary from 10 Pa to 300 Pa (up to 145 dB, ref 

2.10-5 Pa) depending on the speed of the airplane, its aerodynamic shape, the altitude of the 
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flight, and the atmospheric conditions [55].  However, sometimes at the distance of several 

hundreds meters from the airplane the pressure amplitude of the acoustic wave can reach 750 –

 800 Pa (up to 152 dB) [53, 54].  The pain barrier of the human ear is about 100 – 200 Pa or 130-

140 dB depending on the sound frequency.  It is obvious that levels of acoustic pressure in the N-

wave may exceed the pain barrier.  Negative influence of sonic booms on the human health is 

amplified due to the narrow width of the shock front, i.e. small rise time of the N-wave.  The rise 

time of the shock front is determined as the time needed for the pressure to increase from 10% 

level to 90% level of the shock amplitude.  The rise time can strongly vary depending on the 

flight conditions.  The typical values are 0.5 – 10 ms.  The duration of the sonic boom pulse is 

usually about 90 – 300 ms and depends mainly on the airplane length.  As it was shown in 

experiments with human participation, the subjective loudness and annoyance intensity level 

increases with the decrease of the rise time [56-5758].  For example, when the N-wave amplitude 

is equal to 50 Pa, the decrease of the rise time from 4 ms to 1 ms leads to the twofold increase in 

subjective loudness; if the sonic boom amplitude is 115 Pa, the same decrease in rise time result 

in 1.3 times decrease in subjective loudness [58].  The low frequencies of the sonic boom noise 

are also of great importance.  They lead to the vibration of window glasses and furniture inside 

buildings, and affect the general level of perception of the sonic boom.  In the Table 1.1 are 

shown the characteristic values of the sonic boom peak pressure and the possible influence of 

this wave on the environment and human being [59].  Thus, to clarify the possibility of the 

supersonic flights above the ground populated areas it is necessary to investigate possible 

pressure levels in the field of the acoustic shock wave, the rise time of the shock front, and the 

spatial structure of the acoustic field.  This information can be further used in the aero dynamical 

design of the airplane fuselage to diminish the intensity of the generated by the airplane shock 

wave [60, 61]. 

Table 1.1 Shock noise phenomena [59].  
p, Pa p, dB Resulting physiological 

reaction 
Associated physical phenomena 

5 - 15 108-118 Not objectionable Barely audible explosion 
15 - 50 118-128 Tolerable  Distant explosion or thunder 
50 - 150 128-138 Objectionable  Close-range thunder, some window 

damage  
200 140 Ear pain barrier  
200 - 500 140-148  Damage to large plate glass windows 
500 – 
1500 

158-158  Definitive damage to small barracks-type 
windows 
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1.1.2 Outdoor and laboratory experiments 

Supersonic flights of aircrafts through the atmosphere create shock waves called “sonic 

booms”.  At a sufficient distance from the plane, this waveform is an N-wave.  Nevertheless, 

sonic boom measurements show that waveforms measured at low altitude are randomly distorted 

and differ from the ideal N-wave shape (see the measurements of Lee and Downing [54]).  The 

variability of waveforms is a consequence of temperature and velocity random inhomogeneities 

due to the atmospheric turbulence near the ground [10].  Some authors compared theoretical 

predictions of sonic boom distortion to sonic booms recordings, but such analysis is limited 

because the parameters of turbulence cannot be measured enough accurately to allow detailed 

quantitative comparisons.  Consequently, experimental investigation of sonic boom propagation 

in real atmosphere is very difficult due to impossibility to have a full description of the 

atmospheric conditions during the flight of a supersonic airplane, and due to the high cost of 

these field experiments. 

From this point of view, laboratory-scale experiments are a very good alternative to the 

field experiments.  Lipkens et al. [7, 40-42] , Ollivier et al. [44] showed that laboratory-scale 

experiments using N-waves produced by electrical sparks and downscaled turbulent medium 

offer an attractive alternative to field measurements since both the acoustic source and the 

turbulence can be controlled.  The experiments of Lipkens are based on the propagation of spark 

produced N-waves through kinematic turbulence produced by a plane jet of variable speed and 

variable width, between 0.05 m and 0.3 m. Propagation of both plane and spherical waves was 

studied.  In order to outline more specifically the effect of occurrence of random caustics, 

Ollivier et al. [44] investigated longer propagation distances than Lipkens and two types of 

inhomogeneities: temperature and velocity fluctuations.  A plane free jet was used to generate a 

field of velocity random fluctuations, and a heated grid was used to generate a field of random 

fluctuations of temperature.  In the case of thermal turbulence, the random variable is scalar, 

while in the case of kinematic turbulence it is vectorial.  This difference induces different 

probability distributions for the occurrence of caustics.  The thermal turbulence set-up was used 

mainly to investigate long-range propagation (0.6 m to 4.4 m) for a fixed level of turbulence.  

The kinematic turbulence set-up was used to investigate the effect of turbulence intensity.  Note 

that these experiments [44] were limited to the spherically divergent waves. 

The characteristic spatial and temporal scales of the real atmosphere sonic boom problem 

and those of the laboratory scale experiments from the series of publications [7, 40-42, 44] are 

compared in the table 1.2. 
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We note that the scaling factor for the duration of the wave, the outer scale of turbulence, 

and the propagation distance in the laboratory and outdoor experiments is of the order of 

1/10000, while for the rise time of the wave it is approximately 1/1000.  As thermoviscous 

dissipation increases significantly with frequency (i.e. decreases with the wavelength), the 

dissipation parameter is not scaled properly in model experiments in air.  For example, the plane 

wave attenuation coefficient at 50 Hz is of the order of 10−5 and 10−1 at 50 kHz [62].  Main 

contribution to the energy spectrum of the sonic booms are at the frequencies lower than 10 Hz. 

In the laboratory scale experiment, the duration of the N-wave is around 30 μs and main 

contribution to the energy spectrum is in the interval 5 kHz – 50 kHz.  One consequence is that 

the overpressure cannot be scaled with the same factor as the turbulence lengths since the 

pressure in the laboratory experiments then must be too high to get the same nonlinear effects.  

Another consequence of the increase of thermoviscous dissipation with the frequency is that the 

shock rise time in the model experiments for a homogeneous atmosphere is mostly governed by 

the thermoviscous dissipation, while in the case of a sonic boom the dominant mechanism is the 

molecular relaxation.  In fact, for sonic booms the rise time is mainly determined by relaxation 

effects [63], as soon as the relaxation times of O2 and N2 molecules are much shorter than the 

duration of the pulse. For example, in the air with 34% humidity and 20º С temperature 

relaxation times are equal to 236 μs and 21 ms respectively for O2 and N2 molecules.  

In model experiments [7, 40-42,44], the distorted waveforms of the same shape as for the 

sonic booms in atmosphere were observed.  It was shown that turbulence leads to decrease of the 

mean peak positive pressure (15-20% depending on the turbulence intensity and propagation 

distance), to significant widening of the mean rise time (2-3 times), and to significant dispersion 

of these parameters (the standard deviation of the rise time is comparable with its mean value). 

In [44, 64] the authors show that sound reinforcement can be attributed to the propagation 

through random caustics.  Their experiments also outline the occurrence of multipeaked 

waveforms, which are caused by multiple paths, and summation of waves with slightly different 

Table 1.2 Comparison of spatial and temporal parameters of the sonic boom problem in real atmosphere 
[52] and in laboratory-scale experiments [40, 44]  

 Atmosphere Laboratory 
Distance of propagation through 

turbulence 
1-2 km 0.05 – 4.4 m 

Turbulence outer scale 100-200 m 0.01-0.12 m 
Turbulence inner scale 0.01 – 0.1 m 0.01 – 0.1 mm 
Acoustic pulse length 30 – 100 m 3.5- 15 mm 

Peak positive pressure level pmax 10-800 Pa 100-600 Pa 
Duration of the N-wave 90-300 ms 10-45 μs 

Rise time 0.5-10 ms 0.4 – 10  μs 
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arrival times after propagation through caustics.  These multipeaked waveforms can have much 

longer rise times than the mean rise time.  These observations are consistent both with the 

analysis of Pierce [65] who claims that long rise times are due to the summation of folded wave 

fronts, and with the numerical simulations of Blanc-Benon et al. [31]. 

In addition to the experimental investigation of spherically divergent wave propagation in 

turbulent medium, there was also an effort to generate a plane shock acoustic wave.  In this 

purpose, the spark source was placed in the focus of the parabolic reflector [Lipkens et al., 7, 40-

42].  It was supposed that such experiment would allow more accurate comparison of the 

experimental data with the results of numerical modelling, which were mainly obtained in 2D 

geometry due to high time consumption of the full 3D computation.  However, the 

measurements showed that the wave remains plane in still air at the distances from the source 

(about 40 cm), shorter than the distance where random caustics formed behind the outer scale 

random inhomogeneities in case of the presence of the turbulent flow.  This distance therefore 

was not sufficient for accurate investigation of nonlinear-diffraction effects and the effects of 

inhomogeneous media in the case of the presence of caustics.  

Laboratory scale experiments on focusing of high amplitude acoustic signal due to a 

single inhomogeneity are also presented in the paper by Thomas et al. [66]. The scaled 

propagation of the periodic acoustic wave through the inhomogeneous liquid medium was 

studied.  To model a regular scalar inhomogeneity the cylinders made of materials with different 

densities were placed into the liquid.  It was shown experimentally that the presence of 

inhomogeneities in the propagation medium leads to the formation of focusing areas and, in 

average, to the widening of the shock front. 

Propagation of intense acoustic waves in the inhomogeneous atmospheric boundary layer 

was also in the field experiments [6768-69 7071].  Explosive sources of different type have been used 

to generate an acoustic wave.  In these papers various effects were studied: the effects of 

nonlinear propagation [67], and effects of scattering of low frequency sound pulses on 

atmosphere inhomogeneities [70].  The experimental data obtained for the arrivals of acoustic 

pulses at different microphones have been further used to check the validity of some 

mathematical models of sound wave propagation at long distances [71].  Some statistical 

parameters of atmospheric inhomogeneities have been also obtained from the experimental data 

(velocity of horizontal wind fluctuation and its scale) [69]. 
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§ 1.2 Mathematical models for nonlinear sound waves propagating in 
inhomogeneous moving media 

1.2.1 Wave equations in acoustics of inhomogeneous moving media 

The rigorous way to derive the equations of acoustics of moving inhomogeneous media is 

to begin with the hydrodynamic system of equations. For the moving inhomogeneous medium in 

the case of linear acoustic wave propagation, the system of equations of hydrodynamics can be 

rewritten in the following form [3, 4, 72]:  
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where w  – is the vibrational velocity of medium particles, u – the medium velocity, ∑= iρρ  - 

total density of the medium, p – the acoustic pressure, с – the sound speed, F  – the external 

forces affecting the medium, Q – the sound sources, ∇+∂∂= utdtd // . 

This system of equations describes the propagation of linear acoustic wave in moving 

medium with velocity u , under the following assumptions. First, it is assumed that the 

gravitational acceleration g = 0. Second, the terms of the order and smaller than 

)/,/max( 222 cucu ωε ⋅Ω=  are neglected, where Ω - is the characteristic frequency of variations 

of the medium properties (movement) utu ⋅Ω∂∂ ~/  and ω - is the characteristic frequency of the 

acoustic wave. Third, it is assumed that the medium velocity field u  is solenoidal, i.e. 0=∇u , 

and therefore, from the continuity equation, it follows that the considered medium is 

incompressible: 0/ =dtdρ . 

Following the transformations made by Ostashev et al. [4] and one more time neglecting 

the terms of the order or smaller than 2ε  (ε<<1), the system of equations (1.1) and (1.2) can be 

rewritten in the form of a stand alone equation for the acoustic pressure in inhomogeneous 

moving medium: 
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Neglected terms are usually very small in the ocean acoustics as soon as u/c ~10-3 -10-4. These 

terms are also neglected when the effects of medium velocity fluctuations on acoustic wave 
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propagation in turbulent atmosphere are studied. The small parameter in atmosphere is usually 

about u/c ~3·10-2  [Ostashev et al., 4] for outdoors sound propagation.  

From the other side, the system of equations (1.1) and (1.2) is used for precise description 

of the propagation of low amplitude sound waves in uniformly moving medium, when spatial 

derivatives of the medium motion are equal to zero, 0/ =∂∂ ji xu  [Ostashev et al., 4]. 

Particularly for this type of the medium motion the system of equations (1.1, 1.2) accounts for all 

orders of smallness of the hydrodynamic Mach number М=u/c and it is possible to derive an 

exact wave equation: 

      
0)( 222 =∇−∇⋅+

∂
∂ pcp
t

u  (1.4)

Note, that the first term in Eq. (1.4) contains the temporal derivative of u , which should be 

neglected due to the uniformity of the described medium.  

Moreover, it can be shown, that in acoustics of inhomogeneous moving media, Eq. (1.4) 

approximates the high frequency acoustic field [4].  The spatial derivatives of the parameters, 

characterized by the evolution of the acoustic field (acoustic pressure, vibrational velocity etc.), 

are proportional to 1/λ, where λ is the acoustic wavelength, and the derivatives of medium 

parameters (for example, hydrostatic pressure, medium motion velocity etc.) are proportional to 

1/l, where l is the characteristic scale of inhomogeneity.  Thus, the last derivatives can be 

neglected assuming that the acoustic wavelength is much smaller than the scale of 

inhomogeneity λ<< l.  With this approximation, the Eq. (1.4) can be easily derived directly from 

the linearized system of the hydrodynamics equations.  Note, that the Eq. (1.4) also follows from 

the Eq. (1.3) if it is assumed that there are no external forces and acoustic sources in the 

uniformly moving homogeneous medium.  

A simplified equation was derived in [4] for the stratified moving medium.  It is assumed 

that the vertical component of medium velocity is equal to zero, i.e. the velocity is given by the 

relation: )0,( ||uu = , where ||u  is the horizontal component of the medium velocity, which 

depends on the vertical coordinate z.  In this case, it is convenient to represent the acoustic 

pressure p and the vibrational velocity w  in terms of Fourier integrals, for example for the 

pressure : 
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Here ),( yx=r  is the horizontal radius vector, k is the horizontal component of the wave vector, 

ω is the acoustic wave frequency, p~  is the spectral density of the acoustic pressure field. From 
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the system of equations (1.1, 1.2), taking into account the representation (1.5), an equation for 

the spectral density of the acoustic pressure field p~  in stratified medium can be obtained: 
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Equation (1.6) for the acoustic wave propagation in the stratified moving medium exactly 

follows from the linearized system of the hydrodynamics equations and therefore precisely 

describes the effects at all orders of the hydrodynamic Mach number М = u/c. 

In 1986, O.A. Godin [28] derived a wave equation for the sound propagating in 3D 

inhomogeneous moving medium with slow currents: 
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In fact, this equation does not contain the second order spatial derivatives of the medium velocity 

u  as soon as by use of the incompressibility equation the last term in (1.7) can be rewritten as 

ijji xxpxu ∂∂∂∂∂∂ − /)/()/(2 1ρ . In this form, the Eq. (1.7) coincides with the Eq. (1.3) written for 

the medium without external forces and acoustic sources.  

Equation (1.7) was derived under the following assumptions: first, the derivation is done 

for the non layered medium in the absence of gravity waves g = 0 m/s2; second, the flow is 

supposed to be incompressible and medium parameters do not change along the medium 

trajectories in undisturbed flow: 0/,0/,0/,0 0 ====∇ dtdcdtddtdp ρu ; third, the 

Eq. (1.7) contains only linear component in terms of hydrodynamic Mach number М = u/c. 

Let us assume that the propagation medium is the ideal gas for which the equation of 

state is )'(0 ρρ +=+ RTpp , R = const.  Medium deviations from the equilibrium state with 

р0=const, T0=const are small and governed by the fluctuations of temperature T1.  Then for the 

monochromatic sound wave, retaining only linear on Т1 terms in Eq. (1.7), the following 

equation can be derived [27]: 
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where с0 is the sound speed at the ambient temperature Т=Т0.  

Equation (1.8) coincides with the equation of A.S. Monin [2, 73] used in the theory of 

sound wave scattering by the atmospheric turbulence.  The effects of sound scattering on 

atmosphere inhomogeneities have been also studied in the papers of Kraichnan [74], Lighthill 
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[75], Batchelor [76] and Neubert et al. [77] based on analysis of linearized system of 

hydrodynamics equations. 

In atmospheric acoustics the equation of A.M. Obukhov [27] is also often used 
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This equation is valid for smooth inhomogeneities of sound speed and density of the medium 

(kl>>1), and for small hydrodynamic Mach number under the condition of entropy conservation. 

In the case of ocean acoustics, the last assumption is not valid. 

In recent papers, the concept of Rayleigh has been also widely used.  This concept was 

introduced in view of the 2D problem investigation of sound refraction by the wind.  According 

to this concept, the real moving medium is replaced by a still medium with the effective values 

of medium density and sound speed.  For sound wave propagation in such a medium, the 

following wave equation was obtained [Godin et al., 12]: 
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where eρ  and ec  are the effective medium density and effective sound speed, respectively. 

Effective parameters of the medium in Eq. (1.10) are dependent on the direction of the sound 

wave propagation:  

 22 /, eee cccc ρρ =⋅+= nu  (1.11)

where n  is the vector, which determines the direction of the wave propagation in each point of 

the wave front (it is assumed that 10),( <<<++=∇ εε MOpikp n , i.e. the acoustic wave is 

a locally plane wave associated to the wave vector nk ). 

Equation (1.10) describes the propagation of the sound wave in moving medium if the 

following assumptions are valid: 
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These assumptions have been derived based on comparison of the Eq. (1.10) with the Eq. (1.7) 

[12]. Therefore, the wave Eq. (1.10) describes the effects of medium motion on the acoustic 

wave propagation with the accuracy of the order of )( MO +ε . To solve equations of the type 

(1.10) the high frequency asymptotic methods are used [Babich et al., 13]. 
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In [Wochner et al., 78] the propagation of nonlinear acoustic waves in air is modelled 

numerically using the system of hydrodynamics equations, which includes the continuity 

equation, Navier-Stokes equations, general equation of the heat transfer and Van-der-Waals 

equation of state to describe the relaxation processes of oxygen and nitrogen.  With the 

numerical algorithm developed in [78], authors obtained a good accuracy (less than 1% error) in 

the benchmark comparison of the solution to the system of equations with the existing analytical 

solutions for nonlinear wave propagation, for example with the Fubini-Bessel’s series [47].  The 

agreement between the numerical and analytical solutions for the thermoviscous absorption and 

dispersion caused by relaxation effects are also shown with the same accuracy (1%) [Pierce et 

al., 63].  However, such approach is not convenient due to the high computational costs of 

numerical modelling. 

Theoretical approaches, accounting for the statistical properties of the turbulent medium 

have been also developed.  For example, in [Pierce, 79] a dispersion relation was derived, and 

then on its basis the wave equation for sound wave propagation in the turbulent atmosphere with 

the scale of inhomogeneities smaller than acoustic wavelength was built.  The derived equation 

accounts for the medium velocity fluctuations in the direction of the acoustic wave propagation 

and also for the statistical properties of randomly inhomogeneous turbulent medium.  In case of 

linear sound wave propagation in the media without dissipation the derived equation takes the 

form of the Korteweg-de-Vries equation, in which the third spatial derivative of the field 

describes the effect of small-scale inhomogeneities on the acoustic wave propagation in turbulent 

media.  

Nonlinear propagation of one dimensional random waves, but in regular medium, was 

studied in details [80, 81].  Statistics of waves was considered based on the Burgers equation 

introducing random initial conditions in the form of the wideband noise [Gurbatov, 80].  

Nonlinear transformation of waveforms and spectrum of random signals was investigated.  

Statistics of nonlinear waves reflected from stratified randomly inhomogeneous media is also of 

interest.  In particular, based on the analysis of Eq. (1.4) in Born approximation, the optimal 

duration of acoustic broadband signal for sounding of ocean microstructure was obtained. 

1.2.2 Parabolic approximation for nonlinear sound waves in media with scalar 
              inhomogeneities 

Despite of the existence of various different types of wave equations for sound 

propagation in inhomogeneous moving medium, derivation of the quantitative results is very 

difficult. Solving these equations analytically is impossible in most of cases. As for the 
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numerical modelling, existing algorithms require huge memory capacities, that leads to the long 

calculation time and makes these numerical full wave equations solvers not effective for our 

problem.  For this reason, it becomes more interesting to consider the application of evolution 

equations obtained in the parabolic approximation of diffraction theory. These equations are 

simpler for numerical analysis, and at the same time account for maximal possible variety of 

different physical effects, related to the sound propagation in inhomogeneous moving medium. 

Due to the numerical efficiency and to sufficient precision in description of the diffraction 

effects, the parabolic approximation has been successfully used in modelling of acoustic fields in 

inhomogeneous media. In particular, it is widely employed in ocean and atmospheric acoustics.  

The classical evolution equation in nonlinear acoustics is the following equation of 

Khokhlov-Zabolotskaya-Kuznetsov type [Pelinovsky et al., 30]: 
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Equation (1.13) describes diffraction of nonlinear sound beams in smoothly inhomogeneous 

medium. Here p is the acoustic pressure, ( )⊥rxc ,  and ( )⊥rx,ρ  are the sound speed and density of 

the medium respectively, х is the longitudinal coordinate and ⊥r  is the transverse coordinate, 

β  is the nonlinearity and b is the thermoviscous absorption coefficients, cxt /−=τ  is the 

retarded time, n is the refraction index of the medium. When refraction distorts acoustic rays in 

inhomogeneous medium, the distance х is counted along the central ray (beam axis).  

Nonlinear evolution Eq. (1.13) describes the combined effect of different physical 

phenomena like nonlinearity (second term on left hand side of equation), thermoviscous 

absorption (third term on the left hand side), diffraction (right hand side), and accounts for the 

influence of scalar inhomogeneities on the sound wave propagation in smoothly inhomogeneous 

medium (fourth and fifth terms on the left hand side). Equation (1.13) appears to be sufficiently 

effective in terms of numerical modelling. However, when using the parabolic approximation it 

is necessary to have in mind that it is valid only for small angles of diffraction. 

Equation (1.13) has no analytical solutions. However, in some particular cases it can be 

simplified to take the form of parabolic equation for homogeneous media. For example, in the 

problem of random sound speed inhomogeneities influence on parametric generation of low 

frequency radiation, Gurbatov came to the homogeneous problem [80]. In this purpose he 

rewrote the initial equation of type (1.13) in the local coordinates system related with the 

acoustic ray. Based on these equations he found the directional diagrams and on-axis intensity 

distributions for parametric array.  
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Parabolic equation of the KZK type (1.13) accounts for scalar inhomogeneities and 

inhomogeneities, which can be reduced to scalar ones (local fluctuations of sound speed due to 

the medium motion in the direction of the wave propagation). However, as it was already 

mentioned in the introduction, taking into account the vector inhomogeneities, in particular of 

their transverse components is of great interest for atmospheric acoustics. Consider now the 

KZK-type evolution equation, which accounts for the motion of the medium. For example, in 

[Godin, 28] starting from the Eq. (1.7), a 2D linear parabolic equation for sound propagating in 

ocean with slow currents was derived in cylindrical coordinates for a fixed angle ϕ : 
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where k0=const,  k=ω/c, r2=x2+y2, ur is the projection of u on the direction of wave propagation. 

The quantity )exp( 0rikrpB −=  is assumed to be a slow varying function of r: BkBr 0= . To 

obtain Eq. (1.14), in addition to the usual approximations introduced in the derivation of the 

parabolic equation, the author also neglected the terms of the order of М 2 and ignored the 

horizontal refraction. Note, that for the motionless medium, Eq. (1.14) takes the form of the 

classical linearized parabolic KZK type Eq. (1.13). The only remained difference is due to the 

retaining of different orders of smallness of medium scalar inhomogeneities (variations of sound 

speed are not taken into account in Eq. (1.14), but the second term in square brackets is not 

neglected). 

Now let us consider that the sound source is centred near the point (0,0,z0) and that we are 

investigating the acoustic field at the distances from the source that are long in comparison with 

the acoustic wavelength. For this particular problem in [Godin, 27] starting from the wave 

equation analogous to Eq. (1.3), and assuming that ( ) 1
0

−rk  is a small parameter, a more precise 

(terms of order higher than O(M) are retained) than (1.14) linear parabolic equation was derived: 
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Here tgϕ= y/x, β=1−k0 ur/ω  are the local Doppler factor, ϕu  and ru  are the components of u in a 

cylindrical coordinates system. The component of the velocity field in transverse direction zu  is 

small due to the continuity equation and, therefore, it was not included into the Eq. (1.15). The 
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terms of smallness order higher than ( ) 1
0

−rk  were also neglected. Thus, all neglected terms can 

be assessed with ( ) ( )( )23 // εεϕϕ ++ cucuO , where ε  is the small angle parameter, 

cuMcum r // =≤= ϕ .  

If in Eq. (1.15) the terms containing ϕ derivatives are neglected, and if Ох axis is pointed 

from the source to receiver, then the parabolic equation will be transformed into a 2.5D equation: 

for each azimuthal direction, the 2D parabolic equation should be solved. If the terms of the 

order of O(M2) are neglected this equation coincides with the Eq. (1.14). 

Starting from the same Eq. (1.3) V.E Ostashev [4] derived a linear parabolic equation for 

the complex amplitude C: 000 /)exp( ckrikCp ω==  
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where 11/ 222
0 −=−= ncccε  is the parameter which characterizes variations in the speed of 

sound. 

Parabolic Eq. (1.16) is valid for sound waves, propagating in inhomogeneous moving 

media, and is derived using the following assumptions: the backscattering from the medium 

inhomogeneities is neglected and:  

 ( ) ( )( ) 43
0

1
0

1
0 ,1,1,1,1 lkxMlklk cm <<<<<<><<<< −− εθθ  (1.17)

where θ is the angle of acoustic ray deviation from the х axis, l is the characteristic scale of 

inhomogeneity, М =u/с0. 

The first inequality tells about small angle approximation of the parabolic equation, i.e. it 

is valid only for small angles of deviation of acoustic rays from the axis. Second inequality limits 

the size of inhomogeneities for which (1.16) is valid; the scale of inhomogeneity should be 

sufficiently large in comparison with the wavelength. Next inequality is always correct for the 

parabolic approximation (due to multiple scattering). Fourth and fifth assumptions limit the 

variation of sound speed in the medium and therefore the medium velocity. Sixth assumption 

was used to approximate the Green’s function by the Fresnel’s function 

( ) ( )[ ]xxrxikGFr π4/2/exp 2
0 +−= . For 0=u , Eq. (1.16) takes the form of the well-known 

parabolic equation for the acoustic wave propagating in motionless medium [47, 48]. It is also 

worth to note, that vector inhomogeneities, acting only in the direction of acoustic wave 

propagation are mathematically described in the parabolic equation with the term similar to that, 

describing the contribution of scalar inhomogeneities in sound speed. 



32  Nonlinear sound waves in inhomogeneous moving media (review)   

In spite of existence of a variety of well-developed theoretical models of sound wave 

propagation in inhomogeneous moving media, their analytical solutions have been not yet found 

and numerical modelling is still very difficult to realize. First results of numerical modelling for 

the parabolic equation have been only recently obtained for simplified models. For example in 

[Blanc-Benon et al., 31] numerical modelling of sound propagation in the field of scalar 

inhomogeneities has been done using the modified evolution equation of the KZK type. The term 

accounting for the effects of scalar inhomogeneous field, like medium temperature or density 

fluctuations, was introduced into the KZK equation. The inhomogeneity itself is included into 

the local sound speed с(x,y), for example, using well-known expression for gas between sound 

speed and medium temperature. Thus, с(x,y)=с0+ с’(x,y). 
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where β and b  are the coefficients of nonlinearity and absorption respectively, τ is the retarded 

time. 

The first term on the right hand side of the Eq. (1.18) accounts for the effects of 

diffraction, the second term accounts for the thermoviscous absorption, and the third term 

accounts for the nonlinear effects. The fourth term on the right hand side is implemented to 

account for the effects of scalar inhomogeneities. Note that for numerical modelling the 2D 

formulation of the equation was used. 

Numerical results were also obtained for wide-angle linear parabolic equations.  A 

number of papers is devoted to the investigations of sound wave propagation through scalar and 

vector inhomogeneities [23-26, 29]. A typical wide-angle parabolic equation written for complex 

amplitude C ( )exp( 0 rikCp = , 00 / ck ω= ) takes the following form [Dallois et al., 24]: 
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The acoustic wave propagates here along х axis, ux is the projection of the medium velocity on 

the direction of the wave propagation. This equation is valid up to the angles of refraction equal 

to o80  from the axis. If one neglects the second term in square brackets in Eq. (1.19), it will take 

the form of the parabolic Eq. (1.16) for the homogeneous moving medium with longitudinal 

flows, 0=⊥u . 

In addition to the typical wide-angle parabolic equation the linear WAPE were derived 

for sound wave propagation in homogeneous media with currents or flows and in 
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inhomogeneous moving media without flows [23, 24, 29]. First type of WAPE equations is used 

to investigate the effect of wind in all directions on the propagation of sound waves in 

atmosphere. The second one is used for the investigation of the effects of inhomogeneous 

atmospheric turbulence on the sound wave propagation. A linear wide-angle parabolic equation 

for sound in inhomogeneous moving media was also derived in [Godin, 26]. In this work, the 

variety of linear WAPE wave equations was considered.  Equations of this type are more 

accurate than the “usual small angle” parabolic equation and provide the accomplishment of the 

energy conservation law and theorem of flow reversal in parabolic approximation.  However, 

these equations are linear and do not allow investigating the evolution of nonlinear-diffraction 

acoustic fields. 

1.2.3 Equations of nonlinear geometrical acoustics 

As we already mentioned, it is very difficult to find the solutions to the previously 

referred wave equations and simpler parabolic equations even using numerical methods: only 

recently, due to the development of new powerful computing systems, it became possible to find 

numerical solutions in acceptable computational time. That is why in previous studies [16-22] 

the propagation of sound waves through different type inhomogeneities (scalar and vector ones) 

were considered in the high frequency approximation of geometrical acoustics.  These studies 

were mainly devoted to the development of analytical solutions in the case of stratified 

inhomogeneous media.  The main advantage of the geometrical acoustics approach is that the 

obtained results are relatively simple and easy to interpret visually, and their physical 

interpretation is clear.  The main disadvantage is that it does not account for the diffraction 

effects.  

In [Rudenko et al., 16] the equations of nonlinear geometrical acoustics in 

inhomogeneous media were derived starting from the classical evolution parabolic Eq. (1.13) of 

KZK type for the inhomogeneous medium. With the following change of variables 

cx /),( rψτθ −= , where function ),( rxψ  is the eikonal, and in the limit of short wavelength, a 

system of equations in the approximation of geometrical acoustics was derived: 
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Equation (1.20) describes the eikonal spatial evolution, i.e. the bending of acoustic rays in 

the medium with scalar inhomogeneities. Equation (1.21) appears to be a generalized Burgers 

equation and describes the distortion of the waveform. In comparison with the classical Burgers 

equation, it contains three additional terms: the first one is proportional to р and is responsible 

for waveform evolution due to changes in medium impedance, the two other terms describe the 

waveform behaviour according to the distortion of the wave front and narrowing or widening of 

the ray tube. Note that the system of equations (1.20, 1.21) was obtained in the limit of short 

waves that means that the wave amplitude, components of the wave vector, and medium index of 

refraction vary slowly at distances, comparable to the wavelength. Such wave appears to be 

locally plane. 

It turns out, that Eq. (1.21) can be simplified by eliminating the θ  variable using the 

representation of plane waves for the acoustic pressure p. It is straightforward to do the 

transformation in the very important case of sawtooth wave propagation. For this type of waves, 

the function ),( rxC  is no more the complex amplitude of the pressure, but the peak pressure 

value in the sawtooth waveform. Following this approach the modified transport equation, 

comprehensively accounting for nonlinear effects, was derived as: 
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However, the rigorous way to derive the equations of geometrical acoustics is to start 

with the full wave equation. For example, in [Rudenko et al., 22] as the starting equation the 

nonlinear wave equation for acoustic pressure р was used: 
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As it was already denoted, here )(),(),( rrr βρc  are the sound speed, the density of the medium 

and nonlinearity coefficient at an arbitrary spatial point К. At a fixed point of space К0 these 

parameters have the following values 000 ,, βρc . The solution is represented in the form 

),/)(( 0 rr ctpp ψτ −== . After substituting this formulation of the pressure р in (1.23), and 

after transformations it is possible to derive a system of geometrical acoustics equations for 

sound propagation in media with inhomogeneous sound speed and density fields: 
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During the derivation of Eqs. (1.24) and (1.25) the high frequency approximation and 

approximations of nonlinear acoustics were used. According to the high frequency 

approximation, the derivative τ∂∂ /  is proportional to the large number )1(1 <<− εε .  

Moreover if we assume that ε  and M are of the same order of smallness ε ~М, then the 

equations (1.24) and (1.25) follow from the Eq. (1.23) after the division on terms of the same 

order of smallness. According to the nonlinear acoustics, the acoustic Mach number is assumed 

to be a small parameter 1/ 2 <<= cpM ρ . Note also, that the eikonal Eq. (1.24) coincides with 

the eikonal equation for linear acoustics [Vinogradova et al., 47]. 

Solving geometrical acoustics equations leads to certain difficulties, due to the a priori 

determination of the eikonal ψ .  Description, based on the Eq. (1.24) permits intersection of the 

acoustic rays, and therefore the eikonal function is determined ambiguously in these points. 

Thus, the approach (1.24, 1.25) still allows solving the problem of sound wave propagation with 

arbitrary angle of ray divergence, but due to the ambiguity, only up to the first intersection of 

rays. 

Previous equations of nonlinear geometrical acoustics (1.24, 1.25) were derived for 

motionless medium. However, for more accurate description of sound wave propagation in the 

media like inhomogeneous moving atmosphere or fluctuating ocean it is also necessary to 

account for medium motion. In the recent work [Rudenko et al., 21] starting from the system of 

hydrodynamics equations a system of geometrical acoustics equations for sound propagation in 

the field of stationary winds was derived. The equations of nonlinear geometrical acoustics for 

sound propagation in inhomogeneous moving media are then: 
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Here grw  is the vector of sound wave local group velocity. Equation (1.26) was derived by 

Blokhintsev in 1944 and has been then widely used for determining of rays trajectories in media 

with different type of inhomogeneities [3]. The transport Eq. (1.27) and eikonal Eq. (1.26) will 
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take the form of geometrical acoustics equations for motionless media (1.24, 1.25) if it is 

assumed that u =0. 

In spite of relative simplicity of geometrical acoustics equations it is very difficult to find 

their analytical solutions in the general case of moving inhomogeneous medium. Even in the 

case of stratified medium (this assumption sufficiently simplifies the equations) the solutions are 

found mainly for the eikonal equation [17, 20]. In recent work [Rudenko et al., 20], the general 

solution of the transport equation has been also derived for the stratified medium.  However, for 

more general case of sound wave propagation the numerical methods are necessary. 

To account for the diffraction effects during propagation of acoustic waves in 

inhomogeneous moving media, a modified method based on the numerical solutions to the 

nonlinear geometrical acoustics equations up to the distances of caustics formation combined 

with the solution to the nonlinear diffraction evolution equation around caustics is developed in 

[8283-8485]. To estimate the diffraction effects on the cusp caustic [Kravtsov et al., 15] the 

nonlinear Tricomi equation is solved [Coulouvrat, 84]. Diffraction effects around more complex 

fold caustics are described using nonlinear parabolic equation of the KZ type [Marchiano et al., 

85]. The solutions in different spatial areas are matched at a distance from the caustics where 

diffraction effects can be neglected. Such approach, in contrast to pure geometrical acoustics, 

allows predicting the value of the acoustic pressure in the caustic.  However, it is convenient 

only for the description of nonlinear diffraction effects on single standing alone caustics. When 

the acoustic wave propagates in randomly inhomogeneous medium multiple caustics occurred 

along the ray paths, and that makes this approach not very efficient.  

Another interesting approach is to calculate the diffraction pattern of the acoustic field in 

inhomogeneous turbulent medium along the ray trajectories [Coulouvrat et al., 86]. For this 

purpose, the parabolic equation should be rewritten in the ray coordinates. This gives an 

opportunity to calculate the acoustic field with account for the diffraction effects along rays 

propagating at arbitrary angles to the initial direction of the wave propagation. However, finding 

the solution of such equation is quite difficult and appropriate numerical methods are not yet 

developed.  

§ 1.3 Theoretical modelling of turbulent media 

In the recent literature, we found several methods used to generate a random 

inhomogeneous velocity field in order to model the propagation of acoustic signals in turbulent 

atmosphere. If it is assumed that the atmospheric turbulent layer is sufficiently thin and it is only 
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a small fraction of the wave propagation distance then the model of infinitely thin phase screen is 

used [8788 89- 90 9192]. If the width of the turbulent layer is comparable with the distance of the acoustic 

wave propagation then the model of continuous random medium is used [18, 19]. In this work, 

the second method is further described and implemented.  

When the random velocity field is modelled, it is assumed that the propagation time of 

acoustic wave through turbulent layer is short in comparison with characteristic time scale of the 

evolution of the medium parameters, i.e. turbulent field is assumed to be “frozen” (it does not 

depend on time). The medium with vector inhomogeneities is further modelled as the set of Jmax 

randomly oriented spatial Fourier modes [18, 93]:  
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Here jK  is the wave vector, φj is the phase of jth Fourier mode.  The angle θ j between jK  and х 

axis, and the phase values φj for each mode are taken from the independent random number 

sequences with uniform distributions within the interval [0, 2π]. Equation (1.30) is the 

consequence of velocity field incompressibility. The velocity amplitude of each mode | )(~
jKU | 

in Eq. (1.29) is determined by kinetic energy spectrum )(KE  of considered type of medium 

turbulence: )(~)(~ KEjKU , K=K . In this work, two different formulations for the 

turbulence energy spectrum are considered. The first one is derived for a single-scale medium 

with a Gaussian longitudinal correlation function: )/exp()( 22 Lrrf −= , and the second one is 

derived for a multiple-scales medium with the modified von Karman energy spectrum, which is 

closeer to the spectrum of realistic turbulent atmosphere [9495-96]. For 2D turbulence, the 

Gaussian energy spectrum takes the form: 

where 2
rmsu  is the medium velocity fluctuations variance, L is the characteristic scale of the 

inhomogeneity, which is connected to the longitudinal integral length scale Lf  by the relation 

2/fLL π= . In the other words, the energy of turbulent fluctuations is mainly concentrated in 

disturbances of scale L. This idealized energy spectrum is further used for generation of “simple” 

randomly inhomogeneous fields. Gaussian spectrum decreases rapidly at high wave numbers 

(Fig. 1.2h).  In practice, the spectrum of real atmosphere has sufficiently wide inertial zone and  
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Fig. 1.1 Fourier modes orientation in space 

such decrease is observed at much higher wave numbers. However, the results, obtained using 

Gaussian approximation of the real atmosphere spectrum, and the conclusions made will not be 

limited to the Gaussian formalism only. 

Distribution of turbulent ripples energy in the interval from outer scale L0 and inner scale 

l0 is well described by a modified von Karman energy spectrum (Fig. 1.2h):  
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where Km=5.92/l0.  The inertial zone, described by a modified von Karman spectrum appears to 

be in a very good agreement with the “five third” Kolmogorov’s law: )(KE ~ K-5/3 

If a sufficiently high number of modes is considered in Eq. (1.29), and each of them is 

randomly chosen with uniform probability distribution of θ j   and φ j, then the resulting velocity 

field )(ru  will be statistically homogeneous and isotropic and will have a priori defined energy 

spectrum [Karweit et al., 19]. In this work random velocity field with Gaussian spectrum is 

modelled using 300 Fourier modes, uniformly distributed between 0.01/L and 9.0/L. In the case 

of the modified von Karman spectrum the medium velocity field is modelled with 600 Fourier 

modes (for a better discretization of the inertial zone), logarithmically distributed between 

Kmin=0.1 and Kmax=35. The outer scale of the inhomogeneity L0 for the modified von Karman 

spectrum is chosen to be equal to the scale of the field with Gaussian energy spectrum L0=L= 4λ, 

where λ is the acoustic wave length in the medium of propagation. The inner scale l0 is equal to 

l0=2.4λ. The root mean square value of velocity fluctuations for both spectra is equal to 

3=rmsu  m/s, that results in the velocity fluctuations amplitude about 15 m/s. 
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Thus, each realization of randomly inhomogeneous medium is characterized by the shape 

of its energy spectrum, the root mean square velocity of the fluctuations and by the set of random 

modes. Such method of inhomogeneous field generation allows to simulate the propagation of 

acoustic waves under different conditions through the same realization of inhomogeneous field 

as soon as we use the same sequence of random numbers. 

Shown in Fig. 1.2 are typical random velocity field realizations obtained for both the 

Gaussian (left column, a - c) and modified von Karman (right column, e - g) formulations of the 

random medium energy spectra. The realizations are represented as field patterns for the 

longitudinal U|| (a, e) and transverse ⊥U  (b, f) velocity components, and the absolute value (d, 

g). In the distribution patterns of longitudinal and transverse components of the medium velocity, 

blue colours correspond to the negative velocity directions. In the distributions of the absolute 

value of the medium velocity, blue colours correspond to less intense fluctuations. As it was 

previously mentioned, the velocity fluctuations with Gaussian energy spectrum have one 

characteristic scale, and therefore have smoother structure without small-scale inclusions. 

Contrary to that, inhomogeneity with modified von Karman energy spectrum contains many 

different scales that result in jagged fine structure of the field.  

It should be emphasized here, that the randomly inhomogeneous medium velocity fields 

shown here are statistically homogeneous and isotropic. The two-point correlation function of 

homogeneous and isotropic turbulent medium depends only on two scalar correlation functions 

(Karman-Howarth relation [2, 73, 97]), longitudinal f and transverse g (Fig. 1.2d):  
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where r is the radius vector and ijδ  is the Dirichlet function. Longitudinal and transverse 

correlation functions have different characteristic scales (correlation lengths), which are 

determined by the following relations: ∫
∞

=
0

fdrL f  and ∫
∞

=
0

gdrLg .  The Taylor scales of 

correlation functions can be also determined as: 2/)0('',2/)0('' gf gf −=−= λλ . For 

incompressible flows, it is possible to obtain the exact relation between the correlation lengths 

using the following formula: 0)1( =−
−

+
∂
∂ N

r
gf

r
f , where N is the dimension of space. Thus, 

in 3D Cartesian geometry one may obtain, that the longitudinal correlation length is two times 

longer than the transverse one: Lf = 2Lg, and for Taylor scales it can be found that: gf λλ 2= . 

In 2D Cartesian geometry, the integration of the relation g = f + r·f’' gives Lg = 0; which means  
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Fig. 1.2 Comparison of random velocity field distributions with Gaussian (a-c) and von Karman (e-g) 
energy spectra. a) and e) – longitudinal components of medium velocity fluctuations, b) and f) transverse 
components, c) and g) – absolute value of velocity fluctuations, d) – longitudinal and transverse 
correlation functions, h) – comparison of Gaussian and von Karman spectra with the Kolmogorov’s law.  
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that the negative part of the correlation function is more pronounced than in the 3D case. 

However one can obtain the relation between Taylor scales gf λλ 3= . It means that in 

longitudinal (i.e. parallel to the chosen component of the velocity) direction the characteristic 

scale of inhomogeneity is longer than in the transverse direction.  That is, х component of the 

random velocity field appears to be elongated along the х axis, and у component –  along the у 

direction.  In other words, medium particles move easier in the direction of local disturbance 

than in transverse one.  

§ 1.4 Conclusion  

Starting from early 40th a strong breakthrough in understanding of sound wave propagation 

in inhomogeneous moving medium was made. Many experimental and theoretical studies have 

been done in application of sonic boom propagation in the turbulent atmosphere. Formed near 

the ground surface overpressures were shown to be dangerous for human being. Theoretical 

studies based mainly on geometrical acoustics approach and parabolic approximation showed a 

strong influence of turbulent fluctuations on acoustic field structure, peak and mean wave 

parameters near the ground surface. However, these studies do not give the full understanding of 

the investigated phenomenon. To predict more accurately the peak and mean characteristics of 

the acoustic field, a more complete theoretical model should be developed. The combined effect 

of nonlinearity, frequency dependent thermoviscous absorption and relaxation, diffraction effects 

and effects, related to the presence of inhomogeneous moving medium should be simultaneously 

taken into account. Moreover, numerical methods, which should be used to find a solution to this 

model, became efficient only nowadays with developing of powerful computational facilities. In 

addition, in experimental investigations the effect of random caustics and the effect of multiple 

focusing on statistics of acoustic wave parameters have not been completely studied and is still 

of interest. Thus, the problem of nonlinear acoustic signals propagation in turbulent atmosphere 

appears to be relevant for the scientific community.  

 





 

 

 

 

Chapter 2 

Chapter 2 PROPAGATION OF NONLINEAR N-WAVES IN A 
TURBULENT VELOCITY FIELD (laboratory-scaled 
experiment) 

As we already discussed in the §1.1.2, experimental investigation of sonic boom 

propagation in real atmosphere is very difficult due to impossibility of to have a full description 

of the atmospheric conditions during the flight of a supersonic airplane, and also due to the high 

costs of these field experiments. Lipkens et al. [7, 40-42] and Ollivier et al. [44] showed that 

laboratory-scale experiments using N-waves produced by electrical sparks and a downscaled 

turbulent medium offer an attractive alternative to field measurements since both the acoustic 

source and the turbulence can be well controlled. 

Moreover, the laboratory experiment is much easier and repeatable under given 

environmental condition that makes it indispensable for the investigation of high amplitude 

acoustic pulse propagation in inhomogeneous moving media. Well-designed and conducted 

laboratory experiment will allow to validate both the developed theoretical model and numerical 

algorithm by comparison of the results of simulations with the experimental data.  

Such experiments have been previously conducted in [7, 40-42], but due to the small 

width of the generated turbulent layer, which was the propagation path for the pulse, it was not 

possible to investigate the influence of random caustics on the statistics of acoustic field 

parameters.  The width of the turbulent layer in considered experiments was of the order of the 

characteristic distance of first caustics formation, determined by the large-scale inhomogeneities.  

In particular, these inhomogeneities lead to more considerable augmentation of the acoustic 

wave focusing coefficient.  Moreover, short length of the generated acoustic wave lead to strong 

thermoviscous and relaxation-induced absorption of acoustic energy, which was tens of times 

stronger than for sonic booms propagating in real atmosphere.  
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An experimental setup has been built in Ecole Centrale de Lyon to create random caustics 

of different orders and at different distances of acoustic wave propagation. Thus, depending on 

the intensity of turbulent fluctuations it is possible to measure caustic of high order, caustics of 

first order only, or no caustics at all.  For this purpose, a 2D-jet larger than used in Refs. [7, 40-

42] has been designed.  Consequently, the characteristic scales of turbulence and the propagation 

distance are larger than in previous experiments. This decreases the relative effect of the 

thermoviscous absorption and relaxation phenomena, compared to the effect of the presence of 

inhomogeneities. Thus, the experimental setup allows investigating the effect of random caustics 

on the statistics of acoustic field in turbulent medium under conditions, which better correspond 

to real atmosphere than in the previous studies [7, 40-42]. 

This new arrangement of the ECL facilities allows generating fully developed turbulent 

fields and high amplitude acoustic pulses, which propagate through the turbulent layer 

perpendicular to the mean flow (Fig. 2.1). The experimental setup for the turbulent field 

generation is discussed in §2.1 together with the results of the turbulent flow measurements.  

Main goal of this paragraph is to set the vertical plane where the turbulent field is fully 

developed, i.e. its properties are well described using the Kolmogorov’s model. In this plane, the 

acoustic part of experiment is then conducted. Corresponding experimental setup for generation 

of N-pulses is presented in §2.2 together with the results of acoustic field measurements (§2.3).  
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§ 2.1 Generation and measurement of fully developed turbulent field 

2.1.1 Experimental setup 

The experimental setup, designed to create fully developed turbulent velocity fields 

(Fig. 2.2) consists of a jet 1 installed between two wooden baffles 2, and air turbine (not 

presented in the picture), which was used to create strong airflow.  The height of the jet is 

L = 160 mm and its width is 1400 mm, therefore it can be considered as a plane one [Gutmark et 

al., 98]. The airflow, accelerated by the turbine, passes through the jet and further propagates 

between the wooden baffles of 2000 mm x 3100 mm (height x length) dimension.  The length of 

the baffles was chosen in such way that the turbulent flow coming out from the bounded region 

was fully developed. These baffles are necessary elements of the experimental setup, intended to 

avoid the decrease in turbulent intensity due to the widening of the flow in free space.  The 

absence of baffles would result in small and insufficiently intense turbulent fluctuations at the 

distances where the flow is fully shuffled and the turbulence becomes developed. 

The velocity of the flow at the exit of the jet during measurements varied from 0 to 

50 m/s.  Mean characteristics of the velocity field were measured using a Pitot tube and 

fluctuations were measured using the method of simple hot wire probes (DANTEC 55P11), and 

cross wire probes (DANTEC 55P51).  The tungsten wires of the cross wire anemometer 

(Fig. 2.3) were tightened perpendicularly to each other. The length of the wire was 3 mm, 

including the sensitive part of 1.25 mm length. The distance between the wires was 1 mm, while 

the diameter of each wire was about 5 μm.  Such construction allows simultaneous measurement 

of two airflow velocity components.  To measure the flow velocity the wire of the simple 

anemometer was placed perpendicularly to the flow direction. To reach maximal efficiency of 

the cross wire anemometer its wires were placed at the 45º angle to the flow direction. 

 Calibration of anemometers was done in the potential cone near the exit of the jet 

(Fig. 2.4a), where the flow was assumed to be 

nearly laminar [97, 98, 99].  Absolute flow 

velocity measurements done by the Pitot tube were 

used as a reference to calibrate the anemometer.  

Using the heat transfer law, the anemometer 

output voltage E was correlated with the flow 

velocity by the following polynomial expression 

of the 4th order: 
Fig. 2.3. Photo and sketch view of the cross 
wire thermo anemometer  
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4
4

3
3

2
210 ECECECECCU jet ++++= , where Ujet is the flow absolute velocity at the exit of 

the jet measured with the Pitot tube, Е is the anemometer output voltage, iC  are real coefficients, 

chosen so that the polynomial fits experimental data with a very good accuracy (Fig. 2.4.b).  The 

calibration of the anemometer was repeated twice one day before each series of measurements. 

2.1.2 Measurement of the turbulent field parameters 

Mean velocity of the turbulent flow was measured both in the area between wooden 

baffles and outside this area using of a Pitot tube and a simple hot wire. The results of 

measurements between baffles are presented in Fig. 2.5 as two-dimensional patterns of mean 

 

 
Fig. 2.5 2D distribution of mean flow velocity a) in vertical XZ plane and b) in horizontal XY plane.   

 

Fig. 2.4 a) View of a Pitot tube (2) and anemometer (1) positioning in the potential cone during the 
calibration; b) calibration curve. Experimental data are well described by the 4th order polynomial law.  
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flow velocity distribution in the ХУ horizontal plane and in the XZ vertical plane.  

Measurements showed that at the end of the bounded by baffles area the mean flow becomes 

about two times slower than at the exit of the jet independently from the turbine power.  Note 

also, that the axis of the flow is slightly inclined in the positive direction of Z axis and maximum 

of the mean velocity is reached at the vicinity of baffles and then drops to zero.  

In contrast to the mean flow velocity, the root mean square velocity of turbulent 

fluctuations increases gradually with the distance from the jet (Fig. 2.6).  The rate of turbulent 

interfusion of the medium meanrms Uu /  at the distance of 560 mm from the jet is sufficiently small 

and is about 2%, for all investigated flow velocities at the exit of the jet.  At the distance 1600 

mm from the jet the turbulence level increases up to 17 - 20%, depending on the initial flow 

velocity.  The level of turbulent interfusion of the air equal to %20/ =meanrms Uu , at which the 

turbulence can be assumed as fully developed [Gutmark et al., 98], is reached at the distance 

X = 2560 mm from the jet and further slightly increases with the distance.  These turbulent levels 

indicate that the turbulence itself became fully developed [Gutmark et al., 98].  At the distance 

X = 3780 mm from the jet, generated turbulent field also appears to be fully developed and, 

moreover, mean and root mean square medium velocities remain intact almost everywhere inside 

the flow, that represents the necessary condition for the selection of the plane of acoustic pulse 

propagation. 

In addition to the selection of the distance, at which the acoustic measurements should be 

done, it was necessary to determine the turbulent velocity field parameters, i.e. the characteristic 

fluctuation scale and its intensity should be measured.  It is possible to determine the turbulence 

scale by measuring the turbulence energy spectrum.  Sufficiently long measured time profile of 

the turbulence was measured and the energy spectrum of the medium velocity was calculated 

from this measurement.  The experiments was done using low discretization frequency (5 kHz) 

and sufficiently long time profile (2 - 3 min) to describe low frequency part of the energy 

spectrum and high discretization frequency (100 kHz) in order to register its high frequency part 

according to the Nyquist theorem.  When the frequency spectrum of the registered realization 

was found, it was transformed to the spatial spectrum using the Taylor hypothesis about the 

  
Fig. 2.6 The level of turbulent interfusion in the flow a) in ОZ axis and b) in ОХ axis. 
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Fig. 2.7. Comparison of the measured energy spectrum of turbulent fluctuations (low and high 
frequency parts) with the theoretical formulation of von Karman spectrum and with the «-5/3» 
Kolmogorov’s law for the inertial interval. Measurements were done at the distance Х = 3780 mm 
from the jet at the axis of the turbulent flow.  

turbulent structures transfer by the mean flow [Monin et al., 73]: )2/()()(11 πmeanUfEKE =  

where meanUfK /2π=  (Fig. 2.7).  According to the Kolmogorov’s hypothesises, the energy 

spectrum of fully developed turbulence has overextended inertial interval of energy distribution 

and this inertial interval is given by the «-5/3» power law (Fig. 2.7). The limits of the inertial 

interval are determined by the given for each turbulent medium outer and inner scales. 

Moreover, experimentally obtained energy spectrum is well described by the theoretical 

formulation of one dimensional modified von Karman spectrum E11(K) (Fig. 2.7) [97], that also 

confirms the statistical isotropy and homogeneity of the turbulent field at chosen distance from 

the jet (i.e. turbulent field is fully developed here).  One-dimensional modified von Karman 

spectrum can be obtained from the 3D formulation by means of the integration on the wave 

numbers: 
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Here rmsu  is the root mean square velocity of the turbulent flow, L0 is the outer scale of the 

turbulence, Km = 5.92/l0, where l0 is the inner scale of the inhomogeneous turbulent medium, Г is 

the Gamma function.  The best fit of experimental data with the modified von Karman spectrum 

is achieved for the following values of outer and inner scales L0 ∈ [200, 220] mm, l0 ∈ [1.25, 

1.7] mm. Note here, that the value of the inner scale may be not accurately measured as the 

sensitivity of measurements is limited with the length of the hot wire sensitive part l = 1.25 mm.   

meanU
fK π2
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π2
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meanU
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l0=0.0017 m 
L0=0.2 m 



§ 2.1 Generation and measurement of fully developed turbulent field 49 

Another characteristic scale of the turbulent 

field – integral length scale – can be estimated 

by the theoretical relation between its value 

and the outer scale: Lf = 0.747L0 ∈ [150, 

164] mm. The integral length scale of the 

turbulent flow can be also estimated by the 

starting point of the energy spectrum, that for 

different measured spectra gives: 

2
11)1(

11 )(
)0(

rms
f u

KE
LL

=
== π  ∈ [150, 170] mm 

Variation in integral length scale value is due 

to the measurements in different points of 

turbulent flow at the same distance from the 

jet and due to the interpolation of low wave 

numbers energy spectrum to zero axis.  

However estimated integral length scale value 

seems to be correct as soon as it is in a very 

good agreement with the main characteristic 

scale of the experimental setup – the width of 

the jet, which is equal to L = 160 mm. Thus, 

selection of the plane for the acoustic 

experiment at the distance Х = 3780 mm is 

well justified. In this area, the turbulent 

fluctuations can be assumed as fully 

developed, and, in particular, homogeneous 

and isotropic. It worth to note, that at this 

distance the wooden baffles – bounds are not 

present and turbulent fluctuations are 

developed in free space.  

Characteristic properties of the 

turbulent flow are further investigated in the plane of acoustic measurements (X = 3780 mm) 

using the method of cross wire anemometry. This allows measuring two fluctuating components 

of the turbulent field. Shown in Fig. 2.8 are the distributions of flow velocity mean values 

jetmean UU /  (Fig. 2.8a), and root mean square velocities of two horizontal component of medium 

 

 

 
Fig. 2.8 Distributions of mean flow velocity 

jetmean UU /  a); root mean square values of 

turbulent fluctuations meanrms Uu /  b); and 

meanrms Uv /  c) in the plane of acoustic 
measurements at Х = 3780 mm from the jet at 

jetU = 40м/с. Contour lines show the areas of fully 
developed turbulence (levels of interfusion are 

28.0/ <meanrms Uu  and 24.0/ <meanrms Uv ). 
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motion meanrms Uu /  (Fig. 2.8b) and meanrms Uv /  (Fig. 2.8c).  It is seen that the mean flow velocity 

is about two and more times lower than at the exit of the jet jetU , and it is nonuniformly 

distributed in the YZ plane.  Mean flow velocity decreases in the vertical direction while moving 

away from the axis of the jet.  In horizontal direction the slight increase of velocity is observed 

with increasing the distance from the Z axis, and its maximum is reached in the vicinity of baffle 

projections (Y = ±700 mm) on the plane of interest.  Then the fast drop of the mean flow velocity 

is observed. As for the mean Wmean and Vmean components – they are almost equal to zero, like it 

should be, as soon as there is no mean flow in transverse direction (these components are not 

presented in the figure). Root mean square values of medium velocity components are also 

changed nonuniformly while moving away from the axis of the jet. Therefore, the turbulence 

appears to be fully developed only in the limited area. Contour lines in Fig. 2.8b,c show the level 

of turbulent interfusion equal to 28.0/ =meanrms Uu  and 24.0/ =meanrms Uv . As for the fluctuations 

along Z axis, their root mean square velocity rmsw  behaves like rmsv . In areas confined with the 

described contour lines, the turbulence can be assumed as fully developed, i.e. homogeneous and 

isotropic.  Thus, the area of interest is limited in vertical direction with Z = [-50, 50] mm and in 

horizontal direction with Y = [-650, 650] mm.  It can be shown, that the acoustic wave almost 

always propagates in this area of fully developed turbulence on its way to the receiver 

(maximum displacement of the acoustic wave due to the most intense steady flow in the 

narrowest place of the marked region is equal to 0/ cUL meanp = 700 mm·20 m/s/ 340 m/s = 

 41 mm, where pL  is the distance of propagation up to the narrowest zone).   

Note that distributions of mean and root mean square velocities presented in Fig. 2.8 

correspond to the flow velocity at the exit of 

the jet equal to jetU = 40 m/s. However, for 

other values of flow velocity at the exit of the 

jet the shape of velocity distributions are 

similar due to the same geometry of the 

experimental setup.  Shown in Fig. 2.9 is an 

example of root mean square velocity and 

mean flow velocity dependence (measured at 

the axis of the system in the plane of acoustic 

measurements) on the flow velocity at the exit 

of the jet.  Obtained dependencies are linear 

 
Fig. 2.9. Dependence of the root mean square and 
mean medium velocities on flow velocity at the 
exit of the jet  

а=0.23 
b=0.19 

U, m/s 

Ujet, m/s 



§ 2.1 Generation and measurement of fully developed turbulent field 51 

Fig. 2.10 Spatial spectra of u (left) and v (right) components of medium velocity fluctuations in different 
points of the acoustic measurement plane.  
and tell about invariability of turbulent interfusion coefficient at the axis of the jet while varying 

the flow velocity at the exit of the jet: 23.0/ =meanrms Uu  and 19.0/ =meanrms Uv , that 

corresponds to the fully developed turbulence in all cases.  

In Fig. 2.10 are presented the spectra of the х and у components of turbulent velocity 

field, measured at different points of the YZ plane at the distance Х = 3780 mm from the jet. 

Measurements were done for the flow velocities jetU = 20, 30, 40 m/s at the exit of the jet and 

are presented here for jetU = 40 m/s. All experimentally obtained spectra are in a good agreement 

with those calculated analytically using the modified von Karman formulation (2.2) for the 

turbulent field spectrum.  Note that the outer and inner scales were chosen specifically for each 

figure to make the best fit to the experimental data by the modified von Karman spectrum. 

Therefore, in the earlier defined area of isotropic turbulence one may obtain that inner and outer 

scales remain constant and are about L0 = 200 mm, l0 = 1.7 mm (Fig. 2.10a-d). Outside the area 

of developed turbulence (Fig. 2.10e-f) the characteristic scales vary from point to point: in point 

Z = 0, Y = 720 mm the outer and inner scales are approximated to be L0 = 150 mm and l0 = 1.0 

mm (in general, model (2.2) is not valid in this region, as soon as turbulence here is not isotropic 

and is not stationary). 

Previously, to determine the integral length scale of the turbulence fluctuations the 

theoretical model was fitted to the measured energy spectrum, and it was shown that Lf ∈ [150, 

170] mm.  Another method to determine the integral length scale is based on the direct  
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Fig. 2.11 View of the experimental setup for 
measuring the correlation function. 1 and 2 are the 
positioning systems, 3 are the mounted cross-wire 
probes.  

Fig. 2.12 Correlation functions of the turbulent 
velocity field.  

computation of integral scale using its definition via integration of the corresponding correlation 

function: 
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where fL  and gL  are the longitudinal and transverse correlation functions, respectively.  This 

method of integral length scale definition is preferable as soon as no theoretical approximation is 

used for the energy spectrum shape. Moreover, its measurement will allow validation of the 

modified von Karman model by comparison with the obtained results. 

Thus to determine the integral length scales of turbulent fluctuations it is necessary to 

measure their correlation functions.  To measure the correlation functions the special 

experimental setup was used.  Two cross wire anemometers were mounted on two branches of 

the positioning system 2 (Fig. 2.11). Positioning system 1 was used to change the reference point 

in the turbulent field. Positioning system 2 changed the distance between the two cross-wire 

probes. It was necessary to keep both probes in the developed turbulence area during 

measurements. If one of the probes during the measurement procedure goes out from the area of 

interest, the two-points correlation rapidly goes to zero, and gives incorrect estimation of the 

developed turbulence integral length scale. The duration of one correlation function 

measurement takes about one hour. Therefore, measured correlation functions vary in shape due 

to changes in atmospheric conditions during the experiment.  Typical measured correlation 

functions are presented in Fig. 2.12.  They are transverse correlation functions 

gdyruruR >=+=< )()()2(
11  (displacement in у axis direction) and >+=< )()()2(

22 dyrvrvR . 

According to different measurements and to the integration (2.3) the value of the integral length 
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scale is estimated to be around Lf =2Lg ∈ [166, 182] mm. This value is in a good agreement with 

the integral length scale obtained by interpolating the measured spectrum of turbulent 

fluctuations to the axis K = 0 (Lf ∈ [150, 170] mm). In particular, this allows us to conclude that 

the modified von Karman model describes very well the turbulence energy spectrum in our 

experiment and can be used in our numerical simulations  

§ 2.2 Acoustic measurements 

2.2.1 Experimental setup 

The sketch of the experimental setup for acoustic measurements is given in Fig. 2.13. It 

shows the electrical spark source to generate short spherically divergent acoustic N-pulses, the 

microphones to measure the pulse waveform at different distances from the source, the amplifier, 

the oscilloscope, and the acquisition card to record the signal. The source and the microphones 

were mounted on a positioning system to have a possibility of changing the distance between 

them.  An additional reference microphone (not shown in the sketch) fixed at the distance of 

37 cm above the source was used to control the stability of the shape and peak characteristics of 

the propagating shock wave. Acoustic measurements of shock pulses were performed in air, in 

an anechoic chamber, at the distances from 15 cm to 2 m from the spark source.  

To produce an electric spark, a high voltage (15 kV) was applied to two tungsten 

electrodes with a 6 mm gap between them.  The electric discharge creates a sudden local heating 

of the gas between the electrodes, which generates a short duration but high amplitude pressure  

Fig. 2.13 Sketch of the experimental setup. Top view. All distances are given in millimeters. 
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perturbation.  This perturbation has a complex shape that varies from one spark to another.  

However, as the pressure amplitude of the pulse is very high (> 1000 Pa), the initial waveform 

transforms into an N-wave due to nonlinear effects along the first centimetres of propagation. 

Conducted experiments showed a good reproducibility of the generated N-wave parameters: the 

peak positive pressure measured by the reference microphone was 290 ± 10 Pа, the pulse half 

duration was 13.16 ± 0.23 μs, and standard deviation of arrival time was 1.7 μs.  At the distance 

of one meter from the source the typical maximum pressure amplitude Pmax was 85 Pa, the half 

duration T was 14.55 μs, and the shock rise time t0.1−0.9, defined as an interval between the peak 

pressure increase from 10% to 90% of Pmax, was about 3 μs. 

Wide band high frequency 1/8 inch diameter Brüel & Kjær 4138 microphones were used 

in experiments. The size of the microphones’ membrane is of the same order of magnitude as the 

wavelengths of the acoustic signal. Therefore, in order to postpone the diffracted waves, four 

microphones were mounted, without their grids, in a baffle (Fig. 2.13) [7, 44].  The 

microphones’ electric outputs were amplified by Brüel & Kjær Nexus amplifier, which was 

modified to extend its bandwidth up to 200 kHz.  The amplifier output voltages were digitally 

recorded at a sampling frequency of 5 MHz by two National Instrument data acquisition cards 

driven by Labview. 

To measure correctly the propagation time between the spark generation and the 

detection of the acoustic shock wave on the membrane of the microphone, the synchronization of 

the acquisition card with the acoustic spark source was done by means of electric signal from an 

antenna, used to detect a high amplitude electromagnetic pulse generated during the spark 

discharge. After being trigged by this electromagnetic pulse, an oscilloscope produced a TTL 

signal, which was used to synchronize the acquisition cards.  The reference trigger level from the 

antenna was chosen to be 12 V.  The same electromagnetic pulse was also detected by the 

microphone but gave only 0.5-1 V at the output of the amplifier.  Necessary delay between the 

spark discharge and the detection of the acoustic wave depends on the distance of acoustic wave 

propagation and is introduced by means of PC governing the acquisition.  

In Fig. 2.14a the electromagnetic wave (red) and following acoustic wave (blue) 

measured in homogeneous medium are presented. The time delay between the spark discharge 

and arrival of the acoustic wave on the microphone is about 3.7 ms. This corresponds to 1.26 m 

distance of propagation.  High amplitude of the electromagnetic pulse (6-15V) allows its reliable 

detection against a background of various breakthroughs given by working in neighbour rooms 

electrical devices.  The acoustic signal measured by microphone gives only the level of 3-4 V, 

depending on chosen tuning of the gain of the amplifier.  
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Fig. 2.14 Signals, measured by microphones and by antenna in homogeneous air (a) and when the air 
turbine was switched on (b).  

When the air turbine used for generation of turbulent fields was switched on, detection of the 

effective electromagnetic wave by the antenna was complicated due to the parasitic breakthrough 

coming from the working engine (Fig. 2.14b).  Fortunately, the level of this additional 

electromagnetic noise was not as high as the electromagnetic pulse produced by the spark source 

and therefore we could still synchronize the acquisition device by properly setting the trigger 

level. 

Another problem for acoustic wave measurement lies in the turbulent field itself because 

fluctuating hydrodynamic pressure results in low frequency pressure perturbations on the 

membrane of the microphones.  Microphones are also sensitive to this pressure perturbation, 

which results in the change of their dynamical range.  In Fig. 2.14b it can be seen, that the 

acoustic wave (random sample) is measured on the slope of low frequency perturbation that 

changes its shape.  This poses problems for the treatment of the recorded signal.  To diminish the 

influence of the turbulence on the acoustic field measurements, the microphones were placed at 

about 43 cm from the projection of a wooden baffle on the measuring plane (Fig. 2.13). 

2.2.2 Characteristics of N-waves measured without turbulence 

Shown in Fig. 2.15 are a typical waveform (a) and corresponding spectrum (b) measured 

at the distance 210 mm from the spark source.  The waveform has the shape of an N-wave with a 

very thin shock front, but it is not an ideal N-wave.  It is a bit asymmetric: the absolute value of 

the peak positive pressure p+ = 517 Pa is higher than that of the peak negative pressure 

p- = 400 Pa. The slope of the acoustic pulse is not a linear function as it would be for the ideal N-

wave, and has some low amplitude oscillations on it. The rise time of the shock front is defined 

here as time, needed for pressure to change from 0.1p+ to 0.9p+ on the front (Fig. 2.15a). The 

half duration of the wave is defined as time from the middle of the shock front till the 
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Fig. 2.15 Typical waveform a) and its spectrum b) measured at the distance 210 mm from the spark 
source in homogeneous air; the derivative of the time profile c); waveforms, measured with different 
microphones for the same spark at the distance 690 mm from the source d). 

intersection of the zero value pressure by the slope. 

Note, that these definitions for the rise time and half duration are not always effective. 

For example, the rise time definition is not effective for defining the shock front width of the 

pulse with several pikes (in turbulent medium). The alternative definition for the rise time is 

based on the derivative of the pulse time profile. The rise time of the shock front is equal to the 

width of the derivative highest peak at the level D/e, where D is the maximum derivative value 

(Fig. 2.15c). For waves, propagating in homogeneous air these two definitions are equivalent. 

This is due to the fact that the shock front is always steeper than the back front of the wave, in 

particular, because of diffraction effects. In heterogeneous medium the second definition is 

preferable, as soon as the steepest fronts are of the interest, and it is not always the first one. 

Usually these fronts have the highest amplitude, according to the effects of nonlinear wave 

propagation.  

As for the duration of the wave, it is difficult to define it using time domain formulation 

even for waves propagating in homogeneous air. It is not always obvious how to define middle 

point of the shock. Moreover, due to the asymmetry of the pulse its duration defined using the 

positive part differs from the duration defined using the negative part (up to 25% difference). To  
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Fig. 2.16 Typical waveforms measured at different distances from the source in homogeneous air. 

define the pulse duration more accurately we propose a new definition in the frequency domain 

based on the waveform spectrum. Using an a priory information given by nonlinear propagation 

effects, it is assumed here that real waveform is almost an ideal symmetric N-wave with very 

thin shock front. That is, all the distortions of the waveform are due to the measuring system 

(Fig. 2.15d) and in particular depend on microphone frequency response, on positioning of the 

microphone in a baffle, and on diffraction effects on the edges of the microphone. Moreover it is 

assumed that the effect of measuring system can be described by a smooth function which does 

not change the position of spectrum minima (say zeros). Thus, to define the half duration of the 

pulse we can now use the relation between the frequencies of the spectrum minima and its half 

duration for the ideal N-wave. It is given by the solutions of the equation: tg(2πfT)=2πfT. For 

example, for the first minimum of the N-wave spectrum this leads to f1T = 0.72 and for the 

second one -  f2T = 1.21. The values of half duration, obtained from the first and second minima 

in experimental spectra were equal to each other with an error not higher than 2 %, that validates 

the consistency of made assumptions. 

Acoustic waveforms were measured at different distances from the source in 

homogeneous air. At each distance, about 100 waveforms were measured. As the frequency of 

electric discharge of the spark source was about 1Hz, the time needed for measurement at one 

distance was about two minutes. Typical waveforms measured at different distances from the 

spark source are presented in Fig. 2.16. As it was expected, all of them have the form close to the 

N-wave; the peak positive pressure of the pulse becomes smaller while propagating from the 

source due to the spherical divergence and nonlinear effects; and the shock front rise time and 

pulse duration – longer. 
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§ 2.3 Analysis of the effects of turbulence on N-waves 

2.3.1 Typical measured waveforms. Estimation of the focusing zone width 

Typical measured acoustic waveforms, passed through the turbulent layer are presented 

in Fig. 2.17.  The shape of the waveforms measured in laboratory experiment is in a good 

agreement with sonic boom waveforms registered in real atmosphere [52-55].  Here are shown 

both the classical N-wave and U-wave pulses (a, e) with high amplitude and narrow shock fronts; 

rounded waves (c) and waves with several shock fronts (d) or several pikes (b) were also 

observed. Note that all of measured waveforms have a long amplitude tail.  Moreover, the 

maximum amplitude of the wave can be achieved in the tail part, that is the maximum peak  
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Fig. 2.17 Typical waveforms measured at the distance 2.19 m from the source after passing the turbulent 
layer. jetU = 30 m/s. 
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Fig. 2.18. Waveforms measured by 4 microphones in the vicinity of the focusing zone at the distance 
2.19 m from the source. jetU = 20 m/s 

pressure does not always correspond to the first shock front (f). 

Having several microphones in one line gives us a chance to estimate the width of the 

focusing zone at given distance. Three microphones were placed with the spacing of 1 cm 

between each other (microphones 1, 2, 3 in Fig. 2. 13); corresponding measured waveforms are 

shown in Fig. 2.18a-c.  The fourth microphone was located at the distance of 4 cm to the left 

from the third one. Corresponding measured waveform is shown in Fig. 2.18d. Second 

microphone is placed at the axis of the acoustic measurement setup. Wave profiles were chosen 

from the experimental data in such way that they correspond to the area of focusing of the 

acoustic wave, which was determined by the formation of classical U-pulses.  Thus, by 

comparing the waveforms measured by these microphones, the width of the focusing zone in 

vertical and horizontal directions can be estimated. Waveforms, measured by 1-3 microphones 

are in a good agreement in shape and in peak amplitudes. Maximum peak positive pressure was 

measured by the third microphone (Fig. 2.18c) whereas the first microphone gave the amplitude 

which was 30% less. At the fourth microphone, which was located at a longer distance (4 cm) 

from the third one, the measured peak amplitude was about 45% less than the maximum one. 

Therefore, if we suppose that the position of the third microphone corresponds to the centre of 

the focusing zone, and that its width is defined by the 30% decrease of the amplitude, then the 

width of the focusing zone is about 4 cm (4.5 wavelengths of the initial N-wave).  It should be  
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noted here that the amplitude of the 

pulse, recorded by different 

microphones, also depends on the 

distance travelled by the wave from the 

source to each of the four microphones. 

Nevertheless, the difference in 

propagation distance has a weak 

influence (< 0.03%) on the wave 

amplitude due to the long distance from 

the source as compared to the separation 

distance between the microphones. 

2.3.2 Effect of the turbulence 
intensity on the N-wave statistics, 
average and peak characteristics  

Consider now the statistics of the 

distorted N-waves after passing through 

the turbulent layer. The geometry of the 

experimental setup is fixed, and only the 

intensity of the turbulent fluctuations was 

changed by varying the flow velocity at 

the exit of the jet. Then, a large number 

of shock waves, emitted by the spark 

source at the consecutive time moments, 

were recorded.  As it was mentioned in 

the introduction, the most important 

parameters of the sonic boom and shock 

wave are the peak positive pressure p+ 

and the rise time t0.1-0.9.  

Shown in Fig. 2.19 are the dependencies of the mean peak positive pressure values (red 

curve, Fig. 2.19a), mean rise time of the acoustic wave shock front (Fig. 2.19b), and mean arrival 

time of the wave front (Fig. 2.19c) on the velocity of the flow at the exit of the jet (turbulence 

intensity).  Experimental data of individual measurement (2000 pulses at each flow velocity) are 

presented as black points. Data shown here correspond to measurements done by the first 

 

 

 
Fig. 2.19 Mean distributions (red lines) of peak positive 
pressure a), rise time of the wave front b), and wave 
front arrival time c) depending on the flow velocity at 
the exit of the jet  Ujet (turbulence intensity)  at the 
distance of 2.19 m from the source.  Black points – data 
of individual measurements.  Vertical red segments are 
the standard deviations of each parameter. 
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microphone, the other microphones gave similar results.  The distance between the source and 

the receiver was equal to 2.19 m, whereas the width of the developed turbulent layer was about 

1.4 m.  The longer distance between the source and receiver was chosen in order to avoid the 

influence of the turbulent fluctuations on them.  

On Fig. 2.19a we observe that in the presence of turbulence the dispersion of peak 

amplitude values becomes very high . Both waveforms with the pressure level of 3-4 times 

higher than that in the motionless air and waveforms with very low amplitudes are observed.  

With increasing the flow velocity Ujet the intensity of turbulent fluctuations becomes higher and 

the mean peak positive pressure level decreases. For example, in the case of motionless 

atmosphere <p+> = 30.9 Pa, whereas for Ujet = 40 m/s this value is equal to <p+> = 22 Pa.  Note, 

that the rate of mean pressure amplitude decrease in turbulent medium is sufficiently augmented 

after passing Ujet = 20 m/s flow velocity to its higher values.  Presumably, this is connected with 

the formation of the focusing zones of acoustic wave in the area of measurements at distance 

2.19 m from the spark source. 

For the rise time of the wave front, determined as the time needed for pressure to pass 

from 0.1 to 0.9 level of its maximal value, similar results are obtained. Similar to the peak 

positive pressure, the shock front rise time in turbulent medium varies significantly (Fig. 2.19b). 

Following the increase of the intensity of the turbulent medium, the mean rise time increases 

from ~ 3.0 μs in homogeneous air to ~ 10.5 μs for the strongest turbulence.  However, the lowest 

level of the rise time does not exceed 3 μs, although in the focusing regions the waveforms with 

a high amplitude and very short shock fronts are expected [Davy et al., 100]. 

Turbulent fluctuations affect also the arrival time of the shock front (Fig. 2.19b). Note 

that fluctuations of the air temperature were included in the analysis of the experimental data and 

in calculations of the arrival time. For each experimental series of acoustic wave measurements, 

the arrival time of still medium were calculated using the relation t0=D/c0(T). Here the sound 

speed c0 depends on the medium temperature, c0(T)=(γRT/μ)1/2 , where γ  is the specific heats 

constant, R is the absolute gas constant, μ is the gas molecular weight, and D is the distance 

between the spark source and microphone. In this way it was obtained that the mean arrival time 

of shock wave propagating in the turbulent medium becomes shorter with the increase of the 

turbulence intensity, i.e. most of the acoustic waves arrive earlier in the presence of turbulence.  

So in inhomogeneous moving medium with Ujet = 40 m/s the acoustic wave arrives on the 

microphone, in average, 26 μs faster than in the motionless medium. This variation in arrival 

time is of the same order as the duration of the initial pulse (25 μs). This can be explained by the 

Fermat least action principle, which in application to acoustics tells that the wave propagates in 
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Fig. 2.20 Probability density distributions of shock 
wave peak positive pressure p+ at the distance 2.19 m 
from the source for various flow velocities Ujet at the 
exit of the jet. std – standard deviation abbreviation. 
Width of the class is 2 Pa. 

Fig. 2.21 Probability density distributions of shock 
wave rise time t0.1-0.9 at the distance 2.19 m from the 
source for various flow velocities Ujet at the exit of the 
jet. std – standard deviation abbreviation.  Width of 
the class is 0.5 μs. 
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inhomogeneous medium in the way to minimize its arrival time. 

To obtain more detailed information about statistics of peak positive pressure, the 

probability density distributions were calculated using the data for all four microphones (8000 

individual measurements at each flow velocity) and are shown in Fig. 2.20. Distribution for 

Ujet = 0 m/s (homogeneous medium) has a finite width due to the small difference in propagation 

distance between the source and each of the microphones and due to the fluctuations, peculiar to 

the shock wave generation process by the source of the given type. In addition, all the 

microphones have different amplitude frequency responses, which affects the pressure estimation 

from the output voltage, and therefore affects the estimation of the peak positive pressure and the 

shape of the distribution. In the presence of turbulence, the distributions of peak positive pressure 

widen substantially and transform into symmetric bell-like shape, with a long tail at high 

amplitudes. Similar results were obtained in [Ollivier et al., 44]. With increase of turbulence 

intensity, the maximum of the distribution moves to the smaller amplitudes, as it has been shown 

for the mean value.  Simultaneously with the increase of turbulence intensity the standard 

deviation of peak positive pressure also increases (standard deviation is marked up on the graph 

with std abbreviation). The fast increase of the standard deviation from 2.7 Pa in still medium to 

11 Pa in a turbulent medium with Ujet = 20 m/s is followed by the slow-varying part where its 

maximum value 11.9 Pa (Ujet = 30 m/s) is achieved.  At higher turbulence intensities a slight 

decrease of the wave amplitude standard deviation is observed: the probability density 

distribution becomes narrower.  Note, that at the distance 2.19 m from the spark source it is still 

possible to measure the amplitudes as high as 120 Pa (Fig. 2.18c), that are more than 4 times 

higher than the peak pressures measured at the same distance in homogeneous medium. 

Distributions of the shock rise time probability densities for different flow velocities at 

the exit of the jet are shown in Fig. 2.21. In motionless medium, when Ujet  = 0 m/s, the 

probability density for the rise time is presented with almost one line, corresponding to the value 

3.0 μs. For Ujet = 15 m/s, the probability density distribution is already widened by the 

turbulence, that results in its spreading to longer rise times. Note here that the shape of the 

distribution became like a right triangle that tells about experimental limitations of measuring 

short rise times for pulses that form due to focusing.  

Rise time values shorter than 3.0 μs are not observed, while 3.0 μs rise time is still most 

frequently observed as soon as all shorter rise times are recorded as this value. Thus, such cut-off 

at 3.0 μs can be explained by the limited frequency response of the microphone, which is 

investigated in details in Chapter 3. Note, that the given microphone frequency response can 

vary due to aging, due to temperature, and humidity variations. Therefore, the minimum 
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measured rise time of the wave may vary slightly for the measurements done with the same 

microphone, but under different air conditions.  This value depends also on the positioning of the 

microphone inside the baffle. 

Further increase of flow velocity results in stronger distortion of the N-wave and in 

moving of peak probability density to longer rise times.  For these turbulence conditions, the 

triangle shape of the distribution changes to the bell-like shape with a very long tail in the region 

of wide fronts with the rise time up to 20-25 μs.  Thus, the rise times of acoustic waves become 

longer than the minimum rise time resolved by the microphone. Therefore, the transformation of 

the shape to the bell-like shape is observed. The more intense the turbulent fluctuations are the 

stronger shock fronts are smeared out. 

Obtained results for the N-wave amplitude and shock front rise time are in a good 

agreement with the model experiments data, carried out by other authors [7, 40, 44].  The results 

are also in a good qualitative agreement with the sonic boom measurements in real atmosphere 

[52 - 55]. Common tendency is that the turbulent fluctuations lead to strong distortion of the 

initial N-wave and to weakening in average of most important shock wave parameters, which 

affects the environment (decrease of mean peak positive pressure, corresponding increase of the 

mean rise time).  However, there exists a probability of measurement of acoustic waves with 

very high amplitude and short rise time, and this is undesirable due corresponding increase in the 

sonic boom annoyance.  Specific values of probability depend on various factors including the 

intensity of turbulent fluctuations and the width of the turbulent layer. 

2.3.3 Effect of propagation distance through turbulent medium on the statistics, 
average and peak characteristics of the acoustic N-wave 

In addition to investigating the effect of the intensity of turbulent fluctuations on the main 

acoustic wave parameters, it is also interesting to study the dependence of these parameters on 

the propagation distance in turbulent medium.  For this purpose, it is necessary to place the 

source of acoustic waves or microphones inside the turbulent velocity field.  Microphone, placed 

in the turbulent flow in addition to the acoustic pressure will measure the hydrodynamic pressure 

that will lead to the diminishing of its dynamic range and therefore to inevitable error of 

measurements.  If the source is positioned inside the turbulent flow, the parameters of the 

generated acoustic wave may fluctuate with the velocity ripples, which change the temperature 

and humidity of the medium around the source.   

To estimate the dependence of the main acoustic wave parameters on temperature and 

humidity of the medium, the acoustic waves were measured beginning with the cold start of the  
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Fig. 2.22  Distributions of peak positive pressure (a), rise time (b) and arrival time (c) of the shock wave, 
measured at distance 2.19 m from the spark source during its cold start. N is the spark consecutive number. 
source in homogeneous air until the N-wave generation became stable. The results of peak 

positive pressure (a), rise (b) and arrival (c) times measurement are presented in Fig. 2.22.  It is 

seen, that the variation of wave parameters with spark number (with time) is very small and can 

be neglected.  The values of the peak positive pressure are mainly enclosed within the 2.5 Pa 

interval (~7 % of mean peak positive pressure) which does not depend on time (source heating).  

Rise time varies mainly within 0.1 μs interval and arrival time - within 10 μs interval.  Thus, 

source parameters are not very strong affected by the temperate changes in the environmental 

conditions like humidity and temperature. 

Consider now that the source is placed inside the turbulent field, that is the temperature 

and humidity of the air in its vicinity depend on the turbulent flow parameters.  These parameters 

vary slightly in time and therefore the source can be considered as stable even inside the 

inhomogeneous turbulent field. Moreover, characteristic timescale of acoustic wave generation is 

much shorter than the characteristic timescale of turbulent fluctuations, and, therefore, it is 

assumed with a good confidence that the spark is not shifted by the medium velocity 

fluctuations.  

According to the previous discussion, it is possible to place the acoustic source inside the 

turbulent field and to estimate the variation of the pressure level with the distance between the 

source and the microphone.  Changes in environmental parameters (temperature, humidity and 

turbulent velocity) do not affect significantly the characteristics of the acoustic source and 

therefore do not change significantly the measured acoustic pressure field.  In this configuration 

we observed fluctuating displacements of the source around its stationary position due to the 

vibration of the mounting support.  However this displacement was of the order of 10 mm for 

Ujet = 20 m/s, and such difference in the propagation path of acoustic wave had a negligible 

effect on the wave rise time and the wave amplitude.  Thermoviscous absorption and nonlinear 

dissipation will give less than 0.5% change in amplitude on 10 mm at distances longer than 

600 mm from the source. Spherical divergence will give a pressure decrease not higher than 2%.  

Only the arrival time can be strongly affected, as soon as 10 mm of displacement gives about  
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Fig. 2.23 Dependence of mean peak positive pressure (a) and mean rise time of the wave shock front (b) 
on the distance of acoustic wave propagation in inhomogeneous turbulent medium of different intensity.  

 
Fig. 2.24 Dependence of standard deviation of peak positive pressure (a) and rise time of the wave shock 
front (b) on the distance of the acoustic wave propagation in inhomogeneous turbulent medium of 
different intensity.  

30 μs retard in arrival time (30% of arrival time fluctuation, measured with the fixed mounting). 

Due to the source displacement, it was not possible to move the source further inside the 

turbulent field than 400 mm for when the jet flow velocity was Ujet = 40 m/s. 

In Fig. 2.23 are presented the dependencies of acoustic wave mean peak positive pressure 

and shock front mean rise time on the propagation distance inside the turbulent field for different 

jet flow velocities (red line – Ujet = 20 m/s, black line – Ujet = 40 m/s) or in still medium (blue 

line).  Presented data correspond to the measurements by the microphone, situated at the axis of 

the acoustic experimental setup. At each distance from the source, 2000 distorted waveforms 

were measured. As it was discussed previously, the peak positive pressure decreases in turbulent 

field and rise time increases with augmenting flow velocity. These conclusions are confirmed by 

Fig. 2.23. Same tendency remains with the augmenting the acoustic wave propagation distance.  

However, there is also a new point, which is interesting to outline.  For propagation 

distances up to 1200 mm, the mean value of the peak positive pressure in turbulent medium does 

not differ from that in still medium (for Ujet = 20 m/s). The distance, where the difference 
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between two curves becomes notable, can be associated with the distance of caustics formation, 

related to the large-scale inhomogeneities (see §5.2-5.3). With the further increase of the 

distance, the difference between turbulent and still medium cases again becomes smaller. This 

happens due to the absorption and relaxation effects, which are frequency dependent. The rise 

time of the wave, measured in still medium, is much shorter than the rise time of the wave, 

measured in turbulent medium. Therefore, in still medium the waveform contains much higher 

frequencies, which are faster suppressed by absorption and relaxation effects. 

Shown in Fig. 2.24 are standard deviations of characteristic acoustic wave parameters 

considered in Fig. 2.23.  It can be seen that the absolute value of standard deviation of peak 

positive pressure (Fig. 2.24a) decreases with the distance from the receiver due to suppression of 

high amplitudes, whereas its relative value σp/<p+> increases. At the distance 1800 mm from the 

source and Ujet = 40 m/s it is almost equal to σp/<p+> = 1. It is obvious that increasing the 

distance between the source and the microphone will result in an increase of the standard 

deviation of the shock front rise time (Fig. 2.24b) due to effects of turbulent medium. At the 

same time, the rise time standard deviation increases due to the formation of very steep shock 

fronts in the areas of focusing. Thus, probability density distribution of peak positive pressure 

with distance becomes thinner and probability density distribution for the rise time becomes 

wider. 

§ 2.4 Characteristic scales: atmosphere and laboratory experiment 

Characteristic spatial and time scales of sonic boom propagation problem in real turbulent 

atmosphere and shock waves in laboratory scale experiments are compared in Table 2.1 [52 -

 54].  It is seen that with the scaling coefficient equal to 1000, spatial scales of inhomogeneous 

medium generated in laboratory experiment well coincide with atmospheric turbulence scales. 

Therefore, in both cases the width of the turbulent layer, through which the acoustic wave  

 Atmosphere Laboratory scaled experiment 
Turbulence integral length scale, Lf 100-200 m 16-18 cm 

Turbulent layer thickness 1-2 km 1.5 – 2 m 
Amplitude of velocity fluctuations 0 - 30 m/s 0 - 40 m/s 

Peak positive pressure, p+ 10 – 800 Pa 10 -1000 Pa 
Pulse duration 90-300 ms 30-50 μs 

Rise time, t0.1-0.9 0.5-10 ms 3 – 10 μs 

Table 2.1 Comparison of spatial and time scales of sonic boom problem in atmosphere and shock wave 
propagation problem in laboratory experiment. 
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propagates, is equal to ten integral length scales of the turbulence: Lt ≈ 10Lf. At the same time, 

one integral length scale is equal to ten acoustic wavelengths. As for the amplitudes of acoustic 

pulses, in the laboratory scale experiment they are of the same order as in the field experiments. 

This parameter determines the influence of nonlinear effects on acoustic wave propagation and 

therefore should not be scaled. The rise time of the shock front could not be properly compared 

as soon as in both cases it is determined by the microphone spectral characteristics.  In addition, 

the effects of thermoviscous absorption and effects of relaxation, which in contrast to nonlinear 

effects change significantly by the transition from the field scale to the laboratory scale. So in the 

case of laboratory scale experiment the dominant mechanism is the thermoviscous absorption 

mechanism, whereas in field experiments – relaxation mechanisms [63]. 

§ 2.5 Conclusion 

A new arrangement of the ECL experimental downscaled setup used to investigate the 

propagation of short acoustic pulses of high amplitude (duration 30 μs, amplitude ~1000 Pa) in 

turbulent flow with mean velocity and velocity fluctuations amplitude up to 40 m/s was designed 

and built up. Scaling relations between characteristic parameters of generated turbulent filed and 

parameters of acoustic pulse are in a good agreement with those of sonic boom and atmospheric 

turbulent boundary layer. It is shown that the energy spectrum of generated turbulence was very 

well described by a modified von Karman spectrum. This allows us to conclude that the 

modified von Karman model can be used in our numerical simulations.  

It is shown experimentally that in randomly inhomogeneous moving medium the 

decrease of mean peak positive pressure of the shock wave, the increase of mean rise time, and 

the decrease of mean arrival time are observed with increasing the intensity of medium turbulent 

fluctuations. However, there still exists a probability of observation of very steep shock fronts 

with very high amplitudes, which are up to 4 times higher than those measured in homogeneous 

medium at the same propagation distance from the source. In addition, mean peak positive 

pressure of the pulse starts to decrease faster in turbulent air than in homogeneous air starting 

from the distance of 1.2 m (Ujet = 20 m/s), whereas the shock front rise time augments faster in 

turbulent medium starting from the shorter propagation distance.  

It is shown that the measuring system has a limited frequency response that affects the 

measurements of the shock fronts in the focusing zones.  This limitation explains why the rise 

times measured at focus are longer than those expected from the theory.  Therefore, to estimate  
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correctly the parameters of the acoustic wave it is necessary to know the frequency response of 

the measuring system. This problem is addressed in Chapter 3. 





 

 

 

 

Chapter 3 

Chapter 3 MEASUREMENT AND MODELLING OF SPHERICALLY 
DIVERGING SHOCK PULSES IN RELAXING AIR. 
CALIBRATION OF THE MICROPHONE.  

The problem to determine the frequency response of the measuring system in laboratory 

conditions, posed in the previous chapter, appears to be a very important problem [101102 103- 104 105106]. In 

fact the initial characteristics of microphones provided by the manufacturer are modified by 

aging, or by any others reasons as the changes in environmental conditions of measurements or 

the use of different settings of microphone (with or without grid, released or mounted in a baffle, 

different positioning inside the baffle). So the knowledge of the measuring system frequency 

response becomes necessary in order to have accurate estimation of the measured parameters of 

the acoustic pulse. To determine these spectral characteristics, the laboratory and numerical 

experiments on N-wave propagation in homogeneous air were conducted. 

In the laboratory experiment, we used 1/8 inch Brüel &Kjaer microphones with a limited 

frequency band of 140 kHz to measure acoustic pulses propagating from the spark source. 

Measurements were done at distances up to 2 m from the source in a quiet ambient room. In the 

numerical modelling, the modified Burgers equation that includes the combined effects of 

spherical spreading of the wave, nonlinear waveform distortion, thermoviscous dissipation, and 

N2 & O2 relaxation effects was employed [107]. Initially ideal N-waveform with a shock front 

defined in accordance with physical effects (nonlinearity and thermoviscous absorption) was 

used as an initial boundary condition to the model given at some distance from the source. Time-

domain numerical algorithm was developed to simulate N-wave propagation. This combined 

experimental and modelling approach allowed us not only to calibrate the measurement system 

but also to validate the modelling versus experiment, and to better understand the effects of 

relaxation, thermoviscous absorption, and acoustic nonlinearity on the N-wave distortion under 

experimental conditions.  Note, that investigations presented here were done for the experiment, 
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conducted at different date and time and under different environmental conditions than in the 

experiment presented in Chapter 2. 

The peculiarity of the calibration method proposed in this work is that it allows obtaining 

spectral characteristics of the measuring system in a wide band of frequencies at once. This 

method is based on an a priory information about nonlinear propagation of high amplitude 

pulsed signals. It is known, that due to strong nonlinear effects, the high amplitude acoustic pulse 

takes the form of an N-wave with a thin shock front. Therefore, in numerical modelling, the 

initial conditions can be taken in the form of an ideal N-wave. 

Such approach based on nonlinear propagation effects has been previously used in 

hydroacoustics for absolute calibration of hydrophones in water by Andreev et al. [108].  The 

approach is based on the assumption that the change in N-wave amplitude while propagating in 

the nonlinear medium can be described based on the simple wave equation and the relations of 

the weak shock theory.  Similar to that, exact analytic solution of the simple wave equation for 

the change of slope in the sawtooth waveform can be also used to calibrate the hydrophones 

[Andreev et al., 109]. However, these approaches cannot be directly applied to calibrating 

microphones. In the atmosphere, in addition to nonlinear effects, thermoviscous absorption and 

relaxation phenomena strongly influence the wave propagation and thus the amplitude or the 

slope of the waveform.      

However, nonlinear calibration methods that employ weak shock theory and propagation 

in lossless medium have been also used in atmospheric acoustics to determine the sensitivity of 

the measuring system.  These methods are also based on nonlinear propagation of high amplitude 

pulses: the dependence of the shock front speed [Romanenko, 110] or pulse duration [Wright et 

al., 43] on the shock amplitude. The frequency dependent absorption and relaxation have not 

been accounted for in both cases (the speed of the shock front also depends on relaxation 

effects).  In contrast to the previously developed approaches, the method proposed here allows 

calibration of microphones in dissipative media.  Moreover, in addition to measuring system 

sensitivity, its spectral characteristics (amplitude and phase frequency responses) are also 

obtained.  
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§ 3.1 Acoustic measurements. Mean and peak characteristics of the N-
wave parameters 

Calibration acoustic measurements in 

still air were conducted using the same 

experimental setup as described in details in 

§2.2. Acoustic waveforms were measured at the 

distances starting from r = r0 = 0.15 m up to 

r = 2 m from the spark source.  At each 

distance, 100 waveforms were recorded. The 

results of the analysis of the N-shape output 

voltage from the microphone are summarized in 

Fig 3.1. The parameters of the electric signal 

without conversion into pressure (usually found 

as the ratio between the voltage and the 

sensitivity measured using a calibrator at 1 kHz, 

1Pa) are shown: the calculated mean values of 

the peak positive voltage (a), half duration (b), 

shock front rise time (c), and arrival time (d) of 

the voltage pulse. These values correspond to 

the analogous parameters of the acoustic 

waveform. The measurements done for each 

individual spark are marked with points.  We 

can observe a slight dispersion in the measured 

wave parameters due to small variations in the 

spark energy and to its position between the 

electrodes when flashing.  Therefore, maximum 

standard deviation of peak positive voltage was 

not bigger than 16 mV (< 3 %), of half duration 

– 0.25 μs (< 2 %), of rise time – 0.03 μs 

(< 1 %), and of arrival time – 0.6 μs. Such 

fluctuations in arrival time correspond to only 

0.2 mm displacement of the spark between the 

electrodes 
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Fig. 3.1 Dependence of mean acoustic wave 
parameters (tension pulse parameters) on the 
distance between the source and the microphone. 
(a) – mean peak positive pressure, (b) – mean 
half duration,  (c) – mean shock front rise time, 
(d) – mean relative arrival time.  Points – 
measured parameters of individual pulses. 
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§ 3.2 Theoretical model  

3.2.1  Modified Burgers equation for divergent waves in relaxing medium 

The Burgers equation, extended to include relaxation processes and spherical divergence 

of nonlinear wave in homogeneous media can be written in the following form [111]:   
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Here p is the acoustic pressure, r is the radial propagation coordinate, τ = t –(r-r0)/c0  is 

the retarded time, с0 is the ambient sound speed at low frequencies, r0 is the reference distance to 

set boundary conditions, ρ0 - the air density, β  - the coefficient of nonlinearity in air, b - the 

coefficient of viscosity, M - the total number of relaxation processes.  Each relaxation process ν 

is characterized by two parameters: relaxation time τν and coefficient ( ) 2
0

2
00 // cccccd ν

ν
ν =−= ∞ , 

where ν
∞c  is the so called frozen sound speed of acoustic signal propagation through the medium 

with relaxation time much longer than the effective duration of the signal Ts << τν .  The second 

term on the left hand side of the Eq. (3.1) is responsible for the spherical divergence of the wave, 

while the right hand side includes nonlinear effects (first term), dissipation due to thermoviscous 

absorption of the medium (second term), and relaxation processes (the last term), associated with 

the excitation of oscillatory energy levels of media molecules [48, 62]. For the Eq. (3.1) to be 

valid, it is necessary that the ratio λ/ r << 1. This is true in the current laboratory-scaled 

experiments (λ ~ 10 mm, r > 150 mm). 

The number of relaxation processes M in Eq. (3.1) is equal to the number of molecule 

types in the propagation medium.  Atmosphere consists mainly of nitrogen and oxygen 

molecules, which define its relaxing properties and corresponding frequency dependence of the 

sound speed and absorption [48, 62].  The effect of relaxation on the waveform distortion 

therefore will strongly depend on the frequency content of the shock waves generated in 

laboratory experiments.  The shock waveform and corresponding frequency spectrum that will 

be further used in simulations as a boundary condition given at the distance r0 from the source 

are shown in Fig. 3.2(a,b).  The waveform is an ideal N-shape pulse with infinitely short rise 

time and main parameters, duration (30 μs) and amplitude (1000 Pa), close to those measured 

experimentally at the nearest distance to the source r0 = 15 cm.  Characteristic relaxation 

frequencies of oxygen (f1 = 1/(2π τ1) ~ 26500 Hz) and nitrogen (f2= 1/(2π τ2) ~ 300 Hz)  



§ 3.2 Theoretical model    75 

 

  
Fig. 3.2. Initial N-pulse waveform (a) and its spectrum (b). Dependence of the sound speed (c) and 
absorption (d) on frequency due to relaxation in atmosphere. Characteristic relaxation frequencies of 
oxygen O2 and nitrogen N2 are shown with vertical dotted lines. 

molecules were calculated according to the humidity (34%) and temperature (20ºC) of the 

experimental conditions and are shown in the Fig. 3.2(b-d) as vertical dotted lines [62]. 

The relaxation frequency of oxygen lies near the maximum of the N-wave spectrum, 

while the nitrogen frequency corresponds to the nearly zero part of the spectrum at low 

frequencies.  The nitrogen relaxation process thus should have very little effect on the shock 

wave propagation.  The frequency dependence of the sound speed and absorption that 

incorporates the effects of relaxation can be obtained from the linearized Eq.  (3.1) [Rudenko et 

al., 48]: 
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These dependencies are shown in Fig. 3.2, c) and d), respectively.  The presence of 

relaxation will change the wave amplitude due to additional absorption, and also the arrival time 

of the pulse due to the fact that the shock front is built of high frequencies propagating faster 

than the ambient sound speed с0. The effect of nitrogen on arrival time and amplitude is expected 

to be negligible in comparison with that of oxygen. The sound speed variations due to N2 
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relaxation is about 5 times less than those introduced due to O2 relaxation (Fig. 3.2c), and the 

effective increase of absorption for nitrogen N2 is of three orders less than for oxygen O2 

(Fig. 3.2d). 

3.2.2 Numerical algorithm  

To perform numerical simulations it is convenient to rewrite the Eq. (3.1) in 

nondimensional form:  
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Here V = pr/(p0r0) is the dimensionless acoustic pressure, σ = r0 ln(r/r0)/xs is the spatial 

dimensionless propagation coordinate, 00
3
00 / pTcxs βρ=  is the characteristic nonlinear distance; 

θ =τ /T0 is the dimensionless time, Γ = 2βp0T0/b is the Gol’dberg number which determines the 

relative effect of nonlinearity and thermoviscous absorption; θν=τν/T0 is the dimensionless 

relaxation time and Dν = ρ0c0
3dν/βp0= ρ0c0cν/βp0 is the dimensionless relaxation coefficient for 

the processes ν = 1,2.  To avoid limitations of the validity in the model, we kept both oxygen and 

nitrogen relaxation effects in the Eq. (3.3) and in further numerical simulations..  TThe waveform 

parameters measured at the closest distance r0 from the source, such as peak positive pressure p0 

and half duration T0, were chosen to be the reference values.  

To obtain a solution for the dimensionless pressure V, the Eq. (3.3) was solved 

numerically in the time domain using an operator splitting procedure.  At each grid step in 

propagation distance σ  the equation was divided in three physically consistent equations, 

describing different physical effects:  
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Here the simple wave Eq. (3.4) is written in flux conservative form. 

At the first step of the algorithm, nonlinear effects, Eq. (3.4), are taken into account using 

Godunov-type central flux-conservative scheme of the second-order accuracy in time θ and first-

order accuracy in propagation coordinate σ [Kurganov et al., 112]. This scheme has small 
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internal viscosity and it is sufficient to have only 2-3 time points per shock to describe its 

evolution with high accuracy and stability without introducing additional physical absorption to 

suppress high frequencies (for more details refer to § 4.3.2).  

At the second step, previously obtained solution is used as an initial condition to compute 

thermoviscous dissipation effects, described by Eq. (3.5). An explicit central finite difference 

scheme of the second-order accuracy in time θ and first-order accuracy in propagation coordinate 

σ is used: 

Finally, at the last step of numerical procedure, the relaxation effects (3.6) are accounted 

for. To build a numerical model it is convenient to rewrite Eq. (3.6) following the approach 

presented in the paper [111]: 

The Eq. (3.8) is then calculated using the Crank-Nicholson algorithm of the second-order 

accuracy in time θ and spatial propagation coordinate σ: 

where coefficients )2/( θθ ha v=  and )2/( 2
θσθ hhDb vv= , and σh  and θh  are spatial 

coordinate and time steps, respectively.  Boundary conditions at time window edges are given 

with the following relations: ),(),( minmin θσθσ σ VhV =+ and ),(),( maxmax θσθσ σ VhV =+ .  

During numerical modelling the attention should be paid to the selection of the grid steps.  

Usually the time step is much smaller than the relaxation time of the medium, and therefore 

coefficient а<<1. If the spatial step is also very small, then the coefficient b is much smaller than 

a: b<<a.  Therefore, non diagonal elements of the coefficients matrix of the Eqs. (3.9) for 

different steps are dominant on the diagonal elements.  The problem becomes ill-posed, that 

leads to large numerical errors.  Therefore, the spatial grid step along the propagation distance 

should not be too small.  

To validate the algorithm of nonlinear operator modelling, numerical and analytical 

solutions to the simple wave equation were compared for an ideal N-wave propagation [47, 48].  

To validate the accuracy of the combined nonlinear and relaxation modelling, the numerical 

results were compared with the stationary Polyakova solution for monorelaxing medium [113]: 
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where 0θ  and 0D  are the parameters of the 

considered relaxation process.  Ambiguity in the 

Polyakova solution for 10 ≤D  is eliminated by 

application of the simple wave theory, which 

gives the following relation for the shock 

coordinate:  

 ])1(4ln[ 00 1
0

1
00

DD
s DD −+ −−= θθ  (3.11) 

In Fig. 3.3 with the red curve is presented 

the solution to equations (3.10-3.11) in the form 

of the stationary wave, propagating in the 

monorelaxing medium with the following 

characteristic parameters: 10 =θ  and 5.00 =D . 

With blue curve, the numerical solution to the Eq. (3.3) is presented. To ensure the stability of 

the numerical algorithm the calculation was done with accounting for the small but finite 

thermoviscous absorption Г=3000, which influences only the width of the shock front, and 

almost does not affect its amplitude.  In addition, the simulations were done for sufficiently long 

distances σ , where the spherically diverging wave can be assumed as a plane one.  At distance 

10=σ  for the following computational steps: hσ = 0.002 and hθ = 0.0262, the maximum error in 

numerical solution as compared to the analytic results was less than 1%.  

3.2.3 Effects of nonlinearity, thermoviscous absorption and relaxation on the 
acoustic wave propagation  

For numerical simulations of nonlinear N-wave propagation in relaxing medium the 

specific parameters of the medium, corresponding to those of the laboratory-scaled experiment 

were set: β = 1.21, b = 4.86·10-5Pa·s, ρ0 = 1.29 kg/m3, c0 = 343.77 m/s. The parameters of 

relaxation processes were calculated using empirical expressions for the relative humidity 34%, 

temperature 293 K and ambient pressure level of 1 atmosphere: c1 = 0.11 m/s, τ1 = 6.0 μs (O2) , 

c2 = 0.023 m/s, τ2 = 531 μs (N2) [62].  The boundary condition was set at the distance r0 = 15 cm 

as an ideal N-pulse with characteristic experimental values of amplitude p0 = 1000 Pa and half-

duration Т0 =15 μs (Fig. 2.1a). The corresponding values of nondimensional parameters in the 

Eq. (3.3) are the following: Г = 746.9, D1=0.04, D2=8.43, θ1= 0.4, θ2= 35.4, 33.40 =rxs .   

To illustrate the relative effects of nonlinearity, thermoviscous absorption, and relaxation 

 
Fig. 3.3 Comparison of the numerical solution 
to the Eqs. (3.3) (blue line) with the analytical 
Polyakova solution for monorelaxing medium 
in the form of stationary wave (red line). Black 
line is the initial waveform (hyperbolic tangent) 

numerical modelling 
initial waveform 
theory 

V 
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under experimental conditions, the shock 

waveforms were calculated numerically at 

the distance r = 6 m from the source 

assuming different regimes of propagation 

(Fig. 3.4).  Various physical effects were 

alternately included into the model.  Linear 

propagation in ideal medium was considered 

first, then only acoustic nonlinearity was 

included, then relaxation effects only, 

thermoviscous absorption only, and finally, 

all the above-mentioned effects.  In order to 

“exclude” spherical divergence of the wave, 

the acoustic pressure in all solutions was 

multiplied by the ratio of the current 

propagation distance r to the initial one 

r0 = 15 cm from the source.  If only the 

divergence of the wave is taken into account in simulations (“no effects”, grey line) the corrected 

waveform does not change with the propagation distance and thus coincides with the initial 

waveform shown in Fig. 3.2a). Nonlinear propagation (red line) results in classical lengthening 

of the N-pulse and corresponding decrease of the shock amplitude [48]. Relaxation processes 

(blue line) lead to asymmetric waveform distortion and displacement of both front and distal 

shocks towards the direction of propagation.  The peak value of the rounded positive waveform 

cycle is reduced more than the peak value in the sharp negative tail of the pulse.  The pulse 

length between the front and distal shock fronts, however, does not noticeably change due to 

relaxation as both shock fronts move with the same speed of high frequencies.  

The sharp structure of shock fronts is also not strongly affected by the relaxation.  

Thermoviscous absorption substantially reduces the shock amplitude and broadens the shock 

front without changing the symmetry of the pulse and its duration between the half peak pressure 

levels (green line). It is seen that all the physical effects, nonlinearity, relaxation, and 

thermoviscous absorption are of comparable importance in reducing the pulse amplitude and 

thus should all be taken into account in theoretical modelling.  The solution corresponding to this 

case of “all effects” included in the model is shown as a black line.  The contributions of 

different physical effects to the pulse distortion now are clearly seen from the preceding 

auxiliary cases. The peak pressure values are determined by nonlinearity, relaxation, and  

Fig. 3.4. N-pulse waveforms calculated at the 
distance r = 6 m from the source with alternate 
account for different physical effects: ideal linear 
medium (no effects, grey line), nonlinearity only (red 
line), relaxation only (blue line), thermoviscous 
absorption only (green line), and all the effects 
(black line).  The waveforms are multiplied by the 
ratio r/r0 to exclude spherical divergence of the wave. 

τ, μs 

0rrp , Pa 
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Fig. 3.5. Dependence of the peak positive pressure (a) and half duration (b) of the N-pulse on the 
propagation distance. Peak positive pressure p+ is multiplied by the ratio r/r0 to exclude spherical 
divergence of the wave. 

thermoviscous absorption in comparable extent.  The asymmetry of the waveform is due to 

relaxation and shock broadening is due to thermoviscous absorption.  The pulse duration 

increases mainly due to nonlinear propagation. As nonlinear effects depend on the initial pulse 

amplitude, this effect gives an opportunity for absolute calibration of the microphone sensitivity 

based on the measured pulse lengthening at different distances [43].  

The relative effects of nonlinearity, relaxation, and absorption on the peak positive 

pressure p+ and half pulse duration T over the propagation path are shown in more details in 

Fig. 3.5.  It is seen that for the peak pressure p+ nonlinear effects dominate over the relaxation 

and absorption in diminishing the pulse amplitude up to the distance of approximately 2 meters 

from the source (Fig. 3.5a).  Beyond this distance, nonlinear absorption on the shocks becomes 

much lower as the shock amplitude decreases due to spherical divergence of the pulse, and the 

relaxation and absorption effects therefore start to be dominant. 

Shown in Fig. 3.5b are the results of simulations for the half pulse duration T versus the 

propagation distance r. As the N-waveform is strongly asymmetric it is difficult to define its 

duration correctly in the time domain.  Moreover, in case of experimental data, the waveforms 

are affected by the microphone response and by diffraction on the edges of the microphone.  It is 

proposed here to define the duration of the pulse in the frequency domain by matching the 

positions of the minima in the calculated or measured pulse spectrum with those in the spectrum 

of an ideal N-wave with an infinitely thin front (Fig. 3.2a, b). This definition relies on the 

assumption that all linear waveform distortions additional to nonlinear lengthening can be 

represented as multiplication of the pulse spectrum by a transfer function that changes smoothly 

with frequency and does not shift zero values of the N-wave spectrum and, consequently, these 

minima. In contrast to the peak positive pressure which was significantly affected by both 

nonlinear and relaxation/absorption effects, the pulse duration changes mainly due to the 

r, m 

а) 

0rrp+ , Pa T, μs 

r, m 

b) 
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nonlinear propagation of shock fronts. Small influence of relaxation/absorption processes is 

observed due to suppression of nonlinear effects by lowering the pulse peak pressure values. 

However, this influence is almost negligible (Fig. 3.5b). The characteristic scale of nonlinear 

propagation can be also defined here as an interval with the high gradient of the pulse 

lengthening curve and is about 2 meters too.  Note that the characteristic nonlinear distance 

estimated here is only applicable for the current experimental conditions, pulse amplitude and 

duration. 

§ 3.3 Calibration of measuring system based on nonlinear effects 

To simulate the experiment, an ideal N-

waveform was taken as a boundary condition at 

the distance of the first measured waveform 

r0 = 0.15 m.  The initial amplitude and duration 

of the N-wave were obtained by matching the 

duration of pulses measured at various distances 

from the source and those predicted theoretically 

at the same distances.  As it was previously 

discussed in § 3.2, the duration of pulses in both 

cases was calculated from the position of nulls in 

their spectra. For theoretical predictions, the 

dependence of the dimensionless pulse half duration Tn versus propagation distance was obtained 

from the exact analytic solution to the simple wave equation for N-pulse, Eq. (3.4): 

Here we rely on the results shown in Fig. 3.5b that the change in the pulse duration was 

mainly due to nonlinear effects, not relaxation or absorption. The two unknown parameters 0T  

(initial half duration) and 0p  (peak pressure) of the solution (3.13) which relates linearly 2T  to 

ln(r/r0) were obtained by fitting the experimental values using the method of least squares. 

Definition of the initial N-wave parameters using this method showed a good accuracy as soon as 

the correlation coefficient was R = 0.975 (Fig. 3.6). Thus, the initial half duration was found to 

be T0 = 14.32 μs and peak positive pressure p0= 1148 Pa at the distance of r0 =0.15 m from the  

Fig. 3.6 Linear fit for the squared half duration 
of the pulse. Correlation coefficient is equal to 
R=0.975. 

 σ+= 1nT , 
or in dimension coordinates 

)ln(1
0

0
0

0
3

00
0 r

rr
T
p

c
TT

ρ
β

+= . 

(3.12) 
 
(3.13)

 experiment 
 linear fit 

ln(r/r0) 

T2



82   Measurement and modelling of spherically diverging N-pulses in relaxing air 

   
Fig. 3.7.  Measured (a) and calculated (b) N-waves at different distances from the source 0.15, 0.3, 0.5, 1, 
1.5, and 2 m.  Monotonic decrease of the pulse amplitude corresponds to the increase of the propagation 
distance.  

source.  For these parameters of the experiment dimensionless coefficients in Eq. (3.3) are: 

Г = 857.4, D1=0.035, D2=7.34, θ1= 0.419, θ2= 37.08, 77.30 =rxs .  

The measured and calculated waveforms are presented in Fig. 3.7(a,b) at the radial 

distances r = 0.15 , 0.3, 0.5, 1.0, 1.5, and 2 meters, which in the case of experiment were 

measured with ±3 mm error. The experimental waveforms have much more complex structure 

with several oscillations on the back slope as compared with the calculated N-waves. The rise 

times of the measured shock fronts are much longer than those of the calculated ones.  These 

differences between experimental and simulation results can be attributed to the microphone and 

amplifier limited frequency response, and to the diffraction effects on the edges of the baffle and 

microphone as there was still a small gap between them. 

§ 3.4 Amplitude and phase frequency characteristics of measuring 
system 

In order to check the agreement between the experimental and numerical waveforms it is 

necessary to know the frequency response of the measurement system, that is the microphone 

filtering, including diffraction effects, and the response of the amplifier. The frequency response 

of the measurement system was calculated here as a ratio between the complex spectra of the 

measured and of the calculated pulses, taken at the same distances from the source. The resulting 

amplitude frequency response is sufficiently stable for different sparks and presented in Fig. 3.8a 

(blue line – is the average over the ensemble of derived responses). Obtained response is 

compared to that of the microphone itself obtained from the manufacturer datasheet (red line). It 

is seen that the system amplitude frequency response is flat up to 10 kHz, then continues with 

some ±3 dB oscillations, and ends with frequency cut-off at about 150-200 kHz. The structures  

0rrp , Pa а) 

τ, μs τ, μs 

b) 0rrp , Pa 
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Fig. 3.8.  Averaged amplitude frequency response (a) and random sample of phase response (b) 
calculated for the total measuring system (blue line) and response of the microphone, provided by the 
manufacturer (red line) 

of the curves of both filters, calculated and provided by the manufacturer, are pretty close to each 

other. Distortions of the measured waveforms are, therefore, mainly due to the frequency 

response of the microphone. The difference between the curves on the plateau is less than 1 dB. 

Both curves show the microphone resonance at about 100 kHz. However, some additional 

oscillations in the system amplitude frequency response (compared to the microphone response) 

are observed between10 kHz and the cut-off. More difficulties are encountered with the 

definition of the phase frequency response, as soon as it showed not so good stability from pulse 

to pulse due to fluctuations of spark characteristics, such as position of formation, energy and 

size. It appeared that the phase frequency response is very sensitive to these fluctuations. 

Moreover the comparison with the microphone phase response itself could not be done because 

manufacturer does not provide necessary data. Note, that derived using described method 

sensitivity of the microphone S = 0.89 mV/Pa differs greatly from that, obtained by means of the 

monotone calibrator at frequency 1 kHz with the pressure level 1 Pa: S = 0.494 mV/Pa. A sample 

of the system phase frequency response is presented in Fig. 3.8b.  It shows sufficiently good 

stability from spark to spark up to 30-40 kHz, giving about zero radian value.  At higher 

frequencies the phase response could not be found by averaging responses for different waves 

(sparks) because the variation of the curve shapes at these frequencies become very strong.  

Therefore, in following calculations the phase response was not used. To be able to estimate 

correctly the phase response of the system, the stability of the source should be increased. 

Shown in Fig. 3.9a are the experimental waveform, measured at the distance r0 = 0 .15m 

from the source (red line), the initial ideal N-wave (blue line), and the initial N-wave filtered 

(black line) with the calculated amplitude response.  It is seen, that after filtering, the ideal N-

wave with infinitely small rise time and high peak positive pressure, transforms to the waveform 

with the shape and peak positive pressure much closer to the experimental ones.  However there  

dB , ref 
Pa
V  

f, Hz 

phase response, 
radian 

f, Hz 

b) а) 
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Fig. 3.9. Experimental (red line) and theoretical (blue line) N-pulse waveforms and corresponding spectra 
at the initial distance r0= 0.15 m (a, b) and at the distance r = 1.5 m from the source (c, d). Filtered 
theoretical waveforms and spectra are shown with the black lines. 

is still a difference in the peak negative pressure level which could be explained by the fact that 

we did not take into account the phase characteristics of the measuring system response.  The 

oscillating structure and disturbances before the shock front are also due to the filtering artefacts.  

Frequency spectra that correspond to the presented waveforms are shown in Fig. 3.9b.  A good 

agreement between the positions of spectrum minima is achieved in all three cases.  Note, that as 

it was discussed earlier, the filtering does not change these positions and thus the characteristic 

duration of the pulse. 

The waveforms, measured and calculated at the distance r = 1.5 m from the source, are 

compared in Fig. 3.9c. It is seen that the peak pressure values, both positive and negative, are 

close to each other for all three waveforms, including the filtered one. However, strong 

difference in the steepness (rise time) of the shock front is observed between the experimental 

pulse and the theoretical one, simulated without further filtering. Application of the amplitude 

filtering to the calculated waveform results in much better agreement in the rise time with the 

experiment (black and red lines). Shock front steepness of the filtered numerical signal almost 

coincides with the measured one. The positions of local minima of the spectra and thus the 

durations of all three pulses, also agree very well (Fig. 3.9d). 
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§ 3.5 N-wave characteristic parameters. Comparison of experimental 
data with the results of numerical modelling 

The effect of filtering and more detailed 

comparison of the peak positive pressure, 

duration and rise time of the measured and 

modelled signals over propagation distances are 

presented in Fig. 3.10(a,b,c). The difference in 

peak positive pressure between the calculated 

signal (blue line) and measured one (red crosses) 

becomes almost negligible after applying the 

amplitude frequency filter (phase component of 

the filter equal to zero, as discussed previously) 

to the calculated waveform (black line with 

circles).  As it was already shown, the duration 

of the wave does not change with the filtering. 

This can be seen in Fig. 3.10b where the pulse 

half durations extracted from filtered (circles) 

and nonfiltered (blue line) waveforms coincide 

with each other.  The rise time (Fig. 3.10c) was 

measured as the time between 2 points on the 

shock front, corresponding to 0.1 p+ and 0.9 p+ 

pressure values. After applying the filter the 

difference between predicted and measured 

values of rise time becomes reasonable: smaller 

then 0.5 μs. In comparison, without applying the 

filter, the front width of the theoretical wave was 

10 times smaller, than that of the experimental 

wave.  

A very good agreement between the 

results of numerical modelling with additional 

filtering and laboratory-scaled experiment data 

was obtained therefore for the main shock pulse 

 

 

 
Fig. 3.10. Dependence of peak positive pressure 
(a), half duration (b) and rise time (c) of the 
wave on propagation distance. Blue line – 
calculated results, red crosses – measured 
results, black circles – calculated results with 
filter applied. 
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parameters. Small discrepancies in pulse amplitude and half duration, and bigger difference in 

the rise time of the experimental and theoretical pulses were observed. This is due to the fact that 

the system phase frequency response was not taken into account. 

§ 3.6 Conclusion 

Nonlinear propagation of short duration (30 μs) and high amplitude (1100 Pa at 15 cm 

from the source) N-waves in homogeneous standard atmosphere was studied numerically and 

experimentally.  The Burgers equation extended to describe nonlinear spherically divergent 

waves in relaxing media was employed in the numerical analysis. Numerical simulations 

performed with alternative inclusion of different physical effects showed the relative importance 

of thermoviscous absorption, relaxation, and acoustic nonlinearity on the N-waveform distortion 

for the conditions of the laboratory experiment.  The peak positive pressure was shown to be 

dependent on both nonlinear absorption and linear relaxation/absorption phenomena, whereas 

only nonlinear effects were shown to be dominant in the pulse lengthening. 

The amplitude and duration of N-pulses generated experimentally were calibrated. Pulse 

duration was defined from the position of the first nulls in the spectra of the measured signal.  

Peak pressure was calculated by matching the experimental and analytic curves of nonlinear N-

pulse lengthening over the propagation distances.  Nonlinear modelling of N-pulse propagation 

was performed for the experimental conditions.  Some distortion of the measured signals as 

compared to the modelled waveforms occurred due to the limited bandwidth of the measuring 

system.  The distortion was mainly in changing the peak pressure of the pulse, widening the rise 

time of the shock front, and appearance of additional oscillations.  

The frequency response of the measuring system was calculated as a ratio between the 

spectra of experimental and calculated signals and found to be close to the response of the 

microphone itself provided by the manufacturer (the last one is measured using an electrostatic 

actuation). The frequency response has a plateau up to 10 kHz and a cutoff at about 150-200 

kHz.  Application of the calculated amplitude response to the numerical waveforms resulted in 

even better agreement between simulations and experiment. Application of an appropriate phase 

frequency response may further advance the filtering procedure. To estimate the phase response 

more accurately, improvement of the source pulse to pulse stability and more accurate 

measurements of the propagation are needed. 

Numerical analysis showed that for the existing experimental arrangement, nonlinear 

effects can not be neglected up to the distances of 2 meters, at which the pressure level is higher 
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than 70 Pa.  This remark is very important for scale experiments designed to simulate sound 

propagation in halls or streets because nonlinear effects are usually not wanted for these 

applications [114].  On the other hand, it is possible to extend this developed and calibrated 

experimental set-up to investigate nonlinear shock wave fields in turbulent media, like it would 

be for sonic booms outdoor propagation.  Numerical and experimental results obtained in this 

chapter for N-wave propagation in homogeneous atmosphere are shown to be in a good 

agreement thus validating the model, the numerical algorithm, the filtering, and the calibration 

methods.   

 





 

 

 

 

Chapter 4 

Chapter 4 NONLINEAR EVOLUTION EQUATION OF KHOKHLOV- 
ZABOLOTSKAYA TYPE FOR THE DESCRIPTION OF 
ACOUSTIC WAVE PROPAGATION IN INHOMOGENEOUS 
MOVING MEDIA 

For theoretical description of acoustic signals propagating in turbulent atmosphere it is 

necessary to have a model, which accounts both for the nonlinear and diffraction effects, the 

effects of thermoviscous absorption, and the effects related to the vector nature of turbulent 

fluctuations.  A good model has already been proposed and successfully used for the description 

of nonlinear - diffraction processes in inhomogeneous media; it is known as an extension of the 

nonlinear evolution parabolic equation of Khokhlov – Zabolotskaia - Kuznetsov type [30-33].  

However, the nonlinear equations presented in literature do not account for the vector behaviour 

of the moving inhomogeneous medium, i.e. they do not account for the medium velocity 

fluctuations transverse to the acoustic wave propagation direction.  Therefore, current chapter of 

the dissertation is devoted to the derivation of a modified evolution equation in the parabolic 

approximation of the diffraction theory; it will describe all the physical effects previously 

mentioned here, including the vector properties of inhomogeneous moving medium.  With such 

complete model, it becomes possible to simulate the propagation of high amplitude short pulses 

in randomly inhomogeneous moving medium and to calculate, for example, precise values of the 

statistical distributions, mean and peak characteristics of the acoustic pressure field.  To obtain 

the solution of this generalized KZK equation a numerical algorithm, based on the operator 

splitting procedure, is developed. In this development most attention is paid to an accurate 

modelling of the propagation of steep shock fronts, formed due to the nonlinear focusing of an 

initial periodic signals or pulses.  
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§ 4.1 Theoretical model. Parabolic equation for nonlinear sound waves in 
inhomogeneous moving media. 

A rigorous way to incorporate the effects of a velocity field into an evolution model 

equation is to start with the fundamental equations of fluid mechanics and to derive a wave 

equation that accounts for fluctuations in sound speed, density, and all components of the 

velocity of the moving medium. This has been done for the case of linear waves [4, 12, 28] and 

the equation that describes acoustic wave propagation through scalar and vector type 

inhomogeneities is: 
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Here p is the acoustic pressure, xi (i = 1, 2, 3) – are the components of a position vector 

),,( zyx=r  in Cartesian coordinates, c is the sound speed in the medium of interest; ρ  is the 

density; t  is the time, ui is the component of the medium velocity along the coordinates x, y, and 

z.  

The variables p, c, ρ , u are functions of time t and coordinates x,y,z. 

),,( zyx ∂∂∂∂∂∂=∇ , and )(// ∇⋅+∂∂= utdtd . Beyond the usual paradigm of linear lossless 

acoustics the only restriction on the use of this equation is that the Mach number associated with 

the flow velocity should be small: 1/ 0 <<cu , where c0 is the ambient sound speed. 

 Here the method of slowly varying amplitude [47, 48] is used to reduce the Eq. (4.1) to 

the linear parabolic equation. According to this method the solution is represented in the 

form ( )0 , , ,p p t x c X x Y y Z zτ ε ε ε= = − = = = , where τ   is the retarded time and ε  is a 

small parameter. In this representation the direction of Cartesian axis x becomes the initial 

direction of the wave propagation. The derivatives in the Eq. (4.1) are transformed as:  

After substituting the relations (4.2) into the Eq. (4.1), neglecting the terms of order ε 2 in 

the stretched coordinates (X, Y, Z), and returning back to the original coordinates (x,y,z), one 

obtains:  
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Here xu  is the longitudinal component of the flow in the medium, ( )zy uu ,=⊥u  is the 

transverse component of the flow, and ( )zy ∂∂∂∂=∇⊥ /,/ . During the derivation it was assumed 

that all inhomogeneities are slowly varying in space, i.e. iX∂∂ /ρ , iXс ∂∂ /  and ij Xu ∂∂ /  are of 

the order of ε.  We also suppose that the inhomogeneities known a priori are specified at the 

time corresponding to the crossing through moment of the acoustic wave and remain unchanged 

during the passage of the acoustic wave. In this case the sound speed, density, and velocity fields 

can be considered as functions of spatial coordinates only: c = c(x,y,z), ),,( zyxρρ = , and 

( )zyx ,,uu = , i.e. they are “frozen” in time. Equation (4.3) is the most complete linear parabolic 

equation, which describes the propagation of sound waves in inhomogeneous moving media.  

For harmonic waves it can be cast in a form identical to the equation derived by Ostashev with 

the same enumeration of terms [4].  

Equation (4.3) is still rather complicated for numerical modelling. Actually in this 

equation there are six physical parameters assumed to be of the same order of smallness. These 

parameters are: i) 1/kL, where L is the characteristic scale of inhomogeneity and k is the acoustic 

wave number; ii) the acoustic Mach number 0
2
0 ρcp ; iii) the flow Mach number 0cu ; iv) 

Δc/c0 = (с - с0)/c0 is the parameter associated with scalar inhomogeneities of the sound speed; v) 

Δρ/ρ0  is the parameter associated with variations in density, and vi) the angle between the 

direction of wave propagation and the x axis. 

To simplify Eq. (4.3), let us do an analysis of the relative order of magnitude of the 

derivatives, i.e. : 
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L is the characteristic scale of the inhomogeneity, ω  is the frequency of wave parameters 

change. For density variations the following relation is almost always valid 1<<ν  [4]. The 

spatial derivative of the acoustic pressure in the direction of the wave propagation is proportional 

to LAxp /~/ ∂∂ , where А is the amplitude value of sound pressure in the medium of 

propagation. The spatial derivative in transverse direction is characterized by the angle of 

acoustic rays declination from the direction of wave propagation due to diffraction, as soon as 

pressure contains the phase factor ( ) ( ) ( )rerekr ⋅⋅=⋅⋅= ββ 00 expsinexpexp ikiki . Here the e  

vector is the unit vector in the direction of the projection of wave vector k on the yz plain.  Thus, 

mAkp β0~⊥∇  where λπ /20 =k  and mβ  is the maximum ray declination angle. 

Using these estimations to simplify the Eq. (4.3) and dividing each term by (k0)2 one can 

obtain the following orders of magnitude: 

 1. ~)/(2 0 Lk 1.6·10-1 

 2. ~2
mβ 9.8·10-2 

 3. ~/2 0ccΔ⋅ 1.2·10-1 

 4. ~2M 8.8·10-2 

 5. ~2 mMβ 2.8·10-2 

 6. ~)/(2 0 LkM 7.0·10-3 

 7. ~)/( 0 Lkν 1.3·10-3 

 8. ~)/( 0 Lkmνβ 4.3·10-4 

 9. ~)/(2 0 LkM mβ 2.2·10-3 

 10. ~)/(2 0
2 LkM mβ 6.9·10-4 

 11. ~)/( 2
0Lkν 1.1·10-4 

 12. ~)/(4 2
0 LkM 1.1·10-3 

 13. ~)/(2 2
0 LkM mβ 1.8·10-4 

For the previous estimations the following parameters of the atmosphere were used: 

cΔ = 20 m/s, |u|max = 15 m/s, and 2107.1 −⋅=ν  that corresponds to changes in ambient 

temperature equal to 5К. It was also supposed that 10/πβ =m  (maximal acceptable angle of 

rays declination from the axis due to the limitation of parabolic approximation) and L/λ =0.5. 

Thus we retain in the Eq. (4.3) only terms 1-5, which are of order 1/kL and neglect terms 

containing combinations of any previous small parameters. In addition, we keep the term 7, 
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related to density variations, because in the absence of any sound speed fluctuations or medium 

flow this term becomes the most significant.   

The resulting linear parabolic wave equation is obtained using the approximate relation 
3
0

2
0
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Equation (4.4) accounts for the acoustic wave propagation in a 3D inhomogeneous moving 

media. In the absence of inhomogeneities, i.e. if Δс,  Δρ = 0 and u = 0, it simplifies to the well 

known parabolic approximation of diffraction [Vinogradova et al., 47].  

In the final step of the derivation of a nonlinear parabolic equation it is usually considered 

that the terms describing nonlinearity and attenuation may be included into the linear parabolic 

equation additively [30, 47, 48]. This can be justified on the basis that the nonlinear and 

attenuation terms are small and so any interaction with the other terms will necessarily be of 

higher order of smallness, and so within the framework described here can be neglected. Finally, 

we get the following nonlinear parabolic wave equation of the KZK type: 
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where β  is the coefficient of nonlinearity and b is the coefficient of viscosity.  The 

thermoviscous absorption term 22
0

3
0 )2/( τρ ∂∂⋅ pcb  can be replaced by more general linear 

operator L(p) if it is necessary to account for relaxation or other losses [Cleveland et al., 115]. 

Equation (4.5) is a KZK type of equation, which models the combined effects of 

diffraction, nonlinearity, attenuation; and has been generalized to account for sound speed and 

density inhomogeneities, and flow inhomogeneities. In Eq. (4.5) the first term accounts for 

propagation, the second term - for nonlinear distortion, the third term - for sound speed (scalar) 

and axial flow (vector) inhomogeneities, the fourth term - for transverse flow (vector) 

inhomogeneities, the fifth term - for density (scalar) inhomogeneities, and the sixth term - for 

absorption. The right-hand side of Eq. (4.5) accounts for diffraction effects. What is new here, 

that is the addition of the fourth term, which accounts for the transverse flow effect. 

In dimensionless coordinates and 2D Cartesian geometry the modified KZK equation 

excluding scalar inhomogeneities can be represented as: 

 2

|| 2

12 [ ]
4

V V V V VNV U U L Vπ
θ σ θ θ ρ π ρ⊥

⎤∂ ∂ ∂ ∂ ∂ ∂⎡ − − ⋅ + − =⎥⎢∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
 (4.6) 

Here V=p/p0 is the acoustic pressure normalized by its initial amplitude value, θ =ω0τ  is 

 dimensionless time,  ω0 = 2πс0 / λ   is the characteristic frequency of the acoustic wave, λ  is 
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the acoustic wavelength, σ  = х/λ   is the normalized propagation distance,  ρ = y/λ is the 

normalized transverse coordinate, U|| = uх /c0 normalized axial flow, U⊥ = uy /c0 normalized 

transverse flow, sxcpN //2 0
2
00 λρπβ ==  is the dimensionless nonlinear parameter, where 

000
3
0 ωβρ pcxs =  is the shock formation distance for a harmonic plane wave. ][VL  is the linear 

operator which governs frequency dependent losses, and in the case of thermoviscous absorption 

and relaxation processes modelling can be written as: 
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, where )/(2 00
2 λρπ cbA =  is the 

dimensionless parameter of thermoviscous absorption, 0/2 ccD vπν =  and vτωθν 0= are the 

force and time of the oxygen and nitrogen relaxation processes for v = 1,2 respectively. If an 

acoustic pulse is propagating instead of a periodic signal for the normalization of equation 

parameters the duration of the pulse is used: (2T0) = 2π/ω0. 

To determine the orders of dimensionless parameters in Eq. (4.6) let us consider the 

propagation of the acoustic pulse in two cases of interest: laboratory scale experiments [7, 40, 

43, 44] and field experiments [52 - 55]. Measured both in laboratory and field experiments sound 

pressure amplitudes and medium velocity fluctuation amplitudes are about than p0 ~ 1000 Pa and 

ux,y ~ 20 m/s (Table 2.1). Thus under the normal atmosphere conditions for dimensionless 

parameter of nonlinearity one can obtain the value N~0.06, and for the velocity fluctuation 

dimensionless parameter U⊥,|| ≤ 0.05. Thermoviscous absorption parameter appears to be 

strongly dependent on the acoustic pulse length, which in laboratory experiment is about 

λ ∼ 1.2 cm, and in field experiments λ ∼ 50 m (of the order of the length of the airplane). 

Therefore, dimensionless absorption parameter varies according to the type of experiment: 

laboratory scale experiment (A ~ 1.5·10-4) and field experiment (A ~ 3.6·10-8). 

It should be noted here that parabolic evolution Eq. (4.6) with U⊥ = 0, was previously 

used in literature for the description of acoustic pulse propagation in media with only scalar 

inhomogeneities (1.18) [31]. From this point of view, the novelty of Eq. (4.6) consists in 

accounting for the transverse winds and turbulent fluctuations of medium velocity, which may 

sufficiently affect the propagation of acoustic signals in turbulent atmosphere. In addition, the 

numerical solutions obtained in [31], correspond to the initial condition in the form of N-wave 

with very wide front (7% of the wavelength), which is chosen in order to simplify the 

simulations, but does not fit real physical effects (front width is <0.4% of wavelength). 

Moreover, in the computations an algorithm, which introduces a very strong artificial dissipation, 

was used (for details refer to §4.3). 
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§ 4.2  Self similarity property of the KZK type equation 

Equation (4.6) has no analytical solutions, but there exist some important properties of 

similarity, that can be used to obtain series of solutions of the Eq. (4.6) if only one numerical 

solution is known.  Generally, the motion of the medium is represented as a mean motion with 

superposition of various fluctuations of velocity.  According to this, the components of the total 

velocity can be written in the form: ||
0

||||
~UUU +=  and ⊥⊥⊥ += UUU ~0 , where variables with a 

tilde are velocity fluctuations and variables with zero index – the mean motion of the medium.   

Let us consider a field of vector inhomogeneities with a mean motion governed by the 

following laws: ( ) ( )σρσ CBU +⋅=0
||  and ( )σDU =⊥

0 ; and arbitrary random fluctuations ||
~U  

and ⊥U~ . It can be shown that using the following transformation of variables: 

 ( ) ( ) ρσθσθθθ ⋅++= 02011    ,      σσ =1    ,       ( )σρρρ 01 += , (4.7) 
where unknown functions ( ) ( ) ( )σρσθσθ 00201 ,,  can be obtained as the solutions of a system of 

differential equations: 
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it is possible to completely exclude the mean motion of the medium from the parabolic equation, 

and in the same time to keep the modified fluctuating components:  
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where 
 ( ) ))(,(~

2
1))(,(~),(~

10111021011||11
1

|| σρρσσθ
π

σρρσρσ −⋅+−≡ ⊥UUU  

))(,(~),(~
101111

1 σρρσρσ −≡ ⊥⊥ UU  
(4.10)

Note, that according to the Eqs (4.10), fluctuations of the medium flow in the transverse 

direction have an influence on the speed of sound of the wave. This can be interpreted physically 

as follows: as the phase front turns, the transverse flow is no longer perpendicular to the normal 

to the front, the flow projection onto the wave vector becomes nonzero, and therefore the 

transverse flow component results in a change of the wave phase speed. In contrast, the 

projection of the longitudinal flow onto the normal to the steered wave vector does not manifest 

itself as a transverse flow, presumably because this is a large angle effect which is not accounted 

for by the parabolic approximation.  
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Consider an example of a layered inhomogeneous media described by the law 

00
0

|| CBU +⋅= ρ  and 00 =⊥U , where B0 and C0 are arbitrary constants (horizontal flow with 

linearly changing amplitude in transverse direction). This leads to the following change of 

variables: 

 
ρσσ

π
σθθ ⋅⋅−⋅+⋅−= 0

32
001 12

1 BBC  ,  σσ =1   , 2
01 4

1 σ
π

ρρ ⋅−= B , (4.11)

from which it can be deduced that the axis of the beam has a parabolic trajectory and the phase 

front turns due to the presence of flow. In the case of a purely transverse flow, i.e. 00
|| =U  and 

)(0 σDU =⊥ , the change of variables takes the form 

 
θθ =1  ,  σσ =1   , ( ) σσρρ

σ

′′−= ∫ dD
0

1 . (4.12)

In this case, the axis of the sound beam has a trajectory governed by the function )(σD , but the 

wave front does not turn. In geometrical acoustics this leads to the noncollinearity of phase and 

group velocities. 

§ 4.3  Numerical algorithms 

The parabolic evolution Eqs (4.5, 4.6) are still sufficiently complicated for deep 

theoretical analysis and, therefore, they need to be solved numerically. Depending on the 

temporal characteristics of the transmitted signal, different approaches can be employed for 

numerical modelling. Time domain approach is more convenient for modelling the propagation 

of pulsed signals [31, 115, 116], like sonic booms in atmosphere or intense shock waves emitted 

by explosive sources in the ocean [9], and spectral method approach is better suited for solving 

equations governing periodic wave propagation, such as acoustic waves used in noninvasive 

ultrasound surgery [1, 49, 117, 118]. In this work both spectral and time domain algorithms are 

developed and used for numerical computations.  

4.3.1 Frequency domain approach to model periodic waves with shocks 

To obtain the solution of the Eq. (4.6) the spectral numerical algorithm presented in 

[Khokhlova et al., 117] for axially symmetric beams has been generalized to 2D Cartesian 

geometry [Averiyanov et al., 11]. Representing the solution in the form of the Fourier series 
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expansion: ∑
∞

−∞=

−=
n

n inCYV )exp(),(),,( θρσθσ  and substituting it to the Eq. (4.6) yields a set of 

coupled nonlinear differential equations for the complex amplitudes Cn: 
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where Cn(σ,ρ)  is the complex amplitude of the nth harmonic )( ∞<<−∞ n , C–n = Cn
* (Cn

* denotes 

the complex conjugate of Cn ). 

To guarantee the stability of the numerical algorithm (4.13) at the stage of developed 

shocks, an absorption term that represents either the physical thermoviscous absorption or 

artificially added absorption is included in the algorithm. The absorption is necessary to 

smoothen the shock front in nonlinear regime of acoustic wave propagation [Kasheeva et al., 

119]. Otherwise, the formed shock front becomes too steep for its accurate description using 

prescribed finite number of Fourier harmonics, and the Gibbs oscillations occur – numerical 

error – at the wave profile. For stability purposes it is also possible to use absorption, 

proportional, for example, to the fourth or to the sixth power of frequency. Such choice could be 

justified by the fact that according to the Rayleigh law, in the media with small scale internal 

structure absorption is proportional to fourth power of frequency. However, using these laws of 

absorption leads to the formation of physical oscillations at the waveform [120121- 122123]. Chosen 

here is the quadratic law of frequency dependent absorption that does not introduce any 

additional distortions to the waveform, and corresponds to the absorption law in water and air, 

where the propagation of nonlinear waves is studied. During the integration of Eqs. (4.13) the 

absorption coefficient А is selected to be as small as possible to maintain the stability of 

simulations and to get more realistic results.  

The set of equations (4.13) is solved for the harmonic amplitudes Cn using a frequency 

domain numerical algorithm based on the operator splitting procedure [11, 117].  The amplitudes 

Cn of the first ≤n Nmax harmonics are calculated using a marching algorithm in the σ direction.  

At each step σh   the, right-hand side of equations (4.13) is split into four operators: LD = 

diffraction, LN = nonlinearity, LA = absorption, and LI = inhomogeneity, and these operators are 

applied sequentially. At the first fractional step, the set of equations Dn LC =∂∂ σ  is solved 

independently for each harmonic component n using a second order Crank-Nicholson implicit 

algorithm. The obtained results are then used as a boundary condition for the second fractional 

step at which nonlinearity effects are included independently for each spatial grid point, 

Nn LC =∂∂ σ , using a fourth order Runge-Kutta algorithm. At the third fractional step the 
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absorption term, An LC =∂∂ σ , is calculated by applying the exact solution 

)exp()()( 2
σσ σσ hAnChС nn −=+ . The effects of inhomogeneities are accounted at the last 

fractional step, In LC =∂∂ σ  using an exact solution for the longitudinal component and the 

second order Lax-Wendroff numerical algorithm for the transverse component of the velocity 

field [Press et al., 124].  

Spatial steps in the numerical modelling are chosen according to the characteristic spatial 

scales of the acoustic field (wavelength, width of the focal waist) and so the stability of the 

algorithm is guaranteed. The value of the absorption coefficient Α is chosen to provide the 

stability of the solution in accordance with  the number of harmonics retained in the calculations 

and the maximum amplitude of the shock wave achieved. In its turn, the absorption coefficient is 

determined due to the time limits for the calculation of the acoustic field realization. For 

example, to calculate the acoustic wave nonlinear (N=0.05) propagation through the 

inhomogeneity with a characteristic outer scale equal to L = 3λ and a mean square medium 

velocity of fluctuations equal to 3=rmsu m/s, the numerical grid step along the propagation 

coordinate is set to 2105.2 −⋅=σh  and the numerical grid step along the transverse direction is 

set to 2100.2 −⋅=ρh . Calculations are conducted for 150max =N  harmonics, and according to 

that, the absorption parameter is chosen to be equal to A = 0.002. For a specific problem, the 

coefficient is determined by the properties of the medium, and the appropriate number of 

harmonics would have to be chosen for that case. It is also important for numerical simulations 

to choose correctly the width of the computational window in transverse direction, as soon as the 

reflected acoustic waves from the boundaries may lead to distortions of the investigated acoustic 

field. So for the calculation of a realization with dimensions 40λ in transverse direction and 60λ 

in longitudinal direction the width of the computational window was chosen to be Lwindow = 60λ.  

Reliability of obtained results was checked by the change of the computational window width, 

by diminishing the chosen spatial grid steps by a factor of two and by increasing the number of 

harmonics used. Thus, the obtained numerically acoustic field differed from the previously 

calculated field not more than on 1 %.  

4.3.2 Time domain approach to model propagation of single shock pulses 

To investigate the propagation of an acoustic pulse with a thin shock front typical for an 

N-shaped intense sound wave, a separate algorithm was developed.  To construct an initial N-
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wave pulse it is useful to note that, in the absence of inhomogeneities, the parameters of the 

wave are governed by the Burgers equation [Vinogradova et al., 47]: 
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which has an exact solution in quasistationary form.  This means that the solution to the 

Eq. (4.14) is given by shocks formed according to the simple wave equation (Eq. (4.14) with 

А=0.0) but smoothed with the stationary solution to the Burgers equation.  

Following our discussion, to solve the evolution Eq. (4.6) it is essential to set the initial 

condition in the form of a quasistationary solution.  In this way at least two physical effects will 

be accounted for.  Thus, the initial condition is an N-wave with smoothed shock front, which 

width is determined by nonlinear (wave amplitude) and thermoviscous effects: 
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The duration of the initial pulse is equal to 2π and the shock front width (rise time) is 

approximately equal to 10A/N, that corresponds to changes in pressure on the shock from 10% to 

90% of its amplitude. With A/N → 0 quasistationary solution (4.15) becomes an ideal N-wave 

with amplitude V0=1.0. 

As it was mentioned previously, to model the propagation of acoustic pulses it is more 

convenient to use the time domain approach for numerical modelling. As in the spectral 

approach, it is based on the operator splitting procedure. According to this method at each grid 

step in propagation distance σ  the equation is split in five physically consistent equations, 

describing different physical effects, each of which is solved independently:  

       nonlinearity 
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∂ 2

2
VNV , (4.16) 
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In addition, if it is necessary to account for relaxation effects on the acoustic wave 

propagation, then the set of equations (4.16-4.20) should be supplemented by one more equation, 

analogous to Eq. (3.6) and written as follows in 2D geometry :  
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At the first step of the numerical procedure, diffraction is taken into account (4.20) using 

six point implicit Cranck-Nicholson finite difference (CNFD) algorithm of second order in 

respect to the space coordinates [Lee, 125]. At this step, for the integration over time, the 

trapezoidal rule written in the following form is used: 
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Using (4.22) and substituting derivatives in their differential form into the Eq. (4.20) one 

can get the following set of equations:  
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where 
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For the derivation, it is assumed that there are no distortions at the edges of the time 

domain and that the boundaries in transverse direction are ideally rigid, that is the boundary is 

assumed to be as ideally reflective surface: 

 0),,( =njiV θρσ  for n = 0 and n = Nmax 
),,(),,( 11 njinji VV θρσθρσ −+ =  for j = 0 and j = Jmax 

(4.25) 

In the left hand side of the Eqs. (4.23) the unknown terms of the i+1 layer are gathered together, 

whereas in the right hand side the known terms from the previous layer i are collected. Definitive 

matrix of the set of equations (4.23) has a three diagonal form, and therefore, the solution can be 

found using the well-known Thomas sweep algorithm [Press et al., 124]. 

The result obtained at this step is then used as a boundary condition for the second 

fractional step when nonlinearity effects (4.16) are included independently for each spatial grid 

point. In this purpose, the six point explicit conservative Godunov type algorithm of the second 

order accuracy in time and first order accuracy in propagation distance is used [Kurganov et al., 

112]. According to this algorithm the solution to the Eq. (4.16) at the layer i+1 is represented in 

the following form : 
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where the numerical fluxes i
nH 2/1±  passing through the numerical grid cell centres are given at 

layer i with relations: 
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To obtain the solution of the second order accuracy in time, in the presented algorithm 

the piecewise linear reconstruction is used to estimate the pressure values V(σi ,θn) to the write 

2/1+
+

nV  and to the left 2/1+
−

nV  from the numerical grid knot (i ,n): 
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In (4.27), solution derivatives on time at the ith layer of the propagation coordinate are 

chosen in such way that their absolute values appear to be minimal in the set of possible 

derivative differential representations: left, right and central derivatives with mass coefficient 

1≤β≤2. Such selection of the derivative value provides better stability of the numerical 

algorithm: 
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Where the min mod function is the standard minimum modulus function.  

If a better accuracy is needed, the mass coefficient should be set to β = 2, whereas β = 1 

introduces to the algorithm additional grid absorption and makes the algorithm more stable. And, 

finally, the local numerical flux speed in the grid cell is defined as: 

 2/12/12/1 ,axm)( +
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+
−

+ = nn
i
n VVa θ  (4.30) 

The presented algorithm possesses a good stability and allows computing the propagation 

of thin shock fronts with a good accuracy. In the following paragraph we present the detailed 

comparison of the Godunov type algorithm with the two other numerical algorithms, widely used 

in literature to model the nonlinear effects.  

One of these algorithms is the algorithm based on the exact implicit Poisson’s solution to 

the simple wave equation )( σθ NVVV +=  [111, 125, 126]. A numerical solution at each knot of 

the nonuniform grid is given by the simple relation ),(),( σσ θσθσ NVhVhV +=+  [111, 125].  

Therefore, an interpolation from the non uniform to uniform time grid is then necessary. 

Commonly used linear interpolation reduces the accuracy of the algorithm to the second order in 

time (hθ)2 and also introduces strong numerical dissipation which accumulates with distance. 

Moreover, this method has several disadvantages and hidden dangers. Being used for the 

prediction of the shock wave evolution in lossless media it will result in the incorrect shock front 



102  Nonlinear evolution equation of KZ type in inhomogeneous moving media 

position (it will not move) giving only decrease of its amplitude with distance. Even if artificial 

or physical absorption is introduced, it is necessary to have sufficient number of grid points per 

shock front to obtain a correct solution. In addition, during the propagation of the acoustic wave 

the number of grid points per shock front should not be less than the minimal possible number. 

Thus, if the numerical grid is uniform in time, one will get a huge amount of grid points 

per wave, as soon as the width of the shock is very small in comparison with the wave duration. 

As we discussed previously the width of the front (rise time) can be estimated with the value 

10A/N. This value varies approximately from 0.4% of the wave duration in the model experiment 

to 0.0001% of wave duration for sonic booms propagating in real atmosphere. Therefore, having 

even 10 points per shock in the first case will result in about 2500 points per wave, what in one’s 

part will result in very high time consummation, especially in the case of 2D or 3D calculations.  

Thus, being limited with the wish to obtain sufficient accuracy from one side and minor 

time contribution from the other, three different numerical algorithms to solve the nonlinear term 

in parabolic Eq. (4.6) are compared here. With the aim to find the most effective numerical 

method, the following algorithms of simple wave Eq. (4.16) modelling are tested:  

1) widely used approach built on the basis of the exact solution to the simple wave 

equation ),(),( 1 σθσθσ NVhVV nini +=+ ; 

2) second order in time and first order in distance explicit finite difference conservative 

algorithm [122] [ ]2
1

2
11 ),(),(

4
),(),( −++ −+= nininini VV

h
Nh

VV θσθσθσθσ
θ

σ ; 

3) central flux-conservative Godunov type scheme of the second-order accuracy in time 

and first-order accuracy in propagation coordinate (4.26-4.30). 

At that stage, according to the discussion related to the first algorithm, the comparison is done 

for waves propagating in the nonlinear dissipative medium, i.e. the classical Burgers Eq. (4.14) 

is solved. The absorption introduced here plays the role of artificial absorption necessary to 

provide the stability and accurateness of the algorithm. For all the algorithms the absorption is 

calculated using Crank-Nicholson algorithm of the second order. For each case of wave 

propagation presented here, spatial grid step is chosen according to the conditions of stability 

and convergence of the solution. The initial waveform is chosen according to the quasistationary 

solution (4.14) with the following physical parameters: nonlinearity parameter is equal to 

N=0.06, absorption parameter is equal to A=1.5·10-4 that is in accordance with the laboratory 

experiment. Therefore the amplitude of the initial wave is equal to V0=0.988 and the shock front 

rise time is equal to 10A/N=0.025 (0.4% of wave duration which is equal to 2π).  
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Shown in Fig. 4.1 are the positive half periods 

of the calculated waveforms. The calculations were 

made using previously discussed numerical 

algorithms and varying the number of grid points per 

shock front of the N-wave. The results of numerical 

modelling are compared with the quasistationary 

solution to Burgers equation (4.15) at the distance 

σ =157 (at this distance the ideal N-pulse becomes 

twice longer). It is seen (Fig. 4.1a), that to obtain 

more or less accurate solution in the case of the first 

proposed algorithm, it is necessary to have more 

than 50 grid points per shock front of the initial 

pulse, or as equal, 12000 grid points per wave 

duration. This leads to very strong time 

consummation. If the number of grid points per 

initial shock is chosen to be smaller, the position of 

the wave front, its amplitude and rise time are 

predicted incorrectly. If one is interested only in the 

wave amplitude and duration, it is still possible to 

use this algorithm, having not very strong numerical 

error.  However, if the shock rise time is of interest, 

then this algorithm can easily give an error of more 

than 100%, if wave propagation is calculated even 

with more than 20 grid points per shock.  The second 

proposed algorithm – conservative finite difference 

scheme – is much better suited to solve the Burgers 

Eq. (Fig. 4.1b). With only 7 grid points per initial 

shock a good accuracy of main wave parameters 

determination is achieved: the error does not exceed 0.2% when comparing with quasistationary 

solution to the Burgers equation. However, further decrease of grid point number per shock 

front leads to the formation of Gibbs instabilities on the waveform. To suppress these 

instabilities, additional artificial absorption needs to be introduced. However, it will result in 

shock front widening. Finally, it appeared that Godunov type scheme (Fig. 4.1c) is the best 

suited to perform desired calculations of N-wave propagation in nonlinear dissipative medium. 
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Fig. 4.1 Comparison of nonlinear 
waveforms, calculated at the distance 
σ =157 using different numerical 
algorithms and varying the number of grid 
points per shock front of the wave. a) – 
implicit numerical algorithm built on the 
basis of the exact solution to the simple 
wave equation, b) – explicit finite 
difference conservative algorithm, c) 
Godunov type explicit conservative 
algorithm. 
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This algorithm gives good results even with only 3 grid points per wave shock front. At that 

stage, the numerical error of main wave parameters estimation (peak positive pressure, duration 

and rise time) does not exceed 0.2%. (Optimal relation between time step and spatial step in 

lossless media in the sense of both time contribution and accuracy is hσ < [3, 4] hθ).  It should be 

noted that the presented algorithm describes very good the nonlinear propagation of acoustic 

pulses even in lossless media (without introducing the absorption).  In this case of acoustic N-

wave propagation in the medium without dissipation, its peak positive pressure and duration are 

estimated with a very high accuracy, whereas the minimal value of the shock front rise time is 

limited with 3 grid points, that can be explained by small internal viscosity of the algorithm. 

The problem of optimal numerical algorithm selection occurs also at the third step of 

numerical procedure, while computing the convection of sound wave in the direction of its 

propagation due to the presence of medium velocity fluctuations Eq. (4.18). As in the previous 

case, three different numerical algorithms are compared: 1) an explicit algorithm built on the 

basis of the exact solution )2,(),( ||1 σπθσθσ hUVV nini +=+  to the transport equation, 2) the Lax-

Wendroff explicit numerical algorithm [Press et al., 124], and 3) an explicit numerical algorithm, 

built on the basis of frequency domain exact solution for complex amplitudes (see below).  To 

estimate the accuracy of each algorithm, the numerical solutions are compared to the exact 

solution i.e.: the step solution for the transport equation )2( ||σπθ UVV += . Here, like 

previously, the first implicit method appears to be too much dissipative when not sufficient grid 

points per shock front is used. Moreover, to obtain sufficiently good accuracy in computations, 

the stronger limitations on the number of grid point per shock front is needed. For example, a 4% 

accuracy is achieved only if in the calculations a minimum of 80 grid points per shock are used.  

The second method (Lax-Wendroff) allows to obtain an accurate solution for the 

computation done with n = 50 grid points per initial shock front (in this case the error in main 

wave parameters estimation is not greater than 3% as compared to the exact solution). Further 

decrease in grid point number per shock front leads to the formation of Gibbs oscillations. 

The most efficient algorithm, in the sense of getting better accuracy paying less time 

contribution, is the third algorithm despite of the necessity of direct and inverse Fourier 

transforms realization.  It allows obtaining a good accuracy (less than 1% error) having only 2-3 

grid points per initial wave front. Moreover, the use of this method allows also accounting for 

frequency dependent thermoviscous absorption [Averiyanov et al., 122] and relaxation effects 

almost without additional time consumption: 
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In addition, as soon as the spectrum of real function is symmetric, the number of 

harmonics used is two times smaller than the actual number of time grid points per wave 

duration. The limitations of this method consist only in the use of at least 2-3 points per wave 

front at all stages of propagation. Thus, at the third step of the global numerical procedure (4.16)-

(4.21), the following effects are accounted for: convection in the direction of the wave 

propagation (4.18), frequency dependent thermoviscous absorption (4.17) and relaxation effects 

(4.21). 

At the last step of the numerical procedure the convection in the direction, transverse to 

the direction of the wave propagation (4.19) is taken into account. As the acoustic pressure field 

does not have emphasized shocks in the transverse direction, the transport equation is solved 

numerically using the Lax-Wendroff explicit algorithm [Press et al., 124] of the second order 

accuracy in both spatial directions, transverse and longitudinal to the wave propagation:  
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Thus, to model the formation of the acoustic field in the medium with N=0.05 and 

А=0.00034 the following parameters of numerical simulations are chosen (the method of 

appropriate numerical parameters selection is described in Appendix B): 2105.2 −⋅=σh  and 

2102 −⋅=ρh  are the steps in longitudinal and transverse directions, respectively.  Numerical grid 

steps are chosen to provide a good stability of the numerical algorithm, and to describe 

accurately the fine structure of the field (to have a good resolution).  For example, not less than 

10 grid points in each direction are used to describe the focal spot.   

The number of time grid points within the wave duration is chosen to be n=1024. This 

amount is quite enough to accurately describe the shock front rise time even in the wave foci. 

The accuracy of the total procedure was checked by the comparison with numerical solutions 

calculated with different steps (see, Appendix B). So, for twice smaller numerical steps the 

relative error between main parameters of two solutions was not higher than 3%. In addition, to 

avoid the influence of parasitic reflections from the edges of numerical domain, the spatial 

computational window in transverse direction is chosen to be larger (Lwindow = 400 λ) than the 

area of interest (Larea = 370 λ). 



106  Nonlinear evolution equation of KZ type in inhomogeneous moving media 

§ 4.4 Benchmark solutions and 
validation of the model  

In general, derived evolution parabolic 

Eq. (4.6) is valid only for relatively small 

angles of diffraction θm << 1 and, therefore, it 

is valid only for the acoustic wave 

propagation through big size inhomogeneities 

for which kl >> 1, where k is the wave number 

and l is the inhomogeneity size [47, 127]. 

However, in the investigated problems of 

acoustic signals propagating through different 

type of inhomogeneities, their characteristic 

sizes appear to be often of the order of the 

wavelength. In this case of the presence of 

small inhomogeneities the validity of the 

parabolic Eq. (4.6) is questionable.  Therefore, 

to test the validity of the theoretical model and 

numerical algorithm, let us consider first the 

example of linear propagation of an initially 

plane harmonic wave through a singular 

focusing scalar Gaussian inhomogeneity of 

one wavelength size: 

( )( )22
0

0
|| 10exp ρσ −−−= UU  and 00 =⊥U  in 

the Eq. (4.6). A value of U0 = 0.03 was used 

which resulted in the sound speed in the 

centre of inhomogeneity about 3% lower than 

the background sound speed c0 (see Fig. 4.2a). 

This kind of inhomogeneity was chosen to 

compare the obtained results with a solution 

to the more precise wide-angle parabolic 

equation [Dallois et al., 25] and to the 

parabolic equation solved in the time domain 

[115, 128], and thus to check the accuracy of 
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Fig. 4.2. (a) Sound speed map for a medium with a 
single scalar focusing Gaussian inhomogeneity 
with Δcmax/c0 ~ 3% and (b) corresponding 
distribution of peak acoustic pressure resulting 
from linear continuous wave (CW) propagation 
through the inhomogeneity.  с) distributions of the 
pressure amplitude, obtained along the symmetry 
axis by solving KZK type Eq. (4.6) and wide angle  
parabolic equation (WAPE). 
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the theoretical model and of the numerical scheme. 

During the propagation of the acoustic wave through the sound speed inhomogeneity an 

initially plane wave front distorts, resulting in the wave focusing and formation of areas with 

increased pressure (Fig. 4.2b). The areas of defocusing and corresponding decrease of the 

pressure amplitude are also formed along with creation of wave defocusing regions. Shown in 

Fig. 4.2c are the peak pressure distributions at the axis passing through the centre of the 

Gaussian inhomogeneity in the direction of the initial wave propagation. Pressure distribution 

(black line) is calculated for the propagation of the continuous wave (CW) using the numerical 

procedure (4.13) for the KZK type equation (4.6). Red line corresponds to the solution to the 

wide angle parabolic equation – WAPE-CW [Dallois et al., 25] for continuous wave, and black 

curve describes the distribution of an N-wave peak pressure calculated along the same axis using 

the KZK-type equation (4.6). It is seen, that the amplitude of the continuous wave along this axis 

is in a good agreement with the solution obtained based on wide angle parabolic approximation. 

The difference in the results was less than 3% when the spatial marching steps hσ  and hρ  were 

set to a value of 50 points per acoustic wavelength. Thus the nonlinear evolution equation of the 

KZK type, derived in this work, can be used for the acoustic field computations in 

inhomogeneous media with characteristic scales of the order of acoustic wavelength.  

After checking the accuracy of the derived evolution equation, let us compare the 

acoustic pattern with the distribution of acoustic rays (for details about geometrical acoustics 

equation refer to Appendix A) in the inhomogeneous medium with only one scalar Gaussian 

fluctuation presented ( )( )[ ]222
0

0
|| /10exp RyxUU −−−= , where R is the characteristic size 

[Khokhlova et al., 129]. It is known that geometrical acoustics is not valid for description of 

sound wave propagation through small size inhomogeneities. For comparison, different sizes of 

inhomogeneity are considered: small size R=1.5λ (Fig. 4.3a), intermediate size R=3λ and large 

size R=5λ inhomogeneities. The value of fluctuation amplitude is chosen to be U0 = 0.06. Such 

inhomogeneity by its physical properties resembles the defocusing lens [130, 131]. The 

incidence of initially plane harmonic wave in linear regime on defocusing Gaussian 

inhomogeneity is considered. 

The results of numerical modelling are presented in Fig. 4.3. As expected for small size 

inhomogeneities (Fig. 4.3a – the diameter is equal to 3 acoustic wavelengths), the differences 

between the positions of focusing areas due to parabolic equation and rays consolidation 

positions, obtained using the geometrical acoustics equations, are clearly notable (Fig. 4.3b). For 

larger scale inhomogeneities (Fig. 4.3c and d) the agreement between the two solutions becomes 

much better. Nevertheless, for all three investigated inhomogeneities, the geometrical acoustics  
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does not show the existence of secondary focusing and defocusing zones (rays are straight there), 

since they are formed due to diffraction effects.  

 

§ 4.5 Conclusion 

In this Chapter, a new parabolic evolution equation for describing the propagation of 

nonlinear sound waves in inhomogeneous moving media was derived. This equation is an 

extension of the KZK-type equation for nonlinear beams generalized for arbitrary 

inhomogeneous media. In particular, the component of medium motion that is transverse to the 

wave propagation direction was taken into account. The assumptions invoked in deriving this 
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Fig. 4.3. Comparison of peak pressure distributions in the solution to wave Eq. (4.6) with the 
distributions of acoustic rays obtained using geometrical acoustics equations for propagation of plane 
acoustic wave through the single scalar Gaussian inhomogeneities (a) of different sizes: R = 1.5λ (a,b),  
R=3λ (c), R=5λ (d) and same disturbance amplitude  U0 = 0.06. 
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generalized equation were that the fluctuations in the medium properties varied slowly in space 

and in time, and that the sound speed or velocity fluctuations were small in magnitude as 

compared to the sound speed. The diffraction is modelled using the parabolic approximation 

which restricts the validity of the solution to collimated beams and is generally accepted to be a 

good model for sound with propagation direction within 20 degrees of the axis [Tjotta et al., 

127]. Therefore, this model is appropriate for considering the inhomogeneities that primarily 

result in scattering in the forward direction.  The derived parabolic equation was found to have 

properties of similarity, which allows finding solutions for certain types of medium mean motion 

in the presence of small fluctuations using the solution for effective fluctuations. 

A numerical algorithm, which allows the investigation of a wide number of problems of 

intense periodic wave or pulse propagation through different types of inhomogeneities, was 

developed. In particular, this algorithm allows computing an acoustic N-wave propagation in 

inhomogeneous moving medium with account for the diffraction and nonlinear effects, 

thermoviscous absorption, and also for the effects, caused by the influence of longitudinal and 

transverse components of the medium vector inhomogeneities. The advantage of the developed 

algorithm is that it allows computing the propagation of acoustic waves with thin shock fronts, 

using only 3 grid points per its front. In comparison with the widely used Texas code for solving 

the KZK equation [Lee, 125], the algorithm developed here gives much better resolution of the 

wave shock front structure, without having a significantly increase of the computational time. 

However, to find the solution to the parabolic equation high time expenses are still needed. For 

example, the calculation time of one realization 120 x 500 wavelength under conditions, 

described in this chapter, as long as about 85 hours of machine time at HP AlphaServer 128 
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Chapter 5 

Chapter 5 NONLINEAR AND DIFFRACTION EFFECTS DURING THE 
PROPAGATION OF ACOUSTIC SIGNALS IN RANDOMLY 
INHOMOGENEOUS MOVING MEDIUM 
(Numerical modelling) 

This chapter of the dissertation is devoted to the numerical calculation and investigation 

of nonlinear propagation of acoustic signals in inhomogeneous moving media. Propagation of 

periodic signals and acoustic N-pulses is considered.  Based on the modelling results, the 

influence of nonlinear and diffraction effects on the acoustic field structure and random caustics 

formation is investigated. The role of characteristic scale and intensity of the inhomogeneous 

moving medium fluctuations and influence of the transverse component of velocity field on the 

acoustic wave propagation is revealed. As an example of the propagation media one realization 

of random velocity field with Gaussian energy spectrum is presented. The results of simulations 

of acoustic wave propagation in random media with modified von Karman energy spectrum, a 

more realistic energy spectrum for atmospheric turbulence, are also presented. Finally, results of 

the simulations for the N-wave propagation in turbulent air under conditions of the laboratory 

scale experiment are compared to the measured data (Chapter 2).  

§ 5.1 Periodic waves 

5.1.1 Nonlinear versus linear effects of random focusing in an inhomogeneous 
moving medium 

The longitudinal and transverse components of one typical realization of random velocity 

field with Gaussian energy spectrum are shown in Fig. 5.1. Corresponding 
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Fig. 5.1. (a) Longitudinal and (b) transverse 
components of the random velocity field with 
Gaussian energy spectrum. Characteristic length of 
inhomogeneities L = 3λ,   and root mean square 
velocity 5.2=rmsu  m/s. 

 

 

 
 Fig. 5.2. Spatial patterns of the peak positive 

pressure corresponding to (a) linear (N = 0) and (b) 
nonlinear (N = 0.05) propagation of an initially 
plane harmonic wave through the randomly 
inhomogeneous moving medium. (c) The result for 
nonlinear propagation (N = 0.05) in the presence of 
an additional transverse constant flow 0

⊥U  = 0.1. 
Vertical solid line shows the location for the 
transverse field presented in Fig. 5.6, dashed 
vertical line - for the transverse distributions shown 
in Fig. 5.3, and dashed horizontal line - for the 
longitudinal distributions in Fig. 5.4.   
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Fig. 5.3. (a) Transverse distributions of the peak 
positive pressure at a distance x/λ = 24 along the 
dashed segments shown in Fig. 5.2 for linear 
(N = 0, dotted line) and nonlinear (N = 0.05, solid 
line) propagation. (b) Linear and nonlinear 
waveforms at locations of maximum positive 
pressure x/λ = 24, y/λ = 21.3 (indicated as max in 
(a)). (c) Waveforms at the pressure minimum, 
x/λ = 24, y/λ = 23.15 (indicated as min in (a)).  

Fig. 5.4. (a) Longitudinal distributions of the peak 
positive pressure for linear (N = 0, dotted line) and 
nonlinear (N = 0.05, solid line) propagation along 
the dashed line y/λ =16.85 shown in Fig. 5.2. (b) 
Linear and nonlinear waveforms at locations of 
maximum positive pressure, x/λ = 24, y/λ = 16.85 
(indicated as max in (a)). (c) Waveforms at the 
pressure minimum, x/λ = 54, y/λ = 16.85 (indicated 
as min in (a)).  

distributions of acoustic peak positive pressure patterns, in case of linear (N = 0) and nonlinear 

(N = 0.05) propagation of an initially plane harmonic wave through this inhomogeneous medium 

velocity field are presented in Fig. 5.2.  Note that both longitudinal and transverse components of 

the velocity field were included in the numerical simulations. No absorption was applied in the 

case of linear propagation, and in the case of nonlinear propagation the absorption coefficient 

was equal to A = 0.002. Qualitatively the morphology of the acoustic field can be predicted 

based on the data shown in Fig. 5.1, that is, regions of decreased effective sound speed result in 

focusing and regions of increased effective sound speed result in defocusing (analogous to a 

divergent lens). Indeed the formation of focusing regions and shadow areas due to random 

focusing and defocusing of the wave is clearly observed in Fig. 5.2a-c. Regions of increased 

pressure do follow regions of the minimum values of the velocity field. The maximum positive 

peak pressure p/p0 = 2.6 is reached in the case of nonlinear propagation compared to p/p0  = 1.5 

in the case of linear propagation. In spite of the additional absorption on the shocks, the 

maximum of the peak positive pressure in nonlinear case is higher than that for the linear one 

even at the distances of 60 wavelengths (three shock formation lengths).  

To illustrate the effect of acoustic nonlinearity on the wave propagation in randomly 

inhomogeneous medium, two one-dimensional distributions of peak positive pressure across and 
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Linear 
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max 
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along the travelling coordinate x are presented in Figs.5.3 and 5.4. The solutions correspond to 

the linear (N = 0, dotted curves) and nonlinear (N = 0.05, solid curves) propagation within the 

dashed line intervals shown in Fig. 5.2а, and Fig. 5.2b. It is clearly seen that nonlinearity results 

in much higher peak pressures in focal regions, tightening of the width of the increased pressure 

area, and a shift of the maximum peak pressure in both the longitudinal and transverse directions. 

Even at ranges of 3 shock formation distances, despite the existence of strong nonlinear 

dissipation on the shocks, the regions of increased pressure level are observed due to the 

transverse redistribution of the acoustic energy (see Fig. 5.2).  Linear and nonlinear waveforms 

that correspond to locations of the maximum and minimum in the peak pressure distributions are 

also shown in Figs 5.3 and 5.4. In the focal regions (Figs 5.3b and 5.4b) typical asymmetric 

distortion of the waveform with a developed shock front, increased positive peak and smoothed 

negative part of the waveform was observed in the case of nonlinear propagation.  In regions of 

pressure minima the nonlinear waveforms (Figs 5.3c and 5.4c), still demonstrated significant 

distortion, but in this case shocks were not present presumably because the higher harmonics 

components appeared due to scattering from the focused regions.  

The effective absorption of acoustic energy, with and without the presence of random 

inhomogeneities, can be compared using the intensity dependence on the propagation distance. 

The intensity is normalized to its initial value (at x=0) and averaged over the transverse 

coordinate at every step in propagation distance x.  Figure 5.5 shows the results for linear 

propagation in either homogeneous or 

inhomogeneous absorptive medium (upper 

solid curve), for nonlinear propagation in a 

homogeneous medium using weak shock 

theory (WST, dotted upper) and with 

absorption explicitly modelled (Burgers, 

dotted lower), and for nonlinear propagation 

in randomly inhomogeneous medium (NPE – 

nonlinear parabolic equation, lower solid 

curve). Some energy dissipation (~ 20% at the 

distance of 60 wavelengths) in case of linear 

propagation is due to inclusion of the same 

absorption (А = 0.002) as used in the 

nonlinear simulations. The Burgers and NPE 

nonlinear simulations show similar energy 
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Fig. 5.5. Dependence on distance of propagation 
for the wave intensity averaged over the transverse 
coordinate for: linear propagation in a dissipative 
medium, nonlinear propagation governed by weak 
shock theory (WST), nonlinear plane wave 
propagation in a dissipative medium (Burgers 
equation), and nonlinear propagation in moving 
inhomogeneous dissipative media governed by the 
nonlinear parabolic equation (NPE). Parameters of 
simulations are N = 0.05, А = 0.002, Nmax = 150  
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loss as the linear simulations for distances up to one shock formation distance (about 20 

wavelengths for N = 0.05).After this range the main contribution to the energy loss (~60 - 70%) 

is due to strong nonlinear absorption at the shocks. Note that the energy dissipation in a 

nonlinear homogeneous medium (Burgers equation) is almost the same as in nonlinear 

inhomogeneous medium (NPE). A small difference can be noticed only between one and two 

shock formation distances (20 – 40 wavelengths). The presence of inhomogeneities thus does not 

lead to significantly changes in energy losses. The use of weak shock theory does not model the 

energy losses at small distances and at long ranges appears to be offset by an amount similar to 

the linear losses (Fig. 5.5). 

5.1.2 Effect of the transverse component of turbulent velocity field: vector versus 
scalar contributions of inhomogeneities 

Spatial structure of the acoustic field (Fig. 5.2, a and b) is formed mainly due to the 

presence of the longitudinal component U|| of the random velocity field.  The transverse 

component 0
⊥U  acts as a flow, which shifts randomly the focusing and shadow zones in the 

direction perpendicular to the direction of the wave propagation. Note, that for the chosen 

characteristics of inhomogeneities (relatively small scale L = 3λ  and not high value of the 

hydrodynamic Mach number M = max(U||, ⊥U ) = 0.03) the inclusion of random transverse 

velocity component in the computation did not noticeably change the resulting structure of 

acoustic field. The effect of transverse velocity component, however, becomes stronger when the 

scale of inhomogeneities L increases, in particular, in the presence of a constant flow in the 

transverse direction. Let us consider here, as an example, a combination of a random velocity 

field (Fig. 5.1) with the constant transverse flow 0
⊥U  = 0.1. Simulations were done for nonlinear 

wave propagation with nonlinearity parameter N = 0.05. The results of simulations are presented 

in Fig. 5.2c as the peak positive pressure pattern. Note, that in this case, the flow shifts not only 

the acoustic field, but also the random velocity inhomogeneity. Therefore, when the uniform 

flow was superimposed on the random field velocity distributions the random field was 

transformed to account for the spatial shift of the inhomogeneities in the transverse direction 

(due to the presence of the flow). The resulting velocity field ),(~ 00 σρσ ⊥⊥⊥⊥ −+= UUUU  then 

was used in the simulations of the acoustic field, Eq. (4.6), in which the constant velocity 0
⊥U  

was also included. A noticeable shift of the field towards the direction of the flow without 

changing the morphology of the field is clearly observed. Note, that the results for the acoustic 

field in the presence of constant flow, Fig. 5.2c, can be also obtained without additional  
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simulations, but using the numerical 

results for the case without the flow (but 

with shifted random inhomogeneities 

(4.10)) and analytic transformations 

(4.7, 4.8), that exclude the mean flow 

from the parabolic Eq. (4.6). 

To illustrate the effect of shifting 

the nonlinear acoustic field by the 

constant flow without changing its spatial 

structure, three one-dimensional 

transverse distributions are presented in 

Fig. 5.6. The location of the distributions 

is denoted by the transverse solid line 

shown in Fig. 5.2 (b and c) at a distance 

x/λ = 42. In Fig 5.6 the black curve is the peak positive pressure modelled with the presence of 

only random inhomogeneities, the red curve is the result in the presence of inhomogeneities and 

uniform flow ),(~ 00 σρσ ⊥⊥⊥⊥ −+= UUUU  based on the analytic transformation (4.10), and the 

blue circles - the purely numerical result in the presence of inhomogeneities and uniform flow. It 

is seen that transformation is in excellent agreement with the direct numerical results. This 

provides an additional verification of the algorithm developed for modelling the effect of the 

transverse component of the velocity field. 

5.1.3 Diffraction effects: ray tracing and acoustic field patterns obtained with 
the KZK equation 

As it has been mentioned in §4.4, the geometrical acoustics approach does not accurately 

describe the positions of increased pressure level areas for simple inhomogeneous structures, 

especially of small size. Let us now consider the propagation of an initially plane linear 

harmonic wave through the random inhomogeneity with Gaussian energy spectrum (Fig. 5.7a) 

and a sufficiently large characteristic scale L=3λ. The corresponding acoustic field peak positive 

pressure pattern is shown in Fig. 5.7b together with the rays paths distribution (grey lines), which 

are the solutions to the eikonal equation (Appendix A1). During the acoustic wave propagation 

through inhomogeneous medium, the caustics form. Their positions can be estimated by the 

consolidation of a large amount of the acoustic rays in a small spatial region. According to  

Fig. 5.6  Distributions of peak positive pressure along 
the transverse segments (solid lines) shown in Fig. 5.2b 
and Fig. 5.2c at the distance x/λ = 42. Black curve – 
propagation through random velocity field (Fig. 5.2b), 
red curve – analytic transformation of the numerical 
solution to account for additional constant flow, blue 
circles – full numerical solution in the case of the flow 
presence (Fig. 5.2c).  
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Fig. 5.7 a) – longitudinal component of a random inhomogeneous velocity field with Gaussian energy 
spectrum and 5.2=rmsu m/s, L=3λ.  b) – corresponding spatial distribution of peak positive pressure in 
the case of linear wave propagation and ray paths – grey lines – solutions of the eikonal equation.  

the properties of caustics, their positions should correspond to the areas of increased level 

pressure at the acoustic field pattern. However, similar to the case of simple scalar Gaussian 

inhomogeneities (§4.4), the caustic positions, predicted by the ray acoustics, and increased 

pressure level areas positions are not in a good agreement. Agreement between two theories is 

achieved only for first caustics and increased level pressure regions (see the caustics at the 

distance ~ 15 wavelengths, Fig. 5.7b). Estimations of secondary focusing and defocusing areas 

positions are far from each other. This can be explained by the fact that first areas of focusing 

and corresponding caustics are formed by plane acoustic wave, which had not enough time to 

diffract on inhomogeneities. That is why at short distances, the areas of rays densification do 

correspond to the pressure maxima of acoustic field. Further, with increasing distance, the 

diffraction effects accumulate along the propagation path of the wave. Geometrical acoustics 

does not account for these effects, and therefore, its predictions of secondary caustics positions 

may not be accurate, and they appear to be shifted compared to the locations of the maxima of 

the acoustic pressure field. For example, in some cases, according to geometrical acoustics 

approach, there should be a decrease of acoustic pressure, but parabolic Eq. (4.6) predicts an 

opposite effect (focusing zone near х/ λ = 45,  у/ λ =11). 

5.1.4 Effect of spatial correlation lengths and intensity of the turbulence on 
acoustic field characteristics 

In previous paragraph of this Chapter, the random inhomogeneities with the characteristic 

scale equal to L=3λ have been considered. However, in realistic problems, the inhomogeneities 

0p
p+  



118  Nonlinear and diffraction effects in random media (modelling) 

with longer and shorter scales are also of importance. For example, in aeroacoustics, the 

propagation of sonic booms with length of the order of 50 m is considered. And the atmosphere 

inhomogeneities have an outer scale of several hundred meters. Consequently we investigate the 

propagation of an acoustic wave through the random inhomogeneity with a characteristic scale 

L = 5λ or 250 m, and a mean square velocity 4.7=rmsu m/s. In Fig. 5.8a the longitudinal 

component of random velocity field is presented. Corresponding spatial distribution of the peak 

positive pressure in nonlinear regime (N = 0.1) of initially plane harmonic wave propagation is 

shown in Fig. 5.8b. Numerical modelling was done using 100 first harmonics. The necessary 

artificial absorption was set to be А = 0.0052 to provide the stability of the algorithm. In the case 

of large scale inhomogeneities, areas of increased level pressure are positioned with longer  
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Fig. 5.8: a) – longitudinal component of a random velocity field ( 4.7=rmsu m/s, L = 5λ) and b) – 
corresponding spatial distribution of the peak positive pressure (N = 0.1, А= 0.0052, Nmax=100 harmonics). 
Both longitudinal and transverse components of the velocity field are taken into account. 

0 5 10 15 20 25 30
0

1

2

3

4

5

6
p/p0

Linear

Nonlinear

x/λ

a) U||
U

⊥
+ U||

 38 39 40 41 42
0

1

2

3

4

5

6
p/p0

Linear

Nonlinear

y/λ

б) U||
U

⊥
+ U||

 
Fig. 5.9 Peak positive pressure distributions in longitudinal direction along the line y/λ =39.5 (a) and in 
transverse direction along the line x/λ =17.5 (b) in both linear (N=0.0) and nonlinear (N=0.1) regimes. 
Calculations are done with account for both longitudinal and transverse components of inhomogeneous 
field (dotted curves) or only with account for the longitudinal one (solid curves). 
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Fig. 5.10. a) Spatial distribution of peak positive pressure and longitudinal component of medium 
velocity fluctuations (grey contour lines).  Dashed contours correspond to 04.0/ 0 −=cux  level, and solid 
contours to 04.0/ 0 =cux  level.  b) peak positive pressure distributions along dashed line in Fig. 5.10a 
calculated for different value of turbulent fluctuations intensities: 4.7=rmsu m/s and 5.2=rmsu m/s   

spacing in transverse direction; they are of larger longer and their amplitude is higher. Moreover, 

very wide regions of wave defocusing are observed.  

In order to determine the influence of the transverse component of the random velocity 

field on acoustic field structure, the simulations were performed with account for both velocity 

components or with account only for transverse one ⊥U .  The results of the simulations are 

presented in Fig. 5.9 as the longitudinal and transversal peak positive pressure distributions.  

Presented data are taken along the lines y/λ =39.5 and x/λ=17.5 respectively.  Due to the 

influence of transverse fluctuations the focal regions appear to be shifted both in longitudinal and 

transverse directions.  This shift is shorter than the half of the wavelength.  It is clear, that with 

the increase of turbulent fluctuations scale, the effect of acoustic field structure shifting by ⊥U  

will become stronger. 

Consider now the nonlinear (N = 0.1) propagation of initially plane harmonic wave 

through a random inhomogeneous field with a characteristic scale L equal to the acoustic 

wavelength L = 1 λ.  Corresponding peak positive pressure spatial distribution is shown in 

Fig. 5.10a with the colour pattern.  Grey contour lines denote fluctuation levels of the 

longitudinal velocity component. Solid contours correspond to positive level of velocity 

fluctuations 04.0/ 0 =cux , and dashed contours – to negative level of fluctuations 

04.0/ 0 −=cux .  The root mean square velocity of the random field is equal to 4.7=rmsu м/с.  

The artificial absorption is set to be А = 0.0028 and Nmax = 100 harmonics to ensure the stability 

of numerical simulations.  We observed that the decrease of characteristic scale of the 

5.2=rmsu м/с 
4.7=rmsu м/с 
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inhomogeneity fluctuations leads to the decrease of the wave amplitude in the focal spots.  So, 

for example, for small scale inhomogeneity (Fig. 5.10a) in focusing areas the maximum peak 

positive pressure value р/р0=5.2 is reached, that is less than that for larger scale inhomogeneity 

р/р0=5.8 (Fig. 5.8a).  One more point of difference is that in the case of small scale 

inhomogeneities the focal areas are formed closer to the source. In both cases the most intense 

focusing is observed in focal areas, which are formed at the distance of shock wave formation for 

acoustic plane wave (xs = 20λ).  In fact, if focal regions are formed closer to the source, the 

acoustic wave does not have time during the propagation to develop higher harmonics and so 

enhance the focusing effect. 

It can be expected, that the change of root mean square velocity fluctuations (turbulence 

intensity) with retaining the same structure of the inhomogeneity will result in change of acoustic 

field characteristics.  Shown in Fig. 5.10b are the peak positive pressure distributions calculated 

along the dashed line (Fig. 5.10a) for two levels of turbulence intensity: 5.2=rmsu m/s (dashed 

line) and 4.7=rmsu m/s (solid line).  It is seen, that an increase of fluctuations intensity results in 

a significant increase of the peak positive pressure (up to four times in considered case) in the 

focal spot with tiny changes of the acoustic field structure. 

§ 5.2 Acoustic pulses. N-waves 

5.2.1 Parameters of simulations, 2D patterns of randomly inhomogeneous 
velocity field 

In this section the acoustic N-wave propagation through the random inhomogeneous 

moving media with Gaussian energy spectrum is considered. For the computation of acoustic ray 

distribution and acoustic field pattern, the random velocity field of the medium was considered 

as “frozen”, i.e. it did not depend on time. These assumptions do not limit the validity of shown 

results and made conclusions. Dimensionless nonlinearity parameter N and absorption parameter 

A are taken to be N=0.05 and A=0.00034 if it is not stated otherwise. Chosen nonlinearity 

parameter is close to its value in physical experiments (both laboratory and field), whereas 

absorption parameter is about two times larger than that in laboratory experiment, as soon as it is 

chosen according to the time limitations and to guarantee numerical algorithm stability. 

Characteristic scale of fluctuations is set to be L = 4λ and mean square velocity is equal to 

3=rmsu m/s. Typical example of random velocity field is shown in Fig. 5.11 as distributions for 

longitudinal (a) and transverse (b) components.  
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Fig. 5.11 Longitudinal a) and transverse b) components of the random velocity field with Gaussian 
energy spectrum. Characteristic fluctuation scale is equal to L=4λ, and mean square velocity is equal to 

3=rmsu m/s 

5.2.2 Diffraction effects: ray tracing and acoustic field patterns obtained with 
the KZK equation 

In Fig. 5.12a is shown a distribution of acoustic ray paths (solution to the set of 

geometrical acoustics equations (Appendix A2-A8)) in the considered inhomogeneous medium. 

Multiple areas of acoustic ray concentration and intersection are observed, that gives us 

information about the existence of sufficiently high levels of acoustic pressure in these regions 

due to narrowing of the ray tubes. Corresponding spatial distribution of the peak positive 

pressure in the field of propagating N-wave (solution to the parabolic Eq. (4.6)) is shown in 

Fig. 5.12b together with the levels of medium velocity fluctuations (overlaid contour lines). It is 

seen that due to the presence of inhomogeneities, the acoustic wave energy is redistributed in 

space, forming regions with higher and lower pressure.  Regions of increased peak positive 

pressure occur directly after the areas of the medium where effective sound speed c0+ux is less 

than its ambient value c0 (fluctuations of medium velocity are negative).  This is consistent with 

the fact that these regions should act as focusing lenses by distorting the phase front of the wave. 

In spite of strong nonlinear dissipation of the wave energy, the peak positive pressure of the N-

wave in these regions was more than three times the initial value of the incident wave amplitude. 

Due to random focusing and defocusing effect, the formation of multiple focal zones is observed.  

Random foci, however, occur mainly at relatively short distances, σ = x/λ < 60. This is in 

contrast with the results obtained for harmonic wave propagation where focusing regions 

occurred over all studied propagation distances [Averiyanov et al., 11].  For single pulses 

propagating in an inhomogeneous medium, the increasing difference in the path lengths results 

in a lengthening of the pulse, in a widening of the shock front, and in a corresponding decay of 
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the peak pressure.  For harmonic waves the 

periodic nature means that large differences 

in travel time can still result in constructive 

interference. For the N-wave propagation 

occurrence of high pressures far from the 

source is a rare phenomenon, but some 

relatively high level focusing zones are still 

observed even at longer distances (see e.g., 

Fig. 5.12b, σ = x/λ = 110). 

Shown in Fig. 5.12c is an expanded 

view of the focal region denoted by the 

black rectangle in Fig. 5.12b. Overlaid on 

the peak positive pressure pattern are the ray 

paths (grey curves) and locations of first 

(solid grey circles) and second caustics 

(solid red circles) obtained with geometrical 

acoustics equations (Appendix A2-A8). The 

ray paths clearly show focusing and 

formation of caustics, and are agree 

qualitatively with the parabolic equation 

prediction of high pressure levels. However, 

the positions of caustics obtained in the high 

frequency limit of geometrical acoustics do 

not coincide with the position of maximum 

values of acoustic pressure. Moreover, due 

to the fact that diffraction is neglected, some 

caustics, given by geometrical acoustics 

approach appear in the regions, where the 

wave amplitude is small. Good agreement 

for the regions of focusing is achieved 

mainly for the first caustics, whereas for the 

second (red solid circles) and higher order caustics nonlinear geometrical acoustics gives 

incorrect positions of high-level pressure zones. Thus, diffraction effects play very important 

role in formation of the acoustic field pattern and need to be considered in theoretical models to  

Fig. 5.12 a) - acoustic rays distribution in 
inhomogeneous moving medium with Gaussian 
energy spectrum (Fig. 5.11), b) corresponding 
acoustic field pattern (peak positive pressure) with 
marked turbulence levels 0/ cux =± 0.009 (red – 
positive, blue - negative), c) expanded view of the 
peak positive pattern with overlaid rays distribution 
and caustic locations (grey points – first caustics, red 
points – second caustics) comparison. Area of 
expansion is marked with black rectangle in 
Fig. 5.12b 
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get realistic results. 

Note that in the laboratory scale 

experiment the turbulent layer was about 1-

1.5 m thick (see Table 2.1). Therefore the 

shock N-wave of 1.2 cm length if it goes 

straight will propagate over a distance 

about 100-120 wavelengths through the 

turbulent layer.  Therefore, the simulation 

data that correspond to 100-120 

wavelengths is representative of laboratory 

scale sonic boom propagation. 

While propagating through the 

turbulent medium, acoustic waveform 

changes its shape due to the combined 

effect of nonlinearity, diffraction, 

thermoviscous absorption, effect of 

inhomogeneities.  For example, Fig. 5.13 

shows waveforms measured at various 

locations along the axis y/λ = 212. It is 

shown there, how an initially ideal N-wave 

distorts while passing through the caustic 

(focal area). Distortion results in formation of waveforms having various complex shape: 

rounded waveforms, waves with several shock fronts, and very long pressure tails.  Rounded 

waveforms (x/λ = 40), waveforms with two distinct shock fronts (x/λ = 83), and waves with long 

pressure tails (x/λ = 115) are more likely to be observed in the regions with low level pressure 

(defocusing zones). On the contrary, in areas of high level acoustic pressure (focusing zones) 

waveforms with several peaks (x/λ = 51) and classical U-shaped waves (x/λ = 56) are observed. 

In agreement with this, steeper shock fronts are observed in focusing zones due to higher 

amplitudes and stronger nonlinear effects. However, nonlinear distortion of the wave occurs also 

in the regions of low level pressure due to scattering of higher harmonics from the caustics. At 

longer distances in the turbulent medium, the pulse elongates due to the large variety in travel 

paths through the medium.  This pulse spreading in time makes it very unlikely for the medium 

to effectively refocus the wave and produce a large amplitude wave at longer distance. 

Fig. 5.13 Waveforms, measured at various locations 
along y/λ = 212 axis while passing through the caustic 
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5.2.3 Nonlinear versus linear effects on random focusing in an inhomogeneous 
medium 

Nonlinear effects play an important role in formation of the acoustic field in turbulent air. 

His role was investigated by comparison of peak positive pressure patterns for linear (N=0, 

Fig. 5.14a) and nonlinear (N=0.05, fig5.14b) propagation of an initially plane N-wave through 

inhomogeneous medium. At a first glance, acoustic pattern structures are not that much different. 

Nonlinearity effects appear mainly as an increase of peak positive pressure in focal regions due 

to more effective focusing of higher harmonics produced by nonlinear interaction.  In the focal 

region the peak positive pressure in the case of nonlinear propagation is up to 30% higher than 

that in the case of linear propagation of the wave even at longer distances (up to 5 nonlinear 

distances xs = 20λ).  However, the presence of turbulence dominates all images and in each case 

the focusing ability is severely curtailed for x/λ > 80 due to dispersion of the pulse. More 

detailed comparison of nonlinear and linear regimes of N-wave propagation in turbulent media is 

presented in Fig. 5.15, where distributions of the peak positive pressure along horizontal (a) and 

vertical (b) dashed lines (Fig. 5.14) are presented. Two nonlinear regimes, corresponding to 

~1000 Pa (N = 0.05, red curve) and 500 Pa (N = 0.025, blue curve) of initial N-wave amplitude 

are considered as well as linear regime of propagation (black curve).  It is seen, that along chosen 

lines, higher peak pressure corresponds to stronger nonlinearity. Maximum peak pressure level is 

achieved in nonlinear regime with N = 0.05, whereas minimum peak pressure is at about the 

same level in all three cases. It can be noted that the locations of maximum peak pressure are 

differently shifted in longitudinal direction depending on the value of nonlinearity parameter, 

whereas in transverse direction the peak position shift is negligible. Nonlinearity also results in a 

little smaller and clearer defined focal spots due to the smaller focal region associated with 

Fig. 5.14  Peak positive pressure spatial distributions corresponding to (a) linear (N = 0) and (b) nonlinear 
(N = 0.05) propagation of an initially plane acoustic N-wave through the randomly inhomogeneous 
moving medium (Fig. 5.11). Peak pressure distributions along dashed lines are shown in Fig. 5.15. 
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higher frequencies. 

Shown in Fig. 5.15c are the maximum in 

transverse direction peak positive pressure 

distributions found in the range from y=20λ till 

y=380λ for linear and nonlinear regimes of 

shock wave propagation. It is seen that in the 

nonlinear regime maximum peak positive 

pressure usually dominates that in linear regime, 

i.e. moderate nonlinearity enhances focusing. 

Increasing nonlinearity from N = 0.0 up to some 

“critical” point increases the focal amplitudes. 

Further increase of nonlinearity parameter will 

increase nonlinear dissipation at the shock front 

of the acoustic wave that will result in 

amplitude decrease. In our simulations this 

critical point lies somewhere between N = 0.025 

and N = 0.05 as soon as peak pressure in the 

second case is in average smaller than in the 

first case.  Thus, the dependence of focusing 

efficiency on nonlinearity parameter value is 

non monotonic. In general, nonlinearity will 

enhance focusing effects of acoustic wave in 

randomly inhomogeneous medium only if the 

following condition is valid. Characteristic 

nonlinear distance, which determines the value 

of nonlinear dissipative effects at the acoustic 

wave shock front, should be sufficiently small 

in comparison with the distance of the first 

caustics (focal areas) formation. In other words, at the distance of first caustics formation the 

acoustic wave amplitude should not be drastically suppressed by nonlinear dissipation. However, 

under some circumstances, better focusing may be observed even in the case of very strong 

nonlinear effects (N = 0.05): focal region at distance x/λ = 56.  Presumably, this happens due to 

the additional phase shift given by nonlinear lengthening of the pulse. This phase shift 

equilibrates random arrivals that result in strong enhancement of the focusing. 

Fig. 5.15.  Peak positive pressure distribution 
along horizontal a) and vertical b) dashed lines 
shown in Fig. 5.14a. c) – Maximum over y axis 
peak positive pressure distribution along x axis.  
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In geometrical acoustics approach for 2D randomly inhomogeneous medium this distance 

(where probability density of the first caustic occurrence have a maximum) is given by the 

inhomogeneous medium parameters [Blanc-Benon et al., 132]: root mean square velocity of 

fluctuations urms and inhomogeneity characteristic scale L: 
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Thus the condition of focusing enhancement in the caustic will be given by xs > xcaust = 26.3λ. In 

our simulations xs = 20λ and xs = 40λ, respectively, for N = 0.05 and N = 0.025.  One more 

reason for the dramatic effect of nonlinearity can be also that strong nonlinear dissipation faster 

suppresses the high-level narrow peaks. 

Another phenomenon, related to the nonlinearity effect is that, for the same medium of 

propagation, the positions of peak pressure maxima in Fig. 5.15c are different for the considered 

nonlinear and linear regimes.  Moreover, the shifts in locations of maxima are not constant and 

fluctuate from one peak to another. This can be explained by the fact, that wave energy 

redistribution depends on the relation between characteristic nonlinear distance and distance of 

caustic formation. 

It has been already shown that under influence of the combined effects of diffraction, 

nonlinearity, thermoviscous dissipation, and effect of inhomogeneity the initial ideal N-wave 

distorts to obtain various shapes. To investigate the influence of nonlinear effect on waveform 

distortion, linear (N=0.0) and nonlinear (N=0.05) waveforms measured at different points of the 

acoustic pressure field are presented in Fig. 5.16. In the focal point (Fig. 5.16a) the classical 

transformation of N-wave to U-wave is shown. The U-wave amplitude is higher than that of the 

initial N-wave, and depends on the width of the N-wave shock front. Both linear and nonlinear 

waveforms are strongly distorted due to focusing effects. However, in the nonlinear case the 

peak positive pressure of the U-wave is more than 50% higher than the linear prediction value, 

the shock front is narrower, and the pulse duration is longer as compared to the linear one.  In 

some points of shadow zones or in transition zones (Fig. 5.16c, d) even at not very large 

distances one can observe that nonlinear waveforms have lower amplitudes than linear ones, due 

to the effect of nonlinear dissipation.  Another interesting phenomenon is that even in shadow 

zones of low level pressure (Fig. 5.16c) waveforms with sufficiently steep shock fronts can be 

observed due to scattering of higher harmonics at caustics. Both linear and nonlinear waveforms 

have very long tails as soon as inhomogeneities introduce multiple paths and different time 

delays. Such complex pulse structure is formed after superposition of waves. In some cases it 

was possible for the pressure amplitude in the tail to exceed the amplitude of the direct wave and 
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Fig. 5.16 Typical linear (N=0.0) and nonlinear (N=0.05) waveforms measured in different points of the 
acoustic pressure pattern including (a) focal zones and (b)-(d) shadow areas. Initial N-wave is shown with 
the blue curve. 

to form there sufficiently steep shock (Fig. 5.16d). Generally, the tail of the wave is sufficiently 

long outside focusing regions, whereas in focusing zones formed U-waves have a very short 

pressure tail. For all waveforms, nonlinear effects result in steepening of the pulse front and 

lengthening of the wave. However, in spite of nonlinear steepening, the predicted waveforms in 

the shadow zones always had longer shock fronts than the initial waveform, apparently due to 

the influence of inhomogeneities. 

5.2.4 Influence of randomly inhomogeneous medium on statistics, average and 
peak characteristics of the acoustic N-wave 

Complex acoustic field structure in turbulent medium is characterized by peak and 

average values of N-wave parameters. Peak values have been partially considered in previous 

discussion. Therefore this section is devoted to the investigation of the acoustic field average 

characteristics behaviour, and behaviour of their statistical distributions. Computation of average 

values and statistical distributions is based on the ergodicity hypothesis and includes the analysis 
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of the numerical data for the acoustic field, 

calculated for N-wave propagation through one 

very wide realization of random inhomogeneous 

field.  The width of the medium realization 

(about 100 inhomogeneity scales) is chosen in 

such way, that the result of acoustic wave 

parameters averaging over the full realization 

width is equal to the result of averaging over the 

half width of the same realization.  In addition, 

calculations of acoustic field statistics are also 

performed for other realization of velocity 

inhomogeneities, determined by different set of 

random modes (different starting number in the 

random generator). 

In Fig. 5.17 are shown the distributions 

of N-wave mean peak positive pressure 

(Fig. 5.17a), mean rise time (Fig. 5.17b), and 

mean arrival time (Fig. 5.17с) along the 

propagation distance. Linear (N = 0.0, dashed 

lines) and nonlinear (N = 0.05, solid lines) 

distributions in turbulent (blue) medium are 

compared with those obtained for motionless 

(black) linear and nonlinear media. With red 

lines are shown the standard deviations of the 

considered wave parameters in turbulent 

medium. Main effect of nonlinearity here is to 

decrease mean peak positive pressure, to 

decrease mean rise time and to shorten mean 

arrival time of the N-wave due to pulse 

widening. If the turbulent field (blue curves) is accounted for in calculations, behaviour of 

average parameters changes. At sufficiently short distances before caustics, formation averages 

behave as if there were no turbulence at all. Then, if the peak positive pressure is considered, the 

rate of pressure decrease becomes stronger and achieves its maximum somewhere at a distance 

of the order of the first caustic formation distance (x/λ = 26). It is obvious that around this 

Fig. 5.17.  Mean peak positive pressure (a), mean 
rise time (b), and mean arrival time shift (c) of an 
N-wave propagating in turbulent medium in 
linear (N=0.0 dashed lines) and nonlinear 
(N=0.05  solid lines) regimes. Red lines – 
standard deviations of considered wave 
parameters in turbulent medium. Green line – 2nd 
order approximation of geometrical acoustics for 
mean arrival time 
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distance, the local minimum of mean peak positive pressure should occur, as soon as the 

focusing zones are well localized and their total area is much smaller than area of defocusing 

zones, where the wave amplitude is sufficiently small. At the same distance, the maximum of 

standard deviation is also achieved, and its slow decrease replaces its fast growth. At longer 

distances, the rate of mean peak positive pressure decrease takes the form of the inverse square 

root of distance. Therefore, the curve goes further along the distribution of peak positive pressure 

in still medium, but at a bit lower level. Local minima corresponding to the caustics formation at 

longer distances are not observed due to their uniform distribution over the distance. To the 

contrary, two curves even approach each other. This rapprochement is due to the faster 

dissipation of signal in motionless medium, as soon as it contains higher frequencies (its front is 

much steeper). 

The influence of the turbulent field on the N-wave rise time is different. At longer 

distances, after formation of first caustics, it tends, in contrast to nonlinear effects, to increase 

wave rise time due to multiple arrivals of the scattered waves. The rate of rise time increase in 

turbulent medium both in linear and nonlinear cases is faster than that in medium with no 

turbulence. The effect of turbulence is quite strong here: at x/λ = 120 from the source the mean 

rise time θ0.1-0.9 = 0.06 is about 3 times larger than its initial value θ0.1-0.9 = 0.177. In motionless 

medium the augmentation is only 1.65 times from: θ0.1-0.9 = 0.06 till θ0.1-0.9 = 0.099. Thus the rise 

time is not only defined by the shock amplitude, like it would be in still medium, but also by 

effects of turbulence, which contrarily to nonlinear effects tend to elongate the shock front. 

Concerning the standard deviation of the rise time, it increases faster in the linear regime of the 

sound wave propagation than in nonlinear one. Thus, nonlinearity effects decrease variations of 

the rise time, caused by turbulence. 

Average arrival time (Fig. 5.17c) is also strongly affected by the turbulent inhomogeneities. 

Both in linear and nonlinear cases of N-wave propagation, effects of turbulence cause its faster 

arrival.  Obviously, this is due to the least action principle, which in application to the 

geometrical acoustics gives Fermat principle: the wave path minimizes the travel time of the 

wave. But one may note that in the case of nonlinear propagation (solid lines) this effect is much 

smaller than that in the case of linear propagation (dashed lines).  Maximal average arrival time 

shortening due to Fermat principle in linear case equals Δθ = -1.7 (difference between arrival 

time values in motionless and turbulent media), while in nonlinear case Δθ = -0.9.  Thus, 

nonlinear effects in considered cases decrease the effect of turbulence on arrival time by a factor 

of 2.  It is also interesting to note, that in geometrical acoustics approximation it is possible to 

evaluate mean arrival time analytically at the second order [Iooss et al., 133], which in current 
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experiment conditions (2D Cartesian geometry, random field with Gaussian energy spectrum) 

and in dimensionless coordinates gives: 
Lc

urms
2

2
0

2
3 σπθ −=Δ  postulating a parabolic dependence 

of arrival time shortening on propagation distance. Corresponding graph is shown in Fig. 5.17c 

with green line. In contrast to geometrical acoustics approximation results, parabolic 

approximation gives almost linear law of arrival time shortening, that tells about significant role 

of diffraction.  One of the possible explanations to this difference is also that mean arrival time is 

calculated in geometrical acoustics only up to the second order [Iooss et al., 133]. 

In Fig. 5.18a are shown the peak positive pressure probability density distributions. All 

figures are scaled between minimum and maximum observed values of the peak pressure. It can 

be seen, that initially narrow at short distance probability distribution becomes wider at longer 

distances. Distribution peak moves in the direction of peak positive pressure decrease 

accordingly with the behaviour of its mean, shown with vertical red line. Nevertheless, 

regardless common tendency of peak pressure reduction, there exist a small probability of high 

level values occurrence, which are more than 3 times higher than initial one.  

In Fig. 5.18(b-d) are shown the characteristic parameters of the peak positive pressure 

distributions. They are: mean and standard deviation values (b), skewness (c) and excess (d) 

factors. The distance of the first caustics formation, obtained in the geometrical acoustic 

approximation (5.1), is shown with the vertical line. The skewness factor is a measure of the 

asymmetry of the probability distributions in comparison with the Gaussian distribution. If it is 

positive, the distribution right hand side contains more values than the left hand side. Thus the 

skewness factor should be sufficiently high at distances of most intense focusing of the wave, 

where the probability density distribution is most asymmetric. The excess factor gives a relative 

measure of “peakedness” of a given probability density distribution. The excess factor of the 

normal distribution is equal to 0. Higher excess value means that more of the variance is due to 

the infrequent extreme deviations, as opposed to the frequent modestly-sized deviations.  So the 

excess factor should be very high, where the most intense focusing is observed, as soon as this 

gives infrequent extreme deviations.  

Intense focusing should occur somewhere near the distance of the first caustic formation.  

In fact, as it is seen in the Fig. 5.18(b-d), the standard deviation, skewness and excess factors of 

the peak positive pressure increase rapidly from zero to some characteristic value at the distance 

of first caustics formation, predicted by means of geometrical acoustics approximation. It means 

that the probability distribution becomes wider and obtains a long asymmetric pressure tail in the 

higher-pressure level part.  So a good agreement is achieved between the distance of the first  
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Fig. 5.18. (a) Peak positive pressure probability density distributions at different distances from the source. 
Vertical red line is the mean value. Class width equals to 0.04. (b), (c), (d) – mean and standard deviation, 
skewness and excess parameters distributions over the propagation distance. Vertical dotted line is the 
prediction of the 1st caustics formation distance in the geometrical acoustics approximation. 
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caustic formation and characteristic focusing distance of the acoustic wave. The only parameter 

which seems to be not significantly affected by the wave focusing is the mean peak positive 

pressure. 

Further with distance, the mean peak positive pressure does not vary a lot and its standard 

deviation seems to achieve its saturation level. Contrary to that, the skewness and excess factors 

are subjected to the strong change while wave propagates through the randomly inhomogeneous 

medium. It appeared that the strongest fluctuations in these parameters correspond to the most 

intense focusing of the acoustic wave. For example, a peak of skewness and kurtosis factors at 

the distance of x/λ = 60 corresponds to the focalization coefficient, equal to p+/p0 = 3.2 (note, 

that this focalization was not captured by the geometrical acoustics, Fig. 5.12c). The second 

peaks are situated at the distance x/λ = 105 from the source. This distance can be associated with 

the second wave of focusing (2nd caustics formation distance - red points in Fig. 5.12c). 

In Fig. 5.19 are presented the probability density distributions of the acoustic wave shock 

front rise time and arrival time at different distances from the source. It is seen, that in agreement 

with the peak positive pressure decrease the rise time probability density distribution maximum 

moves towards higher values of the parameter. Nevertheless, there still exists a notable 

probability of very short rise time observation which is smaller than initial one: minimum 

observed rise time, measured in the focal zone, is almost 3 times smaller than the initial one and 

is equal to (θ0.1-0.9)min = 0.022. As for the arrival time probability density distribution, it becomes 

very wide with distance showing earlier arrivals up to -5.25 = -1.67π , what is more than 3/4 of a 

period. 

5.2.5 Effect of the transverse component of turbulent velocity: vector versus 
scalar contributions of inhomogeneities 

In the parabolic evolution Eq. (4.6) a new term, which accounts for the transverse 

component of a random velocity field has been introduced. To estimate the influence of lateral 

fluctuations and winds on formation of acoustic field structure, two types of computation have 

been done: with account for both longitudinal and transverse fluctuation components and with 

account only for longitudinal component of the random velocity field. Results of numerical 

simulations are shown in Fig. 5.20, where maximum of peak positive pressure distributions over 

x axis (Fig. 5.20a) or over y axis (Fig. 5.20b)are presented.  One can see, that transverse 

component of the random velocity field under considered conditions (Gaussian energy 

distribution with scale L = 4λ and urms = 3 m/s) results in insignificant changes in the peak 
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a) shock front rise time b) Arrival time shift 

Fig. 5.19. Shock front rise time (a) and arrival time (b) probability density distributions at different distances 
from the source.  Class width equals to (a) – 0.16, (b) – 0.09. Vertical red line is the mean value of the 
considered parameter.  
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positive pressure. Nevertheless, this term should be kept in the equation. For more intense and 

larger scale inhomogeneities, especially in the presence of lateral winds, the influence of this 

term is predicted to be much stronger. 

5.2.6 Effect of spatial correlation lengths and turbulent kinetic energy 
distribution law on acoustic field characteristics 

In this section propagation of the acoustic N-wave through the random inhomogeneous 

moving media with a modified von Karman energy spectrum (Fig. 1.2e-g), which describes 

multi scale turbulent medium fluctuations, is considered. Outer scale and intensity of the 

turbulent field are chosen to be the same as for the considered previously inhomogeneity with 

Gaussian energy spectrum: L0 = 4λ and urms = 3 m/s. Inner scale is equal to l0 = 2.4λ and is 

chosen according to the limits of parabolic approximation.  Dimensionless nonlinear coefficient 

N and absorption coefficient A are taken to be A=0.00034 and N=0.05 if it is not stated 

otherwise. The resulting peak positive pressure pattern is presented in Fig. 5.21 showing multiple 

focusing and defocusing of the acoustic wave. The random focusing occurs here at shorter 

distances, as compared to the Gaussian type medium inhomogeneity, and the overall structure of 

the acoustic field obtains additional tiny structure due to presence of small scales in the turbulent 

field [Wert et al., 95]. 

Mean peak positive pressure and arrival time distribution are in qualitative and even 

quantitative agreement with that obtained for the acoustic N-wave propagation through the 

inhomogeneity with Gaussian energy spectrum and will not be presented in this document. It is 

only worth to introduce the mean rise time distributions (Fig. 5.22). From the comparison of 

mean distributions, calculated for the acoustic wave propagation through the media with  

 
Fig. 5.20 Peak positive pressure distributions calculated with or without account for the transverse 
component of the random velocity field. a) maximal over y axis distribution plotted along x axis, b) 
maximal over x axis distribution plotted along y axis 
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Fig. 5.21  Peak positive acoustic pressure distribution 
formed in inhomogeneous field with von Karman 
energy spectrum (Fig. 1.2e-g). Levels of turbulence 
intensity are marked with red – positive and grey –
negative contours ( 0/ cu x =± 0.009). 

Fig. 5.22 Mean acoustic wave rise time 
distributions in random medium with Gaussian 
(solid lines) or Karman (dashed lines) energy 
spectra. Red curves – corresponding standard 
deviations. Black line – rise time in motionless 
medium.  

different energy spectra, one can see that in the case of multi scale inhomogeneity the shock 

front rise time is smeared out more effectively. This means that the shock front width is mainly 

determined by the smaller scale inhomogeneities. The influence of transverse component of the 

random velocity field becomes very significant in that case. In Fig. 5.23 are shown maximal over 

x axis (a) and maximal over y axis (b) peak positive pressure distributions calculated with 

account for both components of random velocity field (red curves) and with account only for 

longitudinal component (blue curves). It is seen that contrary to random inhomogeneity with 

Gaussian energy spectrum, the transverse component of the random field with a modified von 

Karman energy spectrum has a significant influence on peak characteristics of the acoustic field. 

Due to the presence of lateral medium velocity fluctuations the focal regions are shifted both in 

longitudinal and transverse directions. Moreover additional focusing zones may occur. In 

  
Fig. 5.23. Peak positive pressure distributions calculated with or without account for the transverse 
component of random velocity field. (a) maximal over y axis distribution plotted along x axis, (b) 
maximal over x axis distribution plotted along y axis 
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addition, some focal regions may disappear (Fig. 5.23a, x/λ = 80), whereas in others the focusing 

may become more intense (Fig. 5.23b, y/λ = 372). Thus, to correctly predict peak and average 

characteristics of the acoustic field in randomly inhomogeneous moving medium with a 

modified von Karman energy spectrum, transverse component of the velocity field need to be 

included in the model of acoustic wave propagation. 

§ 5.3 Comparison of numerical model results with experimental data 

For the numerical modelling of an N-wave propagation in randomly inhomogeneous 

moving air with account for the relaxation effects, the parameters of the medium are chosen 

according to the laboratory scale experiment conditions: ε = 1.21, b = 4.86·10-5 Pa·s, ρ0 = 

1.29 kg/m3, c0 = 335 m/s. Relaxation parameters were calculated using empirical formulas for 

85% humidity, 278 K temperature and atmospheric pressure equal to 1 atm.: c1 = 0.1174 m/s, 

τ1 = 6.9 μs (O2), c2 = 0.0214 m/s, τ2 = 641 μs (N2) [Pierce, 62]. As the initial condition, the plane 

N-wave with the characteristic for the experiment pressure amplitude p0 = 950 Pa and duration 

(2Т0) = 25 μs at distance r0 = 15 cm from the spark source were chosen (these values are 

determined according to the method, presented in §3.2). The N-wave shock front rise time is 

determined according to nonlinear and dissipation effects. Dimensionless parameters in Eq. (4.6) 

are, thus, equal to: N = 0.05, D1 = 0.0022, D2 = 0.0004, θ1 = 1.73, θ2 = 161.1. The absorption 

coefficient is chosen in order to maintain the stability of the numerical algorithm during the 

optimization procedure (§4.3, Appendix B) and is equal to А = 0.00034, that is twice the 

absorption parameter in experimental environment. Numerically generated randomly 

inhomogeneous medium velocity field has a modified von Karman energy spectrum shape with 

an inner scale equal to l0 = 2.0 cm = 2.4λ and an outer scale equal to L0 = 19.3 cm = 23λ (§2.3).  

Outer scale is chosen in accordance with the experimentally generated turbulence scale, whereas 

chosen inner scale is much longer due to the limitations of the used parabolic approximation. So, 

in Fig. 5.24 are presented the turbulent fluctuations energy distribution and acoustic wave energy 

distribution over wave numbers.  Blue curve corresponds to the used in simulations 2D modified 

von Karman spectrum (L0 = 19.3 cm, l0 = 2 cm).  Note, that the energy containing part of the 

modified von Karman spectrum lies at lower wave numbers (K ∈[2, 40] m-1) than the main 

energy part of the acoustic wave spectrum ([40, 170] m-1).  Thus, the parabolic approximation 

should be valid in the presented conditions of propagation.  Numerical simulations are provided 

for wide realizations (240λ x 1000λ) of random field with different intensity of turbulent  
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Fig. 5.24 Comparison of characteristic scales in 2D modified von Karman energy spectrum of turbulent 
medium (L0 = 19.3 cm, l0 = 2 cm,  blue) with the spectrum of the modelled initial N-wave (λ = 0.85 cm, 
red curve, red y-axis) 

fluctuations in agreement with our laboratory scale experiment.  Root mean square velocity of 

fluctuations varied from rmsu  = 0 m/s up to rmsu  = 4.0 m/s, that corresponds to 

rmsjet uU 10= = 40 m/s at the exit of the jet in the experiment (Fig. 2.9). Note also, that in our 

computations it is assumed that the turbulent field exists at all distance of the acoustic wave 

propagation path (from 15 cm to 2.19 m) and is isotropic everywhere, whereas in the laboratory 

scale experiment the turbulent field is isotropic only at distances 40 cm – 170 cm from the source 

and is anisotropic and unstationary in the outside region. 

In Fig. 5.25 are shown the experimental (Fig. 5.25а) and calculated (Fig. 5.25b) 

probability densities distributions of relative peak positive pressure <p+>/< 0
+p > in the field of 

acoustic N-wave at the distance of 2.19 m from the source, calculated for different intensities of 

turbulent fluctuations (different flow velocities at the exit of the jet jetU ) [Averiyanov et al., 

134]. Here < 0
+p > is the mean value of peak positive pressure of the wave, propagating in 

motionless medium. Red dashed lines correspond to the mean values of the peak positive 

pressure in turbulent medium. Standard deviations of the acoustic pressure fluctuations are 

designated with std and their numerical values are printed in the figure. Simulations are done 

based on time domain numerical algorithm, presented in §4.3, and using amplitude frequency 

response of the measuring system obtained for current laboratory experiment using method, 

described in Chapter 3.  Even if the laboratory scale experiment is a fully 3D experiment, 

whereas the numerical modelling is done only in 2D representation, the results of peak positive 

pressure measurements are in a good qualitative agreement. In both case the peak positive 

pressure probability density distributions have a bell like shape with a long pressure tail in the 

direction of <p+>/< 0
+p > increase. Distributions maxima move in the direction of pressure  

K,  m-1 

λ-1,  m-1 
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Fig. 5.25. Experimental (a) and modelled (b) relative peak positive pressure p+/< 0
+p > probability 

distributions obtained at distance of 2.19 m from the source. Flow velocity at the exit of the jet Ujet  varies 
from 0 m/s to 40 m/s. < 0

+p > is the mean value of the peak positive pressure, measured at the same 
distance in motionless medium.  Red dashed lines correspond to the mean value of the pressure amplitude 
in turbulent medium.  With designation std the standard deviation is shown.  Class width equals to 0.07. 

>< +

+
0p

p
 

0
+

+

p
p

 

a) b) 

Ujet = 0 m/s 

W 

Ujet = 15 m/s 

Ujet = 20 m/s 

Ujet = 25 m/s 

Ujet = 30 m/s 

Ujet = 35 m/s 

Ujet = 40 m/s 

Ujet = 0 m/s 

W 

Ujet = 15 m/s 

Ujet = 20 m/s 

Ujet = 25 m/s 

Ujet = 30 m/s 

Ujet = 35 m/s 

Ujet = 40 m/s 



§ 5.3 Comparison of numerical model results with experimental data 139 

 
Fig. 5.26 Dependence of the peak positive pressure of the acoustic wave and its standard deviation, 
measured at the distance 2.19 m from the source, on the flow velocity at the exit of the jet Ujet (turbulence 
intensity). Red curve – experimentally measured values, blue curve – results of simulation, black curve – 
result of simulations, to which the measuring system frequency response was applied. 

 

 
Fig. 5.27 Dependence of the peak positive pressure of the acoustic wave and its standard deviation on the 
distance from the source (Ujet = 20 m/s). Red curve – experimentally measured values, which are 
multiplied by the r/r0 value to exclude the spherical divergence effects, where r0 = 150 mm.  Blue curve – 
results of the simulation. 
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decrease with augmenting the turbulent fluctuations intensity. At the same time, one can observe 

the formation of peak positive pressure values, which are up to 4 times higher than in the 

motionless medium. These values correspond to measurements in the vicinity of focal spots.  

It should be noted also, that in both experiments the same regularity of different shape 

waveforms formation is observed according to their amplitude position in the probability density 

distribution. So, if p+/< 0
+p > ∈ [0, 1], then the formation of rounded waveforms and waveforms 

with several shock fronts and very long pressure tails are mainly observed. For p+/< 0
+p > ∈ [1, 2] 

the classical N-waves and waves with two shock fronts, which also have long pressure tails are 

observed.  If p+/< 0
+p > ∈ [2, 3], then waves with several peaks of high amplitude are formed, that 

tells about proximity of the focal spot.  Finally, in the focal spot itself (p+/< 0
+p > ∈ [3, 4]) the 

formation of classical U-waves of high amplitude and thin shock front is observed  

As for the mean characteristics of the acoustic wave, the influence of randomly 

inhomogeneous moving medium is to decrease mean peak positive pressure with increase of 

turbulence intensity (Fig. 5.26). So, the relative pressure level <p+>/< 0
+p > in the case of 

maximum flow velocity decreases on 27 % in laboratory scale experiment, and on 12 % in 

numerical modelling and 18% when the measuring system frequency response (§3.4) is applied 

to the results of simulations. Moreover, the standard deviation of measured parameter in both 

cases increases monotonically up to flow velocities jetU = 30 m/s, where its saturation is 

observed, i.e. it does not notably change further with the flow velocity increase. In the laboratory 

scaled experiment, the maximal standard deviation of the peak positive pressure relative 

fluctuations is equal to 0.38, and in numerical experiment – 0.41.  

Comparison of obtained experimental and numerical data clarifies the physical meaning 

of the inflection on mean peak positive pressure curve (Fig. 5.26) at flow velocity jetU = 20 m/s. 

It is related to the focusing of the acoustic wave. As soon as an effective area of focusing zones 

is much smaller than the total area of decreased pressure regions, mean peak positive pressure in 

turbulent medium decreases. The strongest decrease is observed at a distance of first caustics 

formation, described by large-scale inhomogeneities, as soon as such inhomogeneities result in 

strongest focusing. For example, in Fig. 2.23a, mean peak pressure decrease at a distance 

1200 mm ( jetU = 20 m/s) from the source correspond to the distance of first caustic formation, 

associated with large-scale inhomogeneities L0 = 19.3 cm. At this distance, which equals to 

1532 mm, one can see that difference between peak pressure in still medium and turbulent 

medium achieves its maximum. Further with distance, difference between mean peak pressures 
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becomes smaller due to faster dissipation of waves in motionless medium, as soon as they 

contain higher frequencies (have steeper shock fronts). The stronger turbulence intensity is, the 

stronger is the focusing. Therefore, if the turbulent field is enough intense, the difference 

between two curves will be sufficiently large even at longer distance: dissipation mechanism will 

not have enough time to suppress difference in amplitude. Thus, in our example (Fig. 5.26) 

turbulence created by the flow jetU = 15 m/s is not enough intense and difference in amplitudes 

is fully suppressed. And starting only from jetU = 20 m/s dissipative mechanisms only decrease 

the difference but do not have time to fully suppress it. 

In addition to the dependence of the peak positive pressure on turbulence intensity, its 

dependence on propagation distance is presented in Fig. 5.27, where a good agreement between 

experimental and theoretical data is obtained. Thus, the quantitative agreement between results 

of numerical modelling and laboratory scale measurements is even achieved and enhanced by 

using the measurement system frequency response.  

A small difference in peak pressure in laboratory and numerical experiments can be 

partially explained by the fact, that measurement of high amplitude acoustic waves is sufficiently 

difficult to realize from the technical point of view as soon as they are located in very thin focal 

areas. To measure a large number of waveforms (for a good statistics) a huge amount of 

microphones or long duration experiments are needed, and that is not always possible. This can 

explain why mean amplitude value of acoustic wave in laboratory scale experiment decrease 

faster than in numerical experiment. Comparison of the shock front rise time and arrival time 

statistics in both experiments is not yet possible due to strong influence of nonlinear effects, 

which are differently pronounced in 2D and 3D geometries. 

In Fig. 5.28 are shown the probability density distributions of arrival time, obtained in 

laboratory scale experiments (a) and in numerical simulations using parabolic Eq. (4.6) at the 

distance 2.19 m from the source and with varying velocity of the air flow at the exit of the jet Ujet 

( turbulence intensity).  With red vertical lines are shown the mean values of the arrival time and 

its standard deviation is noted on the figures using designation std. In both cases, the arrival time 

is normalised by the initial duration of the wave (2T0 in experiment and 2θ0 = 2π  in modelling). 

In both cases the probability density distribution becomes wider with increasing the intensity of 

the turbulent fluctuations and moves towards faster arrivals, which is consistent with the Fermat 

principle of arrival time minimization. A more detailed comparison of mean arrival time and its 

standard deviation in theory and experiment is presented in Fig. 5.29. In addition to the measured 

data and results of numerical simulations based on the parabolic Eq. (4.6), the geometrical 

acoustics prediction for the arrival time in turbulent medium is presented in the figure with green 
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Fig. 5.28. Experimental (a) and modelled (b) arrival time probability density distributions measured at distance 
of 2.19 m from the source varying the flow velocity at the exit of the jet Ujet (turbulence intensity). Red dashed 
lines correspond to the mean value of the arrival time in turbulent medium.  With designation std the standard 
deviation is shown.  Class width equals to 0.095. 
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Fig. 5.29 Dependence of the mean arrival time of the acoustic wave and its standard deviation, measured 
at the distance 2.19 m from the source, on the flow velocity at the exit of the jet Ujet (turbulence intensity). 
Red curve – experimentally measured values, blue curve – results of simulation using parabolic equation 
(PE), green curve – values given by geometrical acoustics approach (GA). 

 
Fig. 5.30 Dependence of the mean rise time of the acoustic wave and its standard deviation, measured at 
the distance 2.19 m from the source, on the flow velocity at the exit of the jet Ujet (turbulence intensity). 
Red curve – experimentally measured values, blue curve – results of simulation using parabolic equation, 
black curve – result of simulations, to which the measuring system frequency response was applied. 
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line [Iooss et al., 133]. Parabolic equation predicts a bit faster arrival time of the acoustic wave 

in turbulent medium than the geometrical acoustics approach. The qualitative agreement between 

experimentally and theoretically obtained mean values and standard deviations is not so good 

here as for the peak positive pressure as soon as the arrival time is very sensitive to temperature 

variations and to any error of its measurement. 

Such agreement between the results of 3D laboratory scale experiment and 2D numerical 

modelling confirms the validity of the derived parabolic evolution model (4.6) and developed 

numerical algorithm for the description of nonlinear acoustic wave propagation in 

inhomogeneous moving media. Nevertheless, such parameter of the acoustic wave as the shock 

front rise time (Fig. 5.30) can not be easily compared with theoretical predications due to strong 

difference of nonlinear propagation effects in 2D and 3D geometry (fast spherical divergence of 

the wave decrease the strength of amplitude dependent nonlinear effects). Even applying the 

measuring system frequency response to the calculated rise time does not give the same rate of 

its increase. However, the order of the “filtered” rise time is the same as that of the experimental 

one. 

It is also useful to plot a cumulative probability curves which follow from the probability 

density distributions, presented above (Fig. 5.25), by using the following integration  
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Cumulative probability Pc shows the probability pressure levels measurement which are higher 

than a.  The results of integration are shown in Fig. 5.31 for both experimental (Fig. 5.31a) and 

theoretical measurements (Fig. 5.31b). With red solid and red dashed curves, the probabilities in 

laboratory measurements and probabilities given by theoretical predictions in still air are shown. 

The theoretical curve represents a step with 100% probability of relative pressure levels  
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Fig. 5.31 Cumulative probability Pc of normalized peak positive pressure calculated using the laboratory 
scale experiment data (a) and data from numerical modelling (b). Results are presented for different 
turbulence intensities. 
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observation higher than [0 1] and zero probability of observation of pressure levels higher than 

(1, ∞). In contrast, experimental probability curve is smoothed around theoretical shock due to 

the slight instabilities of the spark source and due to the integration over data, measured by four 

microphones, which, in general, have different frequency responses. Results, obtained for the 

turbulent medium, are presented for four different turbulence intensities. Turbulence effect 

results in smoothing of the cumulative probability curve around the theoretical step-like shape 

(in still air). In general, low level pressure occurrence probability Pc(a < 1.0) becomes smaller, 

whereas the probability of high level pressure observation Pc(a > 1.0) becomes larger. The 

higher the turbulence intensity (Ujet) is, the stronger the probability curves are smoothed and the 

longer tails they have. The cumulative probability Pc(a) for a < 1.0 decreases with increasing the 

turbulence intensity. However, for a > 1.0 peak positive pressure observation probability 

measured in high intensity turbulence starts to dominate that, measured in low intensity 

turbulence. In Fig. 5.26b in the zoomed area, one can see that the green curve (Ujet = 15 m/s) 

reaches the zero value probability faster than other curves, corresponding to higher intensity 

turbulence. Thus, the higher the intensity of the turbulence is, the higher is the probability of 

high-level pressure observation. Relative pressure level higher than three is observed only in 

Pc(a = 3.0) = 0.1% cases maximum (Ujet = 40 m/s), whereas  for  Ujet = 15 m/s this probability is 

already equals to zero. Cumulative probability for pressure levels higher than two is much higher 

and is equal to Pc(a = 2.0) = 2%. This maximum is reached for Ujet = 25 m/s. Minimum 

occurrence probability is reached for Ujet = 15 m/s and is equal to Pc(a = 2.0) = 0.7%. It is 

interesting, that probability of pressure level occurrence like in still medium drops down from 

Pc(a = 1.0) = 100% in still medium to 

Pc(a = 1.0) = 27:44% in turbulent medium, 

depending on its intensity.  The highest 

probability here corresponds to the less intense 

turbulent fluctuations. 

Finally, in Fig. 5.32 are shown the 

theoretical probabilities of high acoustic wave 

amplitudes observation in turbulent medium, 

which two times exceed the value of the peak 

pressure at the same distance but in motionless 

medium.  These values are calculated for 

different turbulence intensities (different flow 

velocities Ujet) along the propagation 

Fig. 5.32 Cumulative probability Pc of peak 
positive pressure measurement, which two times 
exceeds the acoustic wave amplitude measured in 
motionless medium at the same propagation 
distance. Results are presented for different 
turbulence intensities. 
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coordinate of the acoustic wave. The highest probability is achieved in the case of the most 

intense turbulence and equals about 4%. With the decrease of turbulence intensity, the maximum 

probability decreases and moves towards longer distances in agreement with distance of 

occurrence of the strongest focusing, which is defined here by the largest scale inhomogeneities 

L = 23 λ = 193 mm. This distance can be estimated in geometrical acoustics approach using (5.1) 

and is equal to 1060 mm, 1320 mm, 1840 mm from the source respectively for Ujet = 35 m/s, 

25 m/s, 15 m/s. Thus, predicted by geometrical acoustics distances are in a quite good agreement 

with the presented results, which were calculated using diffraction model. 

§ 5.4 Conclusion 

The propagation of an initially plane harmonic wave and N-pulse in nonlinear randomly 

inhomogeneous moving media was investigated numerically. Random inhomogeneities were 

generated using Gaussian and von Karman energy spectra. The results of simulations were 

compared to those obtained using the geometrical acoustics (eikonal equation).  It was shown 

that the prediction of caustics and shadow zones by geometrical acoustics only partially 

corresponds to the regions of high and low pressure levels predicted with the nonlinear parabolic 

wave equation. The discrepancy between the results of the models increases for smaller size of 

inhomogeneities and for longer distances of propagation in randomly inhomogeneous media. 

The simulations showed, that in the case of single-scale inhomogeneities with Gaussian 

energy spectrum the acoustic field was primarily affected by the fluctuations of the flow 

component parallel to the wave propagation direction.  Contrarily to that, in the case of multi 

scale inhomogeneities with modified von Karman energy spectrum, the transverse component of 

the random velocity field was sufficiently noticeable.  Moreover, influence of transverse 

component of the velocity field becomes even stronger for larger scale inhomogeneities and in 

the case of lateral winds. Therefore transverse to the wave propagation direction component of 

the turbulent flow need to be accounted for in order to correctly predict peak and average 

characteristics of the acoustic field. 

It was shown, that for the case where nonlinearity has a length scale of higher or same 

order as the caustic formation distance, the focusing of the wave was enhanced even in the 

presence of strong nonlinear dissipation, that is, the focal regions have higher peak pressure and 

are more localized.  If nonlinear length scale is very small, strong nonlinear dissipation 

suppresses peak pressure before the wave focuses, and therefore decrease of pressure amplitude 

in caustics is observed. 
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In the focal regions the waveforms were classical in shape: harmonic wave transforms to 

obtain a shock fronts, cusped positive peak, and smooth negative trough; N-wave transforms to 

the U-wave with high amplitude and thin shock front.  In the shadow zones of small pressure 

amplitudes the presence of nonlinearity can also be observed as the waveforms have sufficiently 

steep shocks.  In the case of N-wave propagation in random medium, formation of following 

waveforms were observed outside the focusing zones: picked waves, rounded waves and waves 

with several shock fronts with long pressure tails due to multi path propagation in the medium. 

Random properties of the inhomogeneous moving medium have been shown to have 

twofold influence on the parameters of the acoustic field.  On the one hand, statistically, mean 

peak positive pressure of the acoustic wave in turbulent medium decreases and mean rise time 

increases in comparison with them in the medium without turbulence, what is desirable.  But on 

the other hand, due to the focusing, there occurs a small probability of measurement of very 

steep shock fronts with very high amplitudes. These results, confirm the tendency which were 

previously observed in experiments of Lipkens [7,40-42] and Ollivier et al. [44], and preliminary 

numerical simulations of Blanc-Benon et al. [31]. When acoustic wave propagates in random 

medium with von Karman energy spectrum the rate of mean rise time increase becomes even 

higher than in the medium with Gaussian energy spectrum. This effect is related to the presence 

of smaller size inhomogeneities which determine the widening of the front. However, there still 

exists non zero probability of very short rise times occurrence.  It is shown that influence of 

turbulent medium on mean arrival time decrease with distance is smaller in the case of nonlinear 

propagation of the wave than in linear one. 

The energy of the acoustic wave that propagated through the inhomogeneous medium 

was very close to that predicted by plane wave theory indicating that transverse redistribution of 

the energy into higher (with extra absorption) and lower (with less absorption) pressure regions 

did not result in average in significant change of nonlinear energy losses. 

When experimental and numerical data for N-wave propagation in inhomogeneous 

moving medium were compared, it was shown that despite of different geometry of numerical 

(2D) and laboratory (3D) experiments, the results of measurements of peak positive pressure are 

in a good agreement, including the shape of statistical distributions, obtained values of peak and 

mean pressure and also the values of standard deviations.  

 





 

CONCLUSION  

The main goal of this work was the experimental and numerical investigation of 

nonlinear-diffraction effects during the propagation of high amplitude acoustic signals through 

randomly-inhomogeneous moving medium.  In experimental study, the aim was to build an 

experimental setup which allows investigating of shock wave propagation in turbulent medium 

under the conditions of multiple focusing caused by large-scale inhomogeneities. Previously 

conducted experiments did not give complementary information about focusing at long 

distances, defined by large scales in turbulence spectrum.  However, such focusing is the most 

intense one, and, therefore, results in very high-pressure amplitude levels and very steep shock 

fronts.  Moreover, the scaling of previous experiments was too high, and absorption effects were 

very strong and dominant on nonlinear propagation. Thus, a new laboratory scale experimental 

setup was built for the investigation of the propagation of short shock pulses of high amplitude 

(duration 30 μs, amplitude up to 1000 Pa) in a turbulent airflow with mean velocity up to 20 m/s. 

It is shown that the energy spectrum of created turbulent field is well described by modified von 

Karman energy spectrum. Parameters of the turbulent flow were defined as: mean square 

velocity urms ∈ [0, 4] m/s, outer scale L0 ∈ [200, 220] mm, inner scale l0 ∈ [1.25, 1.7] mm, 

integral scale Lf ∈ [166, 182] mm. 

Analysis of the experimental data showed, that the measurement system had a limited 

frequency response at higher frequencies. As soon as system response may vary due to using 

specific geometry of the experimental setup, due to air conditions or due to aging, it became 

necessary to develop a method of on-place measurement system calibration. Previously 

developed for non dissipative media calibration methods, based on nonlinear propagation 

phenomena, can not be used for calibration in air due to strong influence of thermoviscous 

absorption and relaxation effects. Based on numerical modelling of modified Burgers equation it 

was shown that in the experimental conditions and for the characteristic parameters of generated 

shock wave the decrease of the wave amplitude is equally dependent on nonlinear effects, 
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relaxation processes and on effects of thermoviscous absorption, whereas lengthening of the N-

pulse is determined only by nonlinear effects. Thus, based on nonlinear lengthening of the N-

pulse, a new experimental method of wide band microphone calibration in dissipative media was 

proposed and validated both numerically and experimentally.  For the determination of pulse 

duration, a definition, based on the positions of the nulls in the pulse spectrum, was proposed. 

This method allows obtaining spectral characteristics of the measuring system at a wide 

frequency band simultaneously. The proposed method of nonlinear calibration of wide band 

microphones in dissipative media and conducted experiments under the conditions of multiple 

caustics formation, allows not only to describe the acoustic signal propagation in inhomogeneous 

medium, but also to validate developed theoretical model and numerical algorithm by 

comparison of experimental data with the results of simulations. 

In theoretical study, the aim was to develop the nonlinear parabolic equation model, 

which accounts for the component of the medium velocity field transverse to the direction of 

wave propagation. Up to date, the effect of transverse winds were studied only in approximation 

of nonlinear geometrical acoustics, which does not account for diffraction effects, or in the wide 

angle parabolic approximation, which is limited to linear effects. Thus, incorporating both the 

nonlinear-diffraction effects and effects of transverse winds in one theoretical model, which, 

moreover, allows efficient numerical modelling, will give a powerful technique for investigation 

of intense sound wave propagation in inhomogeneous moving medium. In this work, starting 

from the exact equations of linear acoustics of inhomogeneous moving medium a nonlinear 

parabolic equation of the KZK type was derived.  This equation contains a new term, which 

accounts for the influence of the medium velocity component in the direction transverse to the 

acoustic wave propagation. The validity of the derived equation is limited to smooth 

inhomogeneities, which primarily result in scattering in the forward direction up to 20 degrees of 

axis.   

The parabolic equation has no analytical solutions and has to be solved numerically. 

However, it was found to have properties of similarity, which allows finding solutions for certain 

types of medium mean motion in the presence of small fluctuations using the solution for 

effective fluctuations. Numerical algorithm which allows solving obtained evolution equation in 

two dimensions, was developed using a split-step numerical method. Numerical procedure for 

each physical term was optimised to have a good accuracy of the solution, and, at the same time, 

to have reasonable computational time. Depending on the temporal characteristics of the 

transmitted signal, two approaches were employed for numerical modelling: time domain 

approach - for pulsed signals propagation and spectral approach - for periodic wave propagation.  
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Both algorithms allow computing of narrow shock fronts propagation in inhomogeneous moving 

media with account for the effects of diffraction, nonlinearity, thermoviscous absorption and 

relaxation.  The validity of our theoretical and numerical models was investigated for the case of 

acoustic wave propagation through a simple focusing Gaussian inhomogeneity of one 

wavelength radius.  

Propagation of acoustic signals in 2D randomly inhomogeneous media with Gaussian or 

modified von Karman energy spectra was then investigated. The random velocity field was 

modelled using the random Fourier modes method.  It was shown that the spatial structure, peak 

and mean characteristics of the acoustic field in randomly inhomogeneous moving media are 

defined by the combined influence of nonlinear and diffraction effects.  The advantages of the 

nonlinear-diffraction approach in comparison with the approximation of geometrical acoustics 

were demonstrated.  It was determined, that nonlinear effects lead to essential change in the 

coefficient of field concentration in the random focusing areas.  Moreover, regardless strong 

dissipation of the energy on the shock front, random focusing can result in considerable increase 

of pressure amplitude and in steepening of the wave front even at long distances such as several 

nonlinear distances xs.  

The influence of the random velocity field component, which is transverse to the acoustic 

wave propagation, on the acoustic field structure was investigated numerically by accounting in 

simulations weather both fluctuation components (longitudinal and transverse) or only transverse 

one. It was shown, that characteristic structure of the acoustic field in turbulent flow is formed 

mainly due to the influence of the longitudinal to the wave propagation direction component of 

the random velocity field.  Transverse fluctuations lead to changes of the acoustic field structure 

in both longitudinal and transverse directions, and their influence increases with the growth of 

characteristic scale of the turbulent medium. 

The influence of random focusing effect on the statistics of powerful acoustic shock pulse 

propagating in randomly inhomogeneous moving medium was investigated experimentally and 

numerically. Results of simulations, done in the conditions of the laboratory scale experiment, 

showed a very good qualitative and even quantitative agreement with the experimental data.  

Comparison was done after applying derived frequency response of the measuring system to the 

numerical data.  Both experimentally and numerically, it was shown that turbulent medium 

results in considerable decrease of mean peak positive pressure (up to 30% at 2 m from the 

source), in increase of the mean rise time of the shock front (3-4 times), and in faster in average 

arrival of the N-wave (more than 15 μs gain) in comparison with the same parameters of the 

wave propagating in motionless medium. At the same time in areas of focusing, acoustic pulses 
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with more than 4 times increase in the amplitude and corresponding decrease in the rise time 

were measured. For the first time the combined influence of nonlinear-diffraction effects on the 

statistics of wide band acoustic field in randomly inhomogeneous moving medium was 

investigated.  It was shown that nonlinear effects decrease the value of relative changes in mean 

characteristics of the wave propagating in turbulent media in comparison with that in still 

medium. 

As a continuation of this work, various possible prolongations can be proposed.  The first 

possible continuation is the development of the numerical method in three dimensions, which 

accounts for all described previously effects, including the effects of transverse winds.  In fact, if 

randomly fluctuating transverse component of the medium velocity field has been shown to have 

an important impact on the propagation of the acoustic wave in two dimensions, it will be even 

more pronounced in three dimensions, as shown by experiments. Moreover, 3D simulations 

should lead to even better agreement between theory and experiment. However, 3D simulations 

will be time consuming. Therefore, to ameliorate the code and finally to have reasonable 

computation time, the absorbing boundary layer of PML type (Perfectly Matched Layer) should 

be integrated in the algorithm, which will negotiate the reflections from the boundaries of the 

computational domain.  

One more continuation of this work concerns the development of numerical algorithm, 

which also accounts for the effects of scalar inhomogeneities like variations of density and 

temperature, and also for the stratification of the atmosphere. This model could be used for the 

investigation of sound wave propagation at long distances; and for the investigation of transverse 

wind and diffraction effects on the acoustic pressure fields in shadow zones. Implementation of 

impedance boundaries into the code will also allow investigating sound reflection from the 

ground surface.   

One more branch of possible future investigations is related to the amelioration of the 

wide band microphones calibration method in dissipative medium, taking into account relaxation 

effects. This could be done by means of better characterisation of the spark source and 

enhancement of the measuring procedure.  Work in the direction of spark source amelioration in 

order to make it more stable as well as the work to create a wide band high frequency 

microphone (up to 200 kHz) is also possible. 

 

 

 



 

Appendix A : GEOMETRICAL ACOUSTICS APPROACH 

Eikonal equation in geometrical acoustics approach. Ray paths and caustics. 
 

For acoustic wave propagation in inhomogeneous moving media, geometrical acoustics 

approach is used to trace acoustic rays and to determine exact caustic positions along ray paths.  

The classical formulation of geometrical acoustics is well known and given by the transport and 

eikonal equations which accounts also for moving media. Note that both in linear and nonlinear 

acoustics the eikonal equation has the same form [20]. If nonlinear propagation of the acoustic 

wave is considered, the nonlinear effects are accounted for by the transport equation. Thus, both 

in linear and nonlinear acoustics, rays are the solutions to the eikonal equation, which follows 

[14, 21, 62]: 
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where ψ=ψ(x,y,z)  is the eikonal, n=c0/(c0+Δc) is the coefficient of refraction, Δc is the 

fluctuation in the speed of sound (scalar inhomogeneity), ),,( zyx uuu=u  is the velocity field of 

the medium (vector inhomogeneity), and )/,/,/( zyx ∂∂∂∂∂∂=∇ . 

Eikonal Eq. (A1) is a nonlinear first order partial differential equation of the Hamilton-

Jacobi type [14, 135].  Taking the Hamiltonian in the form ( )0/1 cnkH ku−−= , ψ∇=k , the 

eikonal equation can be reduced to the characteristic set of coupled differential equations for 

acoustic rays, which in the absence of scalar type inhomogeneities ( n=1 ) take the form: 
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Here the variable t parameterizes the ray and is analogous to time, ),,( zyx=r  is the location of 

the ray in space, k is the nondimensional wave vector, p=k/|k| is the unit vector in the direction 

of wave vector and indices i and j show the x, y, z, component of the corresponding vector. 

The ray trajectory is completely determined by the knowledge of medium 

inhomogeneities and by initial conditions given at he time t = 0.  For a plane wave and 2D 

Cartesian geometry these initial conditions take the form: 
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The spatial distribution of the rays is a qualitative indicator of the local intensity of the 

acoustic field linked to the focusing or defocusing of the rays.  To define caustics locations 

precisely, one needs to find points where the cross section area of the ray tube vanishes.  In 

linear description, these points correspond to infinite acoustic pressure levels.  In reality, the 

acoustic pressure at the caustic is limited by various physical mechanisms, as for example by 

diffraction [47, 62]. Anyway, caustics serve as indicators of increased pressure levels.  The ray 

tube section in 2D geometry can be defined by means of geodesic element ty )/( 0∂∂= rR . The 

geodesic elements describe the evolution of the wave front along each ray and are given by 

[Candel et al., 136]: 
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where ty )/( 0∂∂= kQ  and designates ‘conjugate’ elements. 

The appropriate initial conditions for the system of equations (A5)-(A6) are given by: 
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Fig. A1. a) an example of scalar Gaussian inhomogeneity with radius R=5λ and amplitude 
0/ ccM δ= ~0.06. b) acoustic ray paths and caustics corresponding to the plane acoustic wave propagation 

through presented inhomogeneity 

Thus, position of the caustics are defined by the condition R=0, i.e. when geodesic element R 

vanishes, the acoustic pressure becomes infinite.  

The system of equations (A2-A8) is solved numerically in 2D geometry using Runge-

Kutta fourth order finite-difference algorithm [Press et al., 124].  The time step for the Runge -

 Kutta solver was chosen to ensure 40 steps across the length scale of the inhomogeneity.  In 

Fig. A1 is shown an example of acoustic rays passing through the defocusing scalar Gaussian 

inhomogeneity  

 With characteristic radius R=5λ and fluctuation amplitude ( )max0/ ccM δ= ~0.06.  The centre of 

the inhomogeneity is situated at ( )20,20/0 =λr   

After passing the inhomogeneity the acoustic wave phase front distorts, that lead to the 

formation of increased and decreased pressure levels.  Regions with high concentration of 

acoustic rays correspond to high-pressure levels (infinite pressure in caustics – blue points).  

Regions with low rays intensity correspond to the low level pressure areas.  
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Appendix B : NUMERICAL GRID STEPS 

Selection of grid steps in time domain numerical algorithm for nonlinear 

parabolic equation  
 

To get an accurate numerical solution of the parabolic Eq. (4.6), appropriate grid steps in 

the numerical algorithm should be chosen for each particular problem. This appendix concerns 

the selection of numerical grid steps, computational window widths and artificial absorption for 

the time domain algorithm (§4.3.2).  In general, there are two ways how to select the grid steps.  

If there are no computational time limits, the first way is used. All numerical steps are chosen in 

accordance with the physical effects, governing the acoustic wave propagation.  This way gives 

an exact solution of the problem, but it results in a very long time of computation.  Second way 

is usually used, if computation time is limited.  In order to have reasonable computation time, 

one needs to limit physical effects. That is, for example, to introduce a small artificial absorption, 

which permits using larger numerical steps. Such method allows faster computation by means of 

introducing a small physical error into the solution. In this work, the second method was mainly 

used to solve the parabolic Eq. (4.6) and is further described.  

As it was discussed in our numerical simulations of Chapter 4 (see §4.3), a long time 

calculation of the acoustic wave propagation is the result of a high time resolution, required to 

obtain a good description of shocks structure, occurring during the propagation.  High time 

resolution needs a huge number of time points.  Let us now consider that the maximum number 

of grid points per duration of the  wave, due to calculation time limitations, is chosen to be equal 

to n = 256.  From this follows the time step: hθ = 2π/n = 0.0246 as soon as the period of the 

initial wave is equal to T = 2π.  The problem now is to introduce modified physical parameters 

which permit to obtain the solution with minimal numerical error.  Taking into account, that the 

width of the shock front in the still medium is described by quasistationary solution to the 
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Burgers Eq. (4.14), and that it should be taken not less than 3 points per shock to describe it 

properly (§4.3.2), the following relation can be obtained: 10A/N ≥ 3hθ , where A and N are the 

absorption and nonlinearity parameters respectively. In the problem of the acoustic shock wave 

propagation, investigated in this dissertation, the nonlinearity parameter is equal to N = 0.05 and 

the absorption parameter is equal to A~1.5·10-4 (laboratory scale experiment).  Substitution of 

these values into the presented relation makes it invalid.  Therefore, one of the physical 

parameters should be changed.  Usually in numerical methods, the absorption parameter is 

increased, as soon as it makes the numerical algorithm more stable and also results only in minor 

changes in the computed field [122].  Thus, from the relation, mentioned above, it follows 

A ≥ 3Nhθ /10, from where follows the minimal absorption coefficient value: A = 3.6·10-4.  

Obtained value is of the same order as in laboratory scale experiment. However, using this value 

will result in proper description of shocks propagating only in homogeneous medium.  If 

inhomogeneous medium is presented, the focalization of the acoustic wave, and therefore the 

increase of the acoustic pressure in the focal spots should be accounted for.  The higher the 

pressure in the focal spot is, the narrower is the shock front due to the nonlinear effects.  

Therefore, the A coefficient should be modified according to the focalization ratio to describe 

properly the shock front even at the caustics.  Thus, if estimated focalization ration is equal to 

two (this can be estimated from benchmark tests), the minimal absorption coefficient should be 

equal to A = 2·3.6·10-4 = 7.2·10-4.  

Further, as soon as appropriate absorption coefficient value is found, the spatial step in 

the direction of wave propagation hσ should be defined. In this purpose, a 1D propagation model 

based on the modified Burgers equation (Eq. (4.6) without diffraction term and transverse 

convection term) is considered. Such model allows more precise investigation of acoustic wave 

propagation using different grid steps and does not need long computational time. Numerical 

step is further selected in agreement with the condition of minimal difference between computed 

solution and “exact” numerical solution for the following physical phenomena: nonlinearity, 

absorption, relaxation and convection in the direction of the acoustic wave propagation.  The 

“exact” solution is chosen as a solution, which can be considered as unchangeable with the 

decrease of a given numerical step.  This spatial step was found to be equal hσ  = 0.5hθ.  Let us 

define now the spatial step, which will result in a small numerical error of calculated wave 

parameters in comparison with the exact numerical solution.  Let this error be not higher than 

3%.  The most difficult area in the simulations is the focal spot and its vicinity, where the highest 

amplitude and the steepest shock front is formed.  Thus, if propagation is well described in focal 

spots, it will be described with even better accuracy outside them.  Therefore, according to the 
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physical problem, the acoustic wave propagation is calculated using the following physical and 

numerical parameters: N = 0.05,  A = 3.6·10-4 (restriction to the focalization), D1 = 0.0022, 

D2 = 0.0004, θ1 = 1.73, θ2 = 161.1, hθ = 0.0246 and varying value of the spatial step hσ = hθ , 

hσ = 4hθ, hσ = 10hθ, hσ = 20hθ .   Relative numerical errors are then calculated for the amplitude 

of the acoustic wave and for the rise time of its front: ε = (α−αexact)/αexact, where α is the 

investigated parameter and αexact its “exact” numerical value.  In the Table B1 are presented 

maximal and mean errors for the peak pressure and for the rise time over the propagation 

distance σ = 230.  It is seen, that the required accuracy (ε < 3%) is achieved when using spatial 

grid step hσ = 4hθ.  Numerical errors in this case are equal to 2.2% for the rise time and 0.36% 

for the peak amplitude.  Note also, that even if only about two grid points per wavelength are 

used (hσ = 20hθ =0.492), the numerical error does not exceed 10% level. In order to compare 

with, in Table B2 the numerical errors calculated using n = 512 (instead of n = 256) points per 

wave duration are shown (hθ = 0.0123, A=1.8·10-4). In this case, like in precious one, the 

required accuracy of numerical solution is achieved for spatial step hσ = 4hθ, what is equivalent 

to about 10 grid knots per wave duration. Thus, spatial step hσ = 4hθ was chosen to preserve a 

good accuracy of the numerical solution.  

At the last step of the procedure, the spatial grid step in the direction, transversal to the 

acoustic wave propagation, is selected according to the minimal characteristic scales of the 

problem.  They are the wavelength, the turbulence inner scale and the characteristic transverse 

scale of the focal regions.  The turbulence inner scale, due to the limitations of the parabolic 

approximation, is usually chosen to be longer, than the wavelength.  At the same time, there no 

limitations on the characteristic transverse scale of the focal region, and therefore it can be  

 hσ = hθ hσ = 4hθ hσ = 10hθ hσ = 20hθ 
εpeak pressure  1.6·10−3 3.6·10−3 1.0·10−2 4.3·10−2 
εrise time 4.5·10−3 2.2·10−2 5.4·10−2 8.8·10−2 
 

shorter than the wavelength.  Due to the experience, the transverse length scale of the focal 

region can be as short as a λ/2 (see, for example, Fig. 5.12c).  To describe precisely the acoustic 

Table B1. Dependence of relative error on the numerical grid step in propagation direction. hθ = 0.0246, 
A=3.6·10-4 

Table B2. Dependence of relative error on the numerical grid step in propagation direction. hθ = 0.0123, 
A=1.8·10-4  
 hσ = hθ hσ = 4hθ hσ = 10hθ hσ = 20hθ 
εpeak pressure  1.3·10−3 2.6·10−3 6.0·10−3 4.0·10−2 
εrise time 6.6·10−3 2.1·10−2 4.7·10−2 1.1·10−1 
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pressure and to have a good resolution of the acoustic field parameters in the vicinity of focal 

region, the number of grid points per focal waist should not be less than 10, and therefore not 

less than 20 grid points per unity.  Thus, in our simulations in agreement with this, the spatial 

step in transverse direction was chosen to be equal to hρ = 0.04 (25 grid points per wavelength).  

Moreover, chosen in this way spatial numerical step is in the agreement with the relation 

1/ ≤⋅⊥ ρσ hhU , which limits the validity of the Lax-Wendroff scheme used for the description 

of the velocity field transverse component. 

To validate our choice for the numerical grid step, the simulations of the acoustic wave 

propagation through the randomly inhomogeneous moving medium (modified von Karman 

spectrum, rmsu  = 4.0 m/s, L0 = 23λ, l0 =2.4 λ) were done using the transverse spatial grid step 

equal to hρ = 4.0·10-2, to   ½ hρ and to 2hρ.  The results of simulations are presented in Table B3 

as observed maximal and mean relative errors in determination of the acoustic wave peak 

positive pressure and its rise time.  As soon as an exact analytical solution is not available, the 

obtained results were compared to the “exact” numerical solution, calculated with the following 

steps: hθ = 0.0246, hσ = 2hθ,  hρ = 0.02 at different points of the acoustic field.  It follows from 

the comparison, that for the chosen steps (hθ = 0.0246, hσ = 4hθ,  hρ= 4.0·10-2) the numerical 

error in determination of the peak positive pressure values does not exceed 3.0% and thin shock 

front rise time values - 3.1%.  

 ½hσ,  hρ hσ,  ½hρ hσ,  hρ hσ,  2hρ 
 

2hσ,  hρ 2hσ,  2hρ 

εpeak pressure, max 
mean  

 
0.03 

3.8·10-4 

 
0.013 

1.6·10-3 

 
0.03 

1.7·10-3 

 
0.132 

4.0·10-3 

 
0.056 

6.6·10-3 

 
0.146 

7.4·10-3 
εrise time 
max 
mean 

 
0.016 

2.7·10-3 

 
0.036 

5.9·10-3 

 
0.031 

6.5·10-3 

 
0.09 

1.5·10-2 

 
0.093 

1.5·10-2 

 
0.094 

2.4·10-2 

If a smaller time step was chosen to calculate the acoustic wave propagation in the 

inhomogeneous moving medium, the appropriate spatial grid steps and the value of absorption 

coefficient can be easily found, using the analysis, presented above.  Let us, for example, make a 

calculation of acoustic wave propagation using n = 512 grid points per its duration.  Then, the 

time grid step ht = 2π/n = 0.0123 and absorption coefficient value becomes equal to A=3.6·10-4. 

According to the Table B1, B2, and corresponding discussion, the spatial grid step in the 

direction of propagation is equal to hσ = 4hθ ≅0.05.  As soon as the width of the focal region 

should not change, the spatial grid step in transverse direction is remains intact and is equal to  

Table B3. Dependence of relative error on the spatial grid steps in propagation and transverse directions. 
hθ = 0.0246, A=7.2·10-4, hσ = 4hθ,  hρ= 4.0·10-2 
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Fig. B1 Comparison of waveforms (b), longitudinal (c) and transverse (d) distributions of the peak 
positive pressure field (a), measured along dashed lines and calculated taking 256 (dotted line) or 512 
(solid line) time grid points per duration of the wave. 

hρ = 0.04.  In Fig. B1 are presented the distributions of the peak positive pressure in longitudinal  

(c) and transverse (d) directions, measured along corresponding dashed lines (a) together with 

waveforms (b), calculated at the focal spot (x/λ = 114.1, y/λ = 239.9) taking 256 (dotted line) or 

512 (solid line) time grid points per wave duration. It can be clearly seen, that having more time 

grid points leads to stronger focusing, and therefore to the formation of higher peak pressures 

and steeper shock fronts.  This also allows us to decrease the absorption coefficient, being closer 

to its value for the conditions of the laboratory scale experiment.  

After choosing the spatial and temporal grid steps there still remains a question 

concerning boundary conditions. In the simulations, reported here, the computational window in 

transverse spatial direction is chosen sufficiently large to avoid influence of reflections from the 

boundaries on the investigated field.  According to the validity limit of the parabolic 

approximation used in this work, the maximal supported angle of sound beam declination from 

the axis is equal to 20º [Tjotta et al., 127].  Thus, to avoid reflection from the boundaries it is 

needed to make a computational window larger than the region of interest on σmax · tan(20º) from 

each side, where σmax is the maximal distance of propagation.  As for the time domain 

computational window size, it is much more difficult to define, as soon as two phenomena 
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should be taken into account: elongation of the pulse according to the nonlinear effects and 

variation of the wave arrival time due to presence of inhomogeneities. The first effect can be 

estimated using the weak shock theory, where as the second effect is very difficult to predict.  

The arrival time depends strongly on scale and intensity of the inhomogeneous medium and also 

on the propagation distance and, therefore, can be defined only experimentally.  In the 

calculations, presented in this dissertation, faster arrivals of the acoustic pulse in inhomogeneous 

medium were observed.  The maximum arrival time shift was obtained for the most intense large 

scale turbulence with dimensionless root mean square velocity Urms = 0.012 (4.00 m/s) and 

spatial scale L0/λ = 23 and is equal to 6.4π at propagation distance 230 λ.  The second temporal 

boundary should be chosen in agreement with the length of the pulse tail, which is of interest.  In 

this work, for example, a tail part not smaller than four wave periods (8π) was investigated.  

 



 

Appendix C : SYNTHÈSE DES RÉSULTATS 

INTRODUCTION 
 
 

La propagation d’ondes acoustiques intenses dans un milieu hétérogène en mouvement 

est un problème important pour plusieurs applications modernes de l'acoustique théorique et 

expérimentale, telles que la diffusion d’ultrasons de puissance dans les tissus biologiques 

hétérogènes avec la présence entre autre des vaisseaux sanguins, la propagation de l’onde de 

choc du bang sonique à travers les couches turbulentes de l'atmosphère près de la terre et celle 

des ondes produites par des sources explosives dans l'océan fortement fluctuant. La structure du 

champ acoustique non linéaire propagé dépend fortement du caractère hétérogène du milieu de 

propagation, et notamment de la présence des diverses inhomogénéités, y compris, des vents ou 

des courants, des champs turbulents, ainsi que des gradients de densité et de température. Pour 

toutes les applications indiquées, la définition de la structure spatio-temporelle du champ 

acoustique est importante pour plusieurs raisons. Par exemple, cela permet d'estimer le niveau de 

la pression acoustique près de la surface de la terre, ou d’estimer les effets provoqués par les 

ultrasons sur les tissus biologiques. Et il est alors souhaitable d'avoir en plus la possibilité de 

prédire les caractéristiques des signaux acoustiques transmis telles que les valeurs du pic et des 

moyennes de la pression ainsi que celles du temps de montée du front d’onde. Pour réaliser cela, 

une modélisation théorique, qui prend en considération les effets apportés par les inhomogénéités 

du milieu, par la diffraction, par la non linéarité acoustique, par l'absorption thermo visqueuse et 

par les phénomènes de relaxation est strictement nécessaire.  

Malgré des exemples si divers de propagation du son dans les milieux hétérogènes, les 

modèles théoriques décrivant le processus de formation du champ acoustique et de sa 

propagation en milieu inhomogène sont très proches ; on peut néanmoins distinguer deux types 

d’inhomogénéités permettant de définir deux catégories de milieu : d’une part les milieux avec 

des inhomogénéités « scalaires » ( fluctuations spatiales de la vitesse du son et de la densité du 
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milieu provoquée, par exemple, par des changements de la température ou de la concentration du 

sel dans l'océan, ou par des changements de nature du tissu biologique); et d’autre part les 

milieux avec des inhomogénéités « vectorielles » (fluctuations spatiales de la moyenne vitesse 

des particules du milieu, par exemple, en conséquence de la présence des tourbillons, du vent ou 

des courants). Une analyse avec un modèle théorique complet, dans lequel les inhomogénéités de 

type vectoriel sont prises en considération, est très complexe à mettre en œuvre. L'approche 

traditionnelle que l’on trouve dans la littérature, consiste au remplacement du milieu réel en 

mouvement par un milieu hypothétique immobile pour lequel la vitesse du son est remplacée par 

une vitesse effective du son, qui prend en considération seulement la composante de la vitesse du 

milieu dans la direction de propagation de l'onde acoustique ; le milieu inhomogène mobile est 

donc modélisé comme un milieu inhomogène de type scalaire. Néanmoins, si la composante 

transversale du champ de la vitesse (par rapport à la direction de propagation) est non nulle, elle 

peut provoquer par convection le déplacement transversal du champ acoustique et l'altération des 

zones de focalisation du champ et des caustiques, et, donc, peut fortement influencer la 

propagation de l'onde acoustique dans le milieu en mouvement.  

L'étude théorique du problème de la propagation des impulsions acoustiques de forts 

niveaux dans une atmosphère hétérogène en mouvement est une tâche très complexe, c'est 

pourquoi les résultats théoriques sont souvent obtenus dans le cadre de modèles simplifiés, 

comme par exemple l'approche de l'acoustique géométrique. Dans cette approximation haute 

fréquence, les effets non linéaires sont alors examinés dans les milieux contenant des 

inhomogénéités aussi bien scalaires que vectorielles, et des solutions analytiques ont été 

développées seulement pour les milieux stratifiés. Cependant, un grand désavantage de cette 

approche est que l’acoustique géométrique néglige les effets de diffraction. Ce n’est que 

récemment, avec le développement de méthodes numériques performantes, que les problèmes de 

diffraction ont commencé à pouvoir être traités. Ainsi, pour la propagation linéaire du son dans 

les milieux hétérogènes mobiles, les équations d’évolution ont été récemment dérivées dans 

l'approche parabolique de la théorie de diffraction, et cela en conservant la nature vectorielle de 

la vitesse de convection du milieu. La propagation non linéaire du son dans les milieux contenant 

des inhomogénéités scalaires a été également examinée dans le cadre de l'approximation 

parabolique. Le cas des milieux contenant des inhomogénéités vectorielles, telles que des 

tourbillons à diverses échelles ou des vents avec une composante transversale de vitesse 

significative, à notre connaissance n’a pas été étudié en utilisant une approximation parabolique 

non linéaire. De même les effets combinés de la propagation non linéaire et les effets de 

diffraction intrinsèques aux divers types d’inhomogénéités aléatoires ont été que très peu 
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envisagés jusqu’à présent. Ainsi, les problèmes non linéaires diffractifs de propagation des 

signaux à large bande dans les milieux aléatoires et hétérogènes en mouvement sont d’actualité. 

Quant à l'étude expérimentale en milieu extérieur de la propagation des signaux 

acoustiques de fortes amplitudes, par exemple dans la couche limite atmosphérique, elle est 

particulièrement délicate compte tenu notamment de la complexité des mesures des champs 

aérodynamique et acoustique, et du manque de contrôle des conditions expérimentales. De plus 

dans le cas de la propagation du bruit émis par un avion supersonique, il est difficile d’effectuer 

un nombre important de mesures indispensable à une analyse statistique. C'est pourquoi depuis 

une vingtaine d’année les travaux de la littérature se sont concentrés sur la réalisation 

d’expériences à l’échelle dans des conditions de laboratoire. En effet dans les conditions de 

laboratoire, les paramètres de la source sonore et ceux des champs turbulents sont bien contrôlés, 

ce qui donne la possibilité de faire des études plus exactes. Les résultats des mesures d'une telle 

expérience permettent non seulement la description qualitative des irrégularités de propagation 

des impulsions acoustiques dans le milieu hétérogène en mouvement, mais aussi ils sont à la 

base d’une validation des modèles théoriques développés et des simulations numériques 

associées. L’une des perspectives de ce travail est alors d’obtenir des estimations quantitatives 

des pics de pression acoustiques et des temps de montées des chocs formés lors de la propagation 

des bangs soniques dans la turbulence atmosphérique. 

 

OBJECTIFS  
 

L’objectif de cette thèse est de développer des méthodes théoriques et expérimentales 

pour l'étude de la propagation non linéaire des signaux acoustiques dans les milieux hétérogènes 

en mouvement. Dans cette perspective nous avons retenu les objectifs intermédiaires suivants:  

 

1. Le développement d’un dispositif expérimental en soufflerie anéchoïque et l'étude de 

la propagation d’impulsions acoustiques – ondes en N – à travers un jet turbulent 

dans des conditions de laboratoire. 

2. Le développement d’un modèle théorique de la propagation des signaux non linéaires 

acoustiques dans des milieux hétérogènes mobiles, sur la base d’une équation de type 

Khokhlov-Zabolotskaya-Kuznetsov, en tenant compte des effets diffractifs, 

dissipatifs et des processus de relaxation. 

3. Le développement d’un algorithme numérique permettant la résolution d’une 

équation parabolique de type Khokhlov-Zabolotskaya-Kuznetsov et la modélisation 
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de la propagation dans un milieu hétérogène en mouvement de signaux non linéaires 

périodiques ou impulsifs avec des fronts très raides.  

4. L’analyse de l'influence relative des effets non linéaires, dissipatifs et des effets de 

relaxation sur la propagation d’une onde acoustique en N dans un milieu homogène 

afin d’élaborer une méthode de calibration des microphones utilisés dans 

l’expérience. 

5. L'étude expérimentale et théorique de l'influence des effets non linéaires et de 

diffraction, ainsi que celle des focalisations aléatoires, sur la propagation d’une onde 

acoustique en N dans un milieu hétérogène en mouvement à partir d’une analyse  

statistique des paramètres principaux du champ acoustique (maximum de niveaux de 

pression, temps de montée, temps d’arrivée). 

 

Cette thèse en co-tutelle a été accomplie avec le soutien d’une bourse du Président de la 

Fédération de Russie, d’une bourse de thèse en cotutelle du Gouvernement Français distribuée 

par l’ambassade de France en Russie, d’une bourse de la Société d’Acoustique des Etats-Unis, et 

dans le cadre des programmes de recherche RFBR № 06-02-16860 INTAS № 05-1000008-7841, 

et scientific schools RF № NSH-4449.2006.2. 
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SYNTHESE DES RESULTATS 
 
 

Le premier chapitre présente la bibliographie sur les études expérimentales (§1.1) et 

théoriques (§1.2) de  propagation de signaux acoustiques intenses dans un milieu turbulent. Les 

mesures effectuées « in situ », ainsi que les mesures faites en laboratoire montrent notamment 

qu’il est possible d’observer la formation des régions de forte focalisation (§1.1). Il est 

également possible d’obtenir des maxima de pics de pression du champ acoustique qui sont deux 

ou trois fois plus grands que ceux, enregistrés dans un milieu homogène en l’absence de 

turbulence. Le §1.2 traite de la bibliographie, consacrée à la description des modèles 

mathématiques principaux de propagation des ondes acoustique non linéaires à travers des 

milieux inhomogènes en mouvement. Il est montré, que des résultats quantitatifs sont obtenus 

seulement dans le cadre des modèles simplifiés, à savoir pour l'essentiel dans l’approximation de 

l'acoustique géométrique non linéaire des milieux stratifiés. Récemment, pour la modélisation 

numérique de la propagation des ondes acoustiques dans les milieux hétérogènes, les équations 

gouvernant l’évolution du champ de pression acoustique dans l'approximation parabolique de la 

théorie de la diffraction ont commencée à être utilisée. L'avantage évident de tels modèles est 

qu’ils prennent en compte les effets de diffraction. Toutefois, la description théorique de cette 

approche parabolique est limitée dans la littérature soit à des problèmes linéaires de propagation 

des ondes acoustique dans les milieux en mouvement, soit à la description des champs 

acoustiques non linéaires dans les milieux avec prise en compte uniquement des hétérogénéités 

scalaires. Ainsi, à notre connaissance, la description quantitative des champs acoustiques non 

linéaires et diffractifs dans les milieux hétérogènes en mouvement n’a pas encore été faite. Un 

sommaire des modèles principaux décrivant des milieux aléatoires et hétérogènes, ainsi que des 

milieux turbulents, est exposé dans le §1.3. L'attention principale est donnée à un modèle de 

modes Fourier orientées aléatoirement, où le champ aléatoire de la vitesse du milieu turbulent est 

modélisé de la façon suivante: 

∑
=

+⋅=
max

1
)cos()(~)(

J

j
jjj φrKKUru  , 

0)(~ =⋅ jj KKU  . 

(1) 

 

(2) 

Où jK  et φj sont respectivement le vecteur et la phase de jéme mode de Fourier. L’angle aléatoire 

θ j entre jK  et l’axe х, ainsi que des valeurs de la phase φj sont choisis pour chaque mode de 

Fourier à partir de distributions indépendantes uniformes sur un intervalle [0, 2π]. L'équation (2)  
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correspond à la condition d'incompressibilité 

du champ de vitesse synthétisée. L'amplitude 

de chaque mode aléatoire | )(~
jKU | dans 

l’équation (1) est déterminée par le spectre 

d’énergie cinétique )(KE  du modèle de 

turbulence considéré: U(K ) ~ ( )j E K KΔ% , 

K=K . Si un assez grand nombre de modes 

de Fourier dans l'équation (1) est considéré, 

chacun d’entre eux choisi conformément à 

l'équation (2) avec θ j et φ j distribués 

uniformément, le champ résultant de vitesse 

)(ru  sera statistiquement homogène et 

isotrope, et aura le spectre d’énergie cinétique 

prescrit. Il est supposé de plus pour cette 

modélisation du champ aléatoire et homogène 

de la vitesse que le temps de propagation de 

l'onde acoustique dans le milieu turbulent est 

beaucoup plus court que l'échelle 

caractéristique de l'évolution temporelle de la 

turbulence ; c'est-à-dire que le champ 

turbulent est considéré comme "gelé" 

(indépendant du temps). 

Sur la figure C1 est présenté un 

exemple d'une réalisation du champ turbulent 

de la vitesse, calculé sur la base de 300 modes 

de Fourier régulièrement distribués entre 

0.01/L et 9.0/L pour un spectre énergétique 

gaussien: 

)
4

exp(
8
1)(

22
432 LKLKuKE rms

⋅
−⋅=  (3) 

où 2 9rmsu = m2/s2 est la variance des fluctuations de la vitesse, L = 4λ est une échelle spatiale 

caractéristique de l’hétérogénéité et λ est la longueur d’onde acoustique de l’onde qui se propage 

dans le milieu inhomogène considéré. Sur la figure C1 (a, b) sont présentées les distributions  

 

 

 
Fig. C1 Exemple d'une réalisation du champ 
aléatoire de la vitesse du milieu turbulent avec un 
spectre énergétique Gaussien. a) - composante 
longitudinale des fluctuations de la vitesse, b) - 
composante transversale des fluctuations de la 
vitesse, et c) –  valeur absolue des fluctuations de la 
vitesse. 
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spatiales des composants 

longitudinale et transversale des 

fluctuations de la vitesse du milieu, 

et sa valeur absolue est donnée sur la 

figure C 1c. De cette façon, chaque 

réalisation synthéthisée du milieu 

aléatoire et hétérogène se caractérise 

par la forme de son spectre 

énergétique, par la moyenne 

quadratique de vitesse des 

fluctuations, par l'échelle caractéristique et par l’ensemble des modes aléatoires associés au 

nombre servant à l’initialisation du générateur de nombres aléatoires. Une telle méthode permet 

de calculer la propagation des ondes acoustiques avec diverses conditions initiales ou avec 

différentes méthodes de simulation, mais en considérant toujours la propagation à travers la 

même réalisation du milieu hétérogène. 

Le deuxième chapitre de la thèse est consacré à la description du dispositif expérimental 

et à la mesure dans des conditions contrôlées de laboratoire des valeurs du maximum du pic du 

champ acoustique, ainsi que des caractéristiques moyennes et statistiques de l'onde acoustique 

après le passage de la couche turbulente. Le dispositif expérimental mis au point permet de 

générer des champs de vitesse turbulents pleinement développés, ainsi que les impulsions 

acoustiques de type d’onde en N, qui sont propagées dans l’inhomogénéité suivant la direction 

perpendiculaire au jet turbulent (figure C 2). L'expérience a été réalisée dans la soufflerie 

anéchoïque de l'École Centrale de Lyon. 

Dans le paragraphe §2.1 est présenté la partie de l'expérience physique consacrée à la 

création et à la mesure des champs turbulents développés. L’un des objectifs principaux de ce 

paragraphe, est la recherche d’un plan de mesure, où le champ turbulent est entièrement 

développé ; pour cela on mesure les caractéristiques statistiques du jet turbulent (variance, 

densité spectrale) et les fonctions de corrélation spatiales des fluctuations dans le but de définir 

les échelles intégrales des fluctuations. Dans le plan ainsi défini, les mesures acoustiques seront 

réalisées. 

Pour la création du jet turbulent bidimensionnel pleinement développé, nous utilisons 

l’un des ventilateurs de la soufflerie subsonique (0 - 160 m/s, 15 kg/s, 350 kW)). Le jet sortant 

d’une buse rectangulaire de dimensions 160 х 1400 mm, est guidé entre deux baffles en bois 

verticaux afin d’assurer un développement correct du jet et obtenir à une distance de la buse 
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Fig. C2 Représentation schématique de la géométrie du 
dispositif expérimental 

microphones 

Onde en N La source  
à étincelles 
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Fig. C3 Comparaison de la densité spectrale des fluctuations longitudinales de vitesse mesurée avec 
les valeurs théoriques obtenues pour un spectre de von Kármán modifié et la loi de décroissance en 
puissance «-5/3» de Kolmogorov dans la zone inertielle de turbulence. Les mesures ont été faites sur 
l’axe de la buse et à la distance х = 3780 mm 

d’environ 3 mètres une turbulence pleinement développée. L'intensité des fluctuations de 

vitesses formées est une fonction de la vitesse moyenne du jet jetU  à la sortie de la buse, vitesse 

qui varie de 0 m/s jusqu'à 40 m/s. De plus, les échelles caractéristiques des fluctuations sont 

définies par la géométrie et les dimensions de la buse. Les mesures des fluctuations turbulentes 

de vitesses transversales et longitudinales sont effectuées par anémométrie à fil chaud en utilisant 

des sondes croisées DANTEC 55P51. La calibration de ces sondes est réalisée dans le domaine 

laminaire près de la buse en utilisant en complément des mesures de vitesse avec un  tube de 

Pitot. 

Le spectre des fluctuations de vitesse longitudinales mesurées à la distance х = 3780 mm 

de la buse correspond aux estimations théoriques obtenues avec un spectre de von Kármán 

modifié (figure C 3). Le spectre de von Kármán modifié se caractérise par une échelle externe L0 

et une échelle interne l0 des fluctuations, les valeurs desquelles peuvent être définies par la 

comparaison de la forme analytique du spectre avec celle de l’expérience, soient : L0 ≈ 0.2 m, 

l0 ≈ 1.7 mm. De plus, à partir du spectre unidimensionnel des fluctuations de vitesse 

longitudinale du jet turbulent il est possible d’estimer l'échelle intégrale longitudinale des 

fluctuations de vitesse, qui dans notre cas est égale à : 2)1(
11 )/()0( rmsf ukELL === π ∈ [150, 

170] mm ; on notera que cette valeur coïncide avec l'échelle intégrale déterminée par 

l’intégration de la fonction de corrélation mesurée : gf LL 2= ∈ [166, 182] mm, où fL  et gL  

sont respectivement les longueurs de corrélation longitudinale et transversale.  

Les paramètres définissant l'intensité des fluctuations de la vitesse sont leurs moyennes 

quadratiques rmsu  et rmsv . Dans le plan où s’effectueront des mesures acoustiques, les quantités 

0c
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rmsu  et rmsv , en fonction de la vitesse moyenne du jet en sortie de la buse, se modifient selon la 

loi suivante établie empiriquement : jetmeanrms UUu 115.023.0 ≈=  et jetmeanrms UUv 095.019.0 ≈=  

de 0 m/s jusqu'à 4.6 m/s, où meanU  est la vitesse moyenne du jet dans le plan indiqué. On notera 

que ces valeurs sont conformes aux travaux de E. Gutmar et I. Wygnanski, sur le jet plan 

turbulent ([98]). 

Dans le paragraphe §2.2 nous décrivons le dispositif expérimental utilisé pour la 

génération des ondes acoustiques en N de durée courte (30 μs) et de grande amplitude (1000 Pa), 

ainsi que la méthode de mesure après traversée de la couche turbulente. Pour la formation des 

impulsions acoustiques on utilise la source à étincelles constitués de deux électrodes de 

tungstène. L'enregistrement digital des signaux de pression acoustique est réalisé à partir de 

quatre microphones Bruël&Kjær 1/8" à large bande et alimentés par un amplificateur 

Bruël&Kjær dont la bande passante a été augmentée jusqu’à 200 kHz. Pour chaque distance de 

propagation et pour chaque vitesse axiale du jet, nous avons utilisé 2000 « claquements » 

d’étincelle afin d’obtenir un nombre assez grand d’onde en N indispensable pour effectuer une 

analyse statistique rigoureuse. Nous nous sommes intéressés en particulier aux valeurs 

moyennes, et aux densités de probabilités des différentes grandeurs caractérisant l’onde en N. 

Les résultats de mesure sont présentés sous la forme des signatures temporelles caractéristiques 

et des distributions de probabilité du maximum de pression du choc avant, du temps de montée et 

de la durée de l’onde (§2.2, §2.3).  

Sur la figure C 4а, les valeurs moyennées du pic positif de la pression p+ sont présentées 

en fonction de la vitesse axiale du jet jetU  mesurée en sortie de la buse. Les points noirs 

représentent les valeurs instantanées (2000 impulsions à chaque vitesse du jet). L'onde 

acoustique est mesurée à une distance de 2.19 m de la source avec une distance de traversée dans 

le milieu turbulent de 1.4 m. Une très forte dispersion de la pression du pic peut être observée en 

présence de la turbulence. On remarque également qu’il est possible d’obtenir des maxima de la 

pression qui sont 3 à 4 fois plus grand que le niveau mesuré en absence de la turbulence (même à 

la distance maximale 2.19 m), ainsi que des valeurs très faibles. Avec la croissance de la vitesse 

du jet Ujet l'intensité des fluctuations turbulentes de vitesse se renforce, ce qui entraîne une 

réduction de la valeur moyenne du maximum du pic de pression. Par exemple, pour l’atmosphère 

homogène <p+> = 30.9 Pa, mais à Ujet=40 m/s la valeur moyenne devient <p+> = 22 Pa. Sur la 

figure C 4b les distributions de la densité de probabilité des valeurs du pic positif de la pression 

sont présentées en fonction de la vitesse axiale du jet. La distribution à Ujet = 0 m/s (le milieu 

homogène) a une largeur limitée, due à une petite différence de trajet acoustique entre la source  
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et des différents microphones, ainsi qu'aux 

fluctuations inhérentes au procédé de génération 

de l'onde acoustique par claquement d’une source 

à l’étincelle. En présence de la turbulence, les 

distributions de l'amplitude du maximum du pic 

de pression s’élargissent considérablement, et 

leurs formes ressemblent à une cloche 

asymétrique avec des valeurs significatives vers 

les grandes amplitudes. La valeur maximale de la 

distribution se déplace vers les petites amplitudes 

avec l'augmentation de Ujet, ce qui correspond à la 

diminution de la valeur moyenne de la pression 

acoustique du pic <p+>. Simultanément avec 

l'augmentation de l'intensité des fluctuations 

turbulentes, l'écart type de la pression du pic 

positif augmente d’une valeur de 2.7 Pa jusqu'à 

une valeur de 11.9 Pa (obtenue pour 

Ujet = 30 m/s) ; après avoir passé cette valeur 

Ujet = 30 m/s, l’écart type diminue lentement. 

Des tendances similaires sont obtenues 

pour le temps de montée, défini comme le temps 

nécessaire pour que l'amplitude du choc avant 

passe d’une valeur de 0.1 <p+> à 0.9 <p+>. En 

présence du champ turbulent le temps de montée 

varie considérablement. Avec l'augmentation de la 

valeur efficace des fluctuations de vitesse 

turbulentes, la moyenne du temps de montée 

passe de 3 μs pour le milieu homogène jusqu'à 

10.5 μs pour le milieu inhomogène. Cependant, la 

valeur inférieure des fluctuations ne descend pas 

en dessous de 3 μs, ce qui peut sans doute 

s’expliquer par la limite en haute fréquence des microphones utilisés. 

Pour le temps d’arrivée de l’onde en N, qui se propage dans le milieu turbulent, on 

observe, qu'avec l'augmentation de l'intensité des fluctuations turbulentes, l'onde acoustique 
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Fig. C4 Evolution du pic positif de la pression 
p+  , à une distance de 2,19m de la source, avec 
la vitesse axiale du jet Ujet  :  (а) valeurs 
moyennes et (b) distributions de la densité de 
probabilité 
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arrive plus tôt. Cet effet est conforme au principe de Fermat. Ainsi, dans le milieu hétérogène 

lorsque Ujet = 40 m/s, l'onde acoustique arrive sur le microphone en moyenne 26 μs plus tôt que 

dans le milieu homogène. 

L’influence de la distance de propagation dans le milieu turbulent pour deux vitesses 

moyenne du jet (Ujet = 20 m/s, Ujet = 40 m/s) sur les caractéristiques de l’onde acoustique en N 

est aussi analysée. 

Dans le paragraphe §2.4 nous comparons les caractéristiques du jet plan turbulent ainsi 

que celles de l’onde de choc produite avec le système à étincelles utilisée dans notre expérience 

en soufflerie anéchoïde avec les données d’expériences réalisées « in situ » pour l’étude de la 

propagation du bang sonique dans l’atmosphère. Cela nous permet de vérifier que la 

transposition d’échelles est acceptable. Au paragraphe §2.5 sont présentées les conclusions du 

2éme chapitre du travail de thèse. 

Le troisième chapitre de la thèse est consacré à la mise au point d’une méthode de 

calibration du dispositif de mesure d’une impulsion acoustique de très courte durée, telle que 

celle émise par la source à étincelles, et à la caractérisation de la réponse en fréquence du 

système de mesure. L’analyse menée dans ce chapitre repose en partie sur une simulation 

numérique de la propagation non linéaire des ondes en N dans un milieu homogène en prenant 

compte sur les effets de relaxation. 

Le paragraphe §3.1 présente pour une onde en N les résultats des mesures du maximum 

du pic positif de pression, du temps de montée du front de choc avant, de la durée et du temps 

d'arrivée de l'onde acoustique qui se propage dans un milieu homogène avec relaxation. Les 

mesures ont été faites en variant la distance de propagation de 15 cm jusqu'à 2 m de la source à 

étincelle, et en utilisant 100 étincelles pour définir les valeurs moyennes. Comme le profil 

temporel de l'onde acoustique mesurée est proche d’une forme idéale d’onde en N, nous 

proposons de définir sa durée à partir de la position des minima de pression dans le spectre ainsi 

que nous le faisons dans le cas des simulations numériques (voir §3.2). Cette définition de la 

durée de l'impulsion à partir les minima du spectre, possède une série des avantages en 

comparaison avec la définition standard dans le domaine temporel. En effet les petites 

perturbations du profil de l'onde en N introduites par le système de mesure ne modifient pas les 

positions des zéros dans son spectre, puisque ces perturbations peuvent être représentées dans le 

domaine fréquentiel comme la multiplication du spectre idéal de l'onde par une fonction de 

transfert.  

Dans le paragraphe §3.2, nous explicitons la modélisation numérique de l'équation 

modifiée de Burgers, que nous utilisons pour effectuer l'analyse théorique de la propagation des 
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ondes en N sphériques de forte amplitude dans un milieu homogène avec prise en compte des 

effets de relaxation. L’équation d’évolution de la pression acoustique se met sous la forme : 
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Ici p est la pression acoustique, r est la coordonnée radiale, τ = t – (r-r0)/c0 est le temps retardé, 

с0 est la vitesse du son de référence, r0 est la distance de la source à laquelle les conditions 

initiales sont connues, ρ0 est la densité de l’air, β est le coefficient de non linéarité de l'air, b est 

le coefficient de la viscosité, M est le nombre total des processus de relaxation retenus. Chaque 

νème processus de relaxation peut être caractérisé par deux paramètres : d’une part le temps de 

relaxation τν et d’autre part le coefficient ( ) 2
0

2
00 // cccccd ν

ν
ν =−= ∞ , où ν

∞c  est définie comme une 

vitesse du son limite correspondant à la propagation du signal acoustique dans un milieu pour 

lequel le temps de relaxation du milieu τν est bien plus grand que la durée caractéristique du 

signal acoustique Ts <<τν (i.e. hypothèse d’un milieu gelé).  

L'équation (4) est résolue numériquement dans le domaine temporel en utilisant une 

décomposition des opérateurs différentiels en fonction des phénomènes physiques qu’ils 

prennent en compte (effet non linéaire, dissipation, relaxation moléculaire) ; une telle approche 

permet d’utiliser pour chacun des opérateurs différentiels le schéma numérique le plus adapté à 

une résolution performante. De plus il est alors possible d’obtenir non seulement la solution de 

l'équation (4) complète, mais aussi des solutions partielles de cette équation avec n’importe quel 

effet physique au choix. Cela donne la possibilité d'estimer l'influence relative des effets non 

linéaire et dissipatif, ainsi que l’effet de la relaxation sur l'amplitude et la durée de l'impulsion 

acoustique propagée. Les comparaisons que nous avons effectuées montrent que l'amplitude de 

l'onde dépend de tous les effets indiqués ci-dessus, mais, que dans le même temps, sa durée est 

définie uniquement par les effets non linéaires. 

De cette façon, la durée de l'impulsion acoustique dans les conditions de l'expérience de 

laboratoire peut être définie à partir des relations de la théorie des chocs faibles, et ceci permet 

donc de calibrer la source à étincelles qui produit l’onde en N en utilisant la durée du signal 

calculée avec prise en compte des effets non-linéaires (Equation 3.13 §3.3)  soit :  

0
0 03

0 0 0 0

1 ln( )p rT T r
c T r
β

ρ
= +  

En utilisant une méthode des moindre carrés pour analyser les résultats expérimentaux, les 

valeurs suivantes de l'amplitude et de la durée du profil d’onde en N à la distance 15 cm de la 
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source ont été obtenues : T = 28.64 μs, p0 = 1148 Pa, et ceci avec un coefficient de corrélation 

R = 0.975. 

Dans le paragraphe §3.4, sur la base des données obtenues par simulation numérique 

effectuée dans les conditions physiques de l’expérience, nous avons obtenue la réponse dans le 

domaine fréquentielle du système de mesure. Cette caractéristique est calculée en faisant le 

rapport entre le spectre des impulsions modélisées et le spectre mesuré avec l’un des 

microphones Bruël&Kjær 1/8". On observe alors que l’amplitude de ce rapport est très proche de 

la réponse en fréquence du microphone fournie par le constructeur sur la bande fréquentielle 

allant de 0 à 140 kHz. 

La comparaison des profils des ondes, mesurées expérimentalement aux diverses 

distances de la source, avec ceux, calculés en appliquant le filtre obtenu en fréquence, a montrée 

un bon accord pour tous les paramètres caractéristiques : l'amplitude, la durée et le temps de 

montée du choc (§3.5). De cette façon, il est obtenu, que le temps de montée du choc minimal 

dans l'expérience de laboratoire soit défini par la bande limitée fréquentielle du système de 

mesure et égal environ à ~2.5-3 μs. Le paragraphe §3.6 résume les résultats principaux et les 

conclusions de ce chapitre trois du travail de thèse. 

Le chapitre quatre du travail de thèse est consacré dans une première partie au 

développement d’une équation d’évolution non linéaire décrivant la propagation des signaux 

acoustiques dans les milieux hétérogènes tridimensionnels et en mouvement, en tenant compte 

de la composante transversale de la vitesse de milieu par rapport à la direction de propagation de 

l'onde. Dans la deuxième partie de ce chapitre, l'algorithme numérique que nous avons 

développé, qui permet de décrire précisément la propagation des fronts de choc dans les milieux 

hétérogènes, est présenté.  

Dans le paragraphe §4.1 l'équation parabolique modifiée de type Khokhlov-

Zabolotskaya-Kuznetsov est obtenue en précisant les hypothèses nécessaires à sa dérivation. 

Cette équation prend en considération les effets non linéaires et diffractifs, les effets de 

l'absorption thermo visqueuse, et les effets liés à la présence des hétérogénéités scalaires et 

vectorielles de milieu. Elle s’écrit sous la forme : 
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où х est la direction de propagation de l'onde, c et ρ sont respectivement la vitesse du son et la 

densité du milieu ambiant, xu  est la composante longitudinale de vitesse et ( )zy uu ,=⊥u  sont les 

composantes transversales des fluctuations de vitesse du milieu, Δc = с - c0 est l’écart de vitesse 

du son dans le milieu due aux inhomogénéités scalaires, )2/( 3
00cb ρδ =  est le coefficient 
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d'absorption thermo visqueuse du son. S'il est nécessaire de prendre en considération les effets de 

relaxation ou d'autres pertes dissipatives, le terme, décrivant l’absorption 22 τδ ∂∂ p , peut être 

remplacé par un opérateur linéaire de type général L(p). A notre connaissance, l'équation (5) n’a 

jusqu’à présent jamais été utilisée dans la littérature. Ici, un nouveau terme a été incorporé, qui 

prend en considération les composantes du mouvement du milieu perpendiculaires à la direction 

de propagation de l’onde acoustique. 

En dérivant cette équation, nous avons considéré que les fluctuations des caractéristiques 

du milieu varient lentement dans l'espace et dans le temps, et que les fluctuations de la vitesse du 

son et la vitesse du milieu sont petites en comparaison avec la vitesse du son. En outre, nous 

faisons l’hypothèse classique que l'approche parabolique de la théorie de la diffraction peut être 

considérée comme une bonne modélisation de la propagation du son dans les directions 

angulaires pas plus grandes que +/-20° autour de l'axe de propagation, et qu’elle assure 

l'exactitude des solutions obtenues seulement pour les faisceaux bornés en négligeant les effets 

de rétrodiffusion. 

Ensuite dans le travail de thèse une formulation adimensionnelle de l'équation (5) est 

écrite dans un système de coordonnées cartésiennes pour une onde acoustique se propageant 

dans un milieu inhomogène bidimensionnel de type uniquement vectoriel, c'est-à-dire à 

Δс, Δρ = 0.  Nous montrons dans le paragraphe §4.2, que cette équation d’évolution ainsi 

écrite, possède les propriétés d’autosimilarité. Il est alors possible d’exprimer la solution de cette 

équation d’évolution pour certains types de mouvement moyen du milieu inhomogène sous 

réserve que l’on connaisse une solution numérique pour un milieu inhomogène équivalent ayant 

des fluctuations similaires. 

Dans le paragraphe §4.3 nous détaillons les deux catégories de méthodes numériques, 

temporelle ou spectrale, que nous avons mis en œuvre dans nos simulations numériques, le choix 

de la méthode de résolution étant adapté à la nature du signal acoustique initial. L'approche 

spectrale de la modélisation convient plus particulièrement pour la description de propagation 

des signaux périodiques (par exemple, au diagnostic et à la chirurgie ultrasonore), et l'approche 

temporelle est plus adaptée à la modélisation de la propagation des signaux courts de type 

impulsion (par exemple le bang sonique dans l'atmosphère et l'océan). Comme nous l’avons fait 

précédemment, et pour chacune de ces deux approches la méthode numérique de résolution 

repose sur une décomposition des opérateurs différentiels en fonction des phénomènes physiques 

qu’ils prennent en compte ce qui permet d’utiliser pour chaque terme le schéma numérique le 

plus adapté à une résolution performante. 
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Pour étudier la propagation des ondes périodiques, la condition initiale est mise sous la 

forme d’un signal sinusoïdal et la solution de l’équation (5) est obtenue comme une série de 

Fourier. Après substitution de la forme générale de la solution dans l'équation d’évolution (5) on 

obtient le système non linéaire couplé des équations pour les amplitudes des harmoniques Сn de 

l'onde initiale. Les équations obtenues sont résolues pour chacune des harmoniques. Pour la 

première étape de l'algorithme numérique nous intégrons l'opérateur de diffraction avec un 

schéma de type Crank - Nicholson. À la deuxième étape, les effets non linéaires sont pris en 

considération : pour chaque nœud de la maille numérique selon la coordonnée transversale (par 

rapport à la direction d’avancement), le système non linéaire des équations couplées pour les 

harmoniques est résolu en utilisant une méthode Runge-Kutta du quatrième ordre. À la troisième 

étape, nous utilisons la solution exacte qui prend en compte l'influence de l'absorption thermo 

visqueuse et de la relaxation, ainsi celle de la composante longitudinale des fluctuations de la 

vitesse du milieu (i.e. dans la direction de propagation de l'onde acoustique). À la quatrième et 

dernière étape, pour prendre en compte les fluctuations transversales de la vitesse du milieu, le 

schéma de Lax – Wendroff est utilisé. Des simulations numériques sont alors effectuées pour la 

propagation de l’onde acoustique dans un milieu caractérisé par les paramètres adimensionnels 

de non linéarité égal à sxcpN //2 0
2
00 λρπβ == = 0.05 et d’absorption égal à 

A = dxc //)2( 2
0

2 λλδπ = = 0.002 où xs et xd sont les distances caractéristiques respectivement des 

effets non linéaires et des effets de dissipation thermo visqueuse. Dans ces simulations, le pas de 

la maille numérique selon la coordonnée le long de l'axe du faisceau est 2105.2/ −⋅=λxh  et le 

pas selon la coordonnée transversale est 2100.2/ −⋅=λyh . Les calculs sont réalisés avec 

150max =N  harmoniques. 

Pour étudier la propagation des signaux de type d'impulsion, nous utilisons un profil 

initial sous la forme d’une onde en N définie comme la solution stationnaire de l'équation de 

Burgers, avec prise en compte des effets non linéaires et dissipatifs, qui s’écrit sous la forme : 
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où V=p/p0 est l'amplitude adimensionnelle de la pression, θ =2πτ / Τ 0 - le temps adimensionnel,  

p0 et T0 sont respectivement les valeurs caractéristiques de l'amplitude de la pression et de la 

durée de l'impulsion. L’épaisseur du front (le temps de montée) d'une telle onde est de l’ordre de 

grandeur de 10A/N. Dans les conditions de notre expérience en laboratoire A~1.5·10-4 et N=0.05, 

ainsi l’épaisseur du front est égale à 10A/N=0.025, soit seulement 0.4% de la durée de 

l'impulsion. Pour ce qui concerne la modélisation numérique nous sommes donc obligé de 
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prendre un grand nombre de points par maille pour avoir un maximum de précision sur la 

prédiction de l’évolution du front de choc ; cela a pour conséquence une forte augmentation du 

temps de calcul nécessaire à l'intégration de l'équation (5). Pour la construction d’un schéma 

numérique optimal, tant du point de vue de l'exactitude de la solution, que de l’efficacité de 

l'algorithme en temps de calcul, la comparaison de différents schémas numériques prenant en 

compte les effets non linéaires et les effets liés à la convection dans la direction longitudinale a 

été faite. Le modèle finalement retenu est décrit ci-dessous. 

À la première étape de l'algorithme numérique les effets de diffraction sont pris en 

compte dans les calculs sur la base de l'algorithme de Crank - Nicholson du deuxième ordre 

selon les coordonnées spatiales. Le résultat, obtenu à cette première étape, est utilisé ensuite à 

titre de condition initiale pour les calculs des effets non linéaires à chaque nœud du maillage du 

domaine de calcul numérique. Pour cela un schéma conservatif de type de Godunov du deuxième 

ordre en temps et le premier ordre selon la coordonnée de la propagation est adopté. À la 

troisième étape, trois effets physiques sont pris en compte à la fois : la convection en direction de 

propagation de l'onde, l'absorption thermo visqueuse et les effets de relaxation. Pour cela le 

schéma numérique est construit dans le domaine spectral sur la base de la solution exacte 

obtenue pour les amplitudes complexes des harmoniques. À la dernière étape de l'itération, sur la 

base d’un schéma numérique de Lax - Wendroff du deuxième ordre, la convection dans la 

direction, transversal à la propagation de l'onde est finalement prise en compte. L'avantage de 

l'algorithme présenté ici est de permettre le calcul en utilisant seulement 2 à 3 nœuds de maillage 

sur le front de choc en ayant une diffusion numérique très faible. L'algorithme développé donne 

une bonne résolution de la structure du front de l’onde de choc sans pratiquement augmenter le 

temps du calcul. 

Pour nos simulations numériques du champ acoustique, nous utilisons les valeurs 

suivantes des coefficients de non linéarité et de l’absorption N = 0.05 et А = 0.00034. Les pas 

spatiaux du maillage du calcul ont été choisis conformément à la condition de stabilité 

d’algorithme et pour avoir une résolution précise des structures à petite échelle du champ 

acoustique (pas moins que 10 points sur la plus petite échelle) soient :  2105.2/ −⋅=λxh  

et 2102/ −⋅=λyh . Le nombre de points de discrétisation du profil de l'onde en temps est n=1024 ; 

il est très largement surestimé ce qui permet de garantir la prédiction du temps de montée du 

choc d'onde même dans la région de focalisation. Pour confirmer ces choix, nous avons diminué 

d’un facteur deux les pas numériques d’intégration indiqués, et nous avons vérifié que la 

nouvelle solution donnait un écart qui reste inférieur à 3%. Les détails sur la sélection des pas de 

maillage pour l’algorithme numérique obtenu sont donnés dans l’annexe B. La bonne précision  
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de l'algorithme numérique et la validité du 

modèle parabolique développés ont également 

été confirmées par des calculs de tests 

concernant la propagation d’onde à travers des 

homogénéités simples ; nous avons également 

comparé nos résultats avec des résultats 

existants, obtenus à partir de calculs avec une 

équation parabolique à grand angle (§4.4). Dans 

le paragraphe §4.5 les résultats principaux et 

les conclusions générales selon le chapitre 

quatre du travail de thèse sont décrit.  

Le cinquième chapitre du mémoire de 

thèse est consacré à l’analyse des calculs 

numériques, notamment à l'étude de la 

propagation des signaux non linéaires 

acoustiques dans les milieux aléatoires 

inhomogènes en mouvement. La propagation 

d’ondes acoustiques périodiques (§5.1), ainsi 

que la propagation d’impulsions acoustiques 

prenant la forme d’une onde en N (§5.2) sont 

envisagées. L'influence relative des effets non 

linéaires et des effets de diffraction sur la 

structure spatiale du champ acoustique propagé et sur l’occurrence de caustiques aléatoires est 

étudiée en détail à partir des résultats des simulations numériques fournis pour les valeurs de pic 

et les valeurs moyennes, ainsi que pour les distributions statistiques des paramètres 

caractéristiques de l'onde acoustique (temps de montée, maximum de pression, durée, etc...). 

L'influence de la taille des échelles caractéristiques et de l'intensité des fluctuations aléatoires du 

milieu hétérogène en mouvement, ainsi que l'influence de la composante transversale des 

fluctuations du champ de vitesse sont analysées sur l'exemple d’un champ aléatoire hétérogène 

de vitesse correspondant à une distribution gaussienne de l’énergie cinétique (une illustration de 

la répartition des fluctuations est donnée sur la figure C 1). 

La distribution spatiale du maximum du pic positif de pression de l’onde en N, qui se 

propagent à travers le milieu turbulent, est présentée sur la figure C.5a avec en fond les lignes iso 

niveaux des fluctuations de vitesse du milieu. On note qu'à cause de la présence de  

Fig. C5 a) Distribution du champ acoustique 
(pression du pic positif) avec les iso-niveaux des 
fluctuations de la vitesse du milieu 

0|| / cu =± 0.009 marqués par dessus, b) zoom sur 
la région focale (le rectangle noir sur fig.5а) avec 
en plus la distribution des trajectoires des rayons 
acoustique et les positions des caustiques. 
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l’inhomogénéité, l'énergie de l'onde acoustique 

est redistribuée dans l'espace, créant plusieurs 

régions où la pression est soit augmentée soit 

diminuée. Et on observe que les régions de 

pression augmentée se forment juste après le 

passage par l'onde des secteurs du milieu 

hétérogène où la vitesse effective du son c0+ux 

est plus faible que celle du milieu ambiant c0. 

De plus, malgré une forte absorption non 

linéaire de l'énergie acoustique, la pression du 

pic positive dans les zones de focalisation peut 

excéder jusqu'à trois fois l'amplitude de 

l'impulsion initiale. Les zones de focalisation 

aléatoires se forment en général à des distances 

relativement courtes de la source, x / λ < 60 

(xs/λ = 20). Néanmoins, il est quand même 

toujours possible d'observer des zones de 

focalisation assez intensive à grandes distances 

(voir x / λ = 110). 

Sur la figure C 5b un zoom de la région 

de focalisation est présenté. Cette partie 

correspond à la région du champ acoustique entourée par un rectangle noir sur la figure C5а. Par-

dessus la cartographie de la pression du pic positif, nous avons tracé les trajectoires des rayons 

(les lignes grises) et les positions des caustiques (les points gris), obtenus en résolvant les 

équations de l'acoustique géométrique (voir annexe A). Les trajectoires des rayons mettent en 

évidence très distinctement la formation des caustiques, et leurs positions se trouvent 

qualitativement en accord avec les prédictions des régions de focalisation obtenue à partir de 

l'équation d’évolution non linéaire (5). Néanmoins, les positions des caustiques, calculées dans 

l'approche haute fréquence de l'acoustique géométrique, ne coïncident pas exactement avec les 

positions des niveaux maxima de la pression du champ acoustique. De plus, comme on néglige 

les effets de diffraction dans l’approximation haute fréquence, certaines caustiques, (données par 

l'acoustique géométrique), se forment dans des régions, où l'amplitude de la pression acoustique 

(calculée avec l’équation parabolique) est en réalité assez faible. Ceci met clairement en 

évidence que les effets de diffraction jouent un rôle très important dans la formation du champ  

Fig. C6 Formes temporelles d’ondes mesurées à 
diverses distances de la source le long de la ligne 
y / λ = 212 passant par une caustique 
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acoustique, et il est nécessaire de les prendre en considération dans les modèles théoriques de 

prédiction si l’on veut obtenir des résultats réalistes.  

Sur la figure C6 nous avons tracé la forme temporelle du signal de pression acoustiques 

au passage de l’onde en N à travers une caustique (ou région focale). Au centre de la zone de 

focalisation, une onde classique en U avec une grande amplitude de la pression et un front très 

étroit est formé (x/λ = 56). Les focalisation et défocalisation aléatoires se traduisent par la 

formation de formes temporelles plus complexes des ondes propagées. On observe ainsi : des 

ondes avec une demi - arche positive arrondie ou « rounded wave » pour x/λ = 40, des ondes 

avec plusieurs fronts de choc pour x/λ = 83 et des ondes avec de très longues « queues » pour 

x/λ = 115). Près des zones focales, pour x/λ = 51, une forme d’onde avec plusieurs pics est 

également observée. Ceci est en accord avec le fait que les fronts d’onde se raidissent dans les 

régions focales où le niveau de la pression acoustique augmente, et, où par conséquence les 

effets non linéaires sont intensifiés. La distorsion non linéaire de l'onde se manifeste également 

dans les régions où la pression acoustique baisse due au scattering des harmoniques supérieurs 

au passage des caustiques. Finalement il faut aussi noter que l’allongement de la durée de 

l'impulsion avec la distance de propagation dans la turbulence, du aux grandes différences de 

marches des trajets acoustique qui convergent en un point, rend peu probable l’augmentation de 

l’amplitude de l’onde aux grandes distances de la source. 

Sur la figure C7 on présente les distributions des densités de probabilité de la pression du 

pic positif, du temps de montée du choc et du temps d'arrivée relatif de l'onde à différentes 

   
Fig. C7 Evolutions avec la distance de propagation des distributions de la densité de probabilité de la 
pression du pic positif (a), du temps de montée du front de choc (b) et du temps d'arrivée relative de 
l'impulsion  
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distances de la source. On voit, que les distributions initialement étroites, s’élargissent en 

augmentant la distance de la source. Ainsi, avec une distance à la source croissante, on augmente 

la probabilité d’observer des amplitudes plus faibles de la pression et des fronts de choc moins 

raides. Néanmoins pour les grandes distances de propagation, et en accord avec les observations 

faites dans les expériences (de laboratoire ou in situ), il existe toujours une certaine probabilité 

d'obtenir des niveaux de la pression du pic positif importants (3 fois plus que la valeur initiale), 

et des fronts très étroits (le temps de montée du front (θ0.1-0.9)min = 0.022 est 3 fois moins court 

que le temps initial). La distribution de la densité de probabilité du temps d'arrivée quant à elle 

devient vite large, montrant l'arrivée « prématurée » de l'impulsion jusqu'à θ = -5.25 = -1.67π, ce 

qui fait un écart de plus de 75% de la durée d’impulsion. 

Des résultats analogues ont été obtenus pour la propagation de l’onde en N acoustique 

dans un milieu aléatoire hétérogène en mouvement avec le spectre d’énergie cinétique de von 

Kàrmàn modifié, qui décrit plus précisément la structure multi-échelles de la couche limite 

atmosphérique turbulente.  

Le paragraphe §5.3 est consacré à la comparaison des résultats expérimentaux avec les 

résultats des calculs effectués avec les paramètres correspondants aux conditions de l’expérience 

en soufflerie anéchoïde. Cette comparaison montre, que malgré la différence de géométrie 

(l’expérience est conduite en 3D et la modélisation numérique est réalisée en 2D), la 

correspondance entre la mesure et le calcul de l’amplitude d’onde est satisfaisante.  

En plus d’observer une ressemblance qualitative dans la forme des distributions des 

densités de probabilité, nous noterons également un accord quantitatif pour les valeurs 

maximales du pic de pression. Ainsi, dans l’expérience comme dans les simulations numériques, 

la pression maximale acoustique mesurée dans le milieu turbulent est jusqu’à 4 fois plus grande 

que la pression mesurée dans le milieu homogène ; la diminution de pression moyenne en 

fonction de la vitesse du jet est égal 27% dans l’expérience pour 22% dans les simulations ; et la 

variation de pression du pic dans l’expérience correspond à celle obtenue dans les simulations (la 

différence n’excédant pas 7%). Nous avons montré de plus, que la probabilité d’observer un 

niveau de pression acoustique maximal dans le milieu turbulent deux fois plus grand que la 

pression maximale du pic mesurée dans le milieu homogène est égale à 2%, ce qui n’est pas 

négligeable pour les problèmes de nuisances sonores. 

Dans paragraphe §5.4, les résultats principaux et les conclusions du chapitre cinq du 

travail de thèse sont présentés.  

L'Appendice A est consacrée à la mise en forme des formules principales de l'acoustique 

géométrique, qui ont été utilisées pour les calculs de trajectoires des rayons et des positions des 
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caustiques.  

L’Appendice B est consacrée à l’étude numérique des schémas mis au point pour 

résoudre l’équation parabolique non linéaire développée pour prendre en compte les effets de 

convection longitudinaux et transversaux. 

 

 

CONCLUSION 
 
 

A la fin de ce travail de thèse nous pouvons résumer les principaux résultats de la façon 
suivante : 
 

1. Un nouveau dispositif expérimental a été créé pour étudier dans des conditions de 

laboratoire la propagation des ondes en N de courte durée et de forte amplitude (la durée 30 μs, 

l'amplitude ~1000 Pa) à travers un jet d'air turbulent dont la vitesse moyenne peut varier de 0 m/s 

jusqu’à 20 m/s. Les mesures effectuées avec une technique d’anémométrie à fils chaud, nous a 

permis de caractériser la turbulence (taux de fluctuations, échelles de corrélations spatiales, 

spectres d’énergie). Nous avons montré également  que le spectre d’énergie cinétique de la 

turbulence formée dans le jet plan bidimensionnel pouvait être parfaitement décrit à partir d’un 

modèle de von Kármán modifié. 

 

2. Une équation parabolique non linéaire modifiée de type de Khokhlov - Zabolotskaya -

 Kuznetsov a été développée pour décrire la propagation de signaux acoustiques puissants dans 

un milieu hétérogène en mouvement. Cette équation contient un nouveau terme additionnel 

prenant en considération l'influence des composantes de la vitesse du milieu dans la direction 

transversale à la direction de propagation de l'onde acoustique. De plus, un nouvel algorithme 

numérique de résolution de cette équation d’évolution a été mis au point pour traiter la 

propagation des signaux périodiques ou  celle des impulsions avec les fronts de choc étroits. En 

utilisant ce nouvel algorithme nous avons fait une étude assez complète des propriétés des 

signaux  acoustiques, périodiques ou impulsions de type onde en N, se propageant dans des 

milieux aléatoires hétérogènes en mouvement  

 

3. Nous avons montré, que la structure spatiale et les caractéristiques du pic de pression 

du champ acoustique dans le milieu aléatoire hétérogène en mouvement sont fortement 

influencées par les effets non linéaires et les effets de diffraction. Les limites de l’acoustique 

géométrique par rapport à l'approche non linéaire ont également été mises en évidence dès que 
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les effets de diffraction deviennent prépondérants. Pour les milieux turbulents, il est établi que 

les effets non linéaires amènent un changement considérable de la concentration du champ 

acoustique dans les régions de focalisation aléatoire et que, malgré une forte absorption de 

l'énergie de l'onde sur le front de choc, ils peuvent conduire à une augmentation significative de 

l'amplitude de la pression et à un raidissement des fronts d'onde dans les régions focaux et ceci 

même à des distances de propagation nettement plus grandes que la distance de formation des 

chocs.  

 

4. Nous avons montré, que la structure du champ acoustique après traversée du jet 

turbulent est gouvernée principalement par la composante de l’inhomogénéité aléatoire 

vectorielle, qui est parallèle à la direction de propagation de l'onde. De plus, pour la première 

fois, l'influence de la composante transversale du champ aléatoire de la vitesse du milieu sur la 

déformation de la structure du champ acoustique a été également étudiée dans le cadre de 

l’approche non linéaire. Nos résultats montrent, que les fluctuations transversales amènent un 

changement de la structure du champ acoustique dans toutes les directions, longitudinale et 

transversale, et que leur influence se renforce avec l'augmentation des échelles spatiales 

caractéristiques du milieu turbulent. 

 

5 Sur la base des investigations numériques et expérimentales, il est montré, que la 

présence du milieu turbulent amène à la réduction importante de la moyenne pression du pic 

positif (jusqu'à 30% à une distance 2 m de la source), à l'augmentation du temps de montée du 

front de choc (à 3-4 fois) et à l'arrivée plus rapide d’onde en N (en moyenne plus que 15 μs) en 

comparaison avec des mêmes paramètres de l’onde se propageant dans le milieu sans turbulence. 

Néanmoins, il est également établi, que dans les régions de focalisations, il est possible 

d’observer des impulsions acoustiques dont l'amplitude augmente de plus d’un facteur quatre et 

d’avoir des temps de montée du choc réduit d’un facteur trois. Pour la première fois à notre 

connaissance, l'influence combinée des effets non linéaires et des effets de diffractions sur la 

statistique du champ acoustique large bande propagé dans un milieu aléatoire et hétérogène en 

mouvement a été analysée. On notera que les effets non linéaires semblent diminuer les 

variations relatives des caractéristiques moyennes de l'onde qui se propage à travers la turbulence 

par rapport au cas de la propagation en milieu homogène. 

 

6. Une nouvelle méthode expérimentale de calibrage du microphone a été proposée, 

argumentée et réalisée. Cette méthode est basée sur l’analyse de l'allongement non linéaire de 
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l’onde en N dans l'air au cours de sa propagation, qui est complétée par une simulation 

numérique effectuée à partir d’une équation modifiée de Burgers. Il est proposé que la durée de 

l’impulsion soit définie à partir de la position des minima de pression dans son spectre 

fréquentiel. Nous obtenons ainsi dans les conditions de l'expérience, les paramètres 

caractéristiques de l’onde en N ; la réduction de son amplitude dépend alors des effets non 

linéaires, des processus de relaxation et des effets de l'absorption thermo visqueuse, tandis que 

l'allongement en temps du profil de l’onde en N est relié seulement aux effets non linéaires. 

 

A la suite de ce travail de thèse plusieurs prolongements sont possibles. D’abord, il est 

nécessaire de développer un code numérique tridimensionnel, qui prends en compte les effets de 

diffraction, de non linéarité, d’absorption thermo-visqueuse, de relaxation et qui essentiellement 

intègre les effets relatifs aux vents turbulents transversales. En effet, nous avons montré que la 

composante transversale de vitesse a déjà un rôle important pour plusieurs configurations 

bidimensionnelles, et cette contribution augmentera dans le cas tridimensionnel ainsi que nous 

l’avons observé dans les expériences. Les simulations numériques tridimensionnelles peuvent 

conduire à un meilleur accord entre les résultats expérimentaux et les résultats de simulation. 

Toutefois, pour réaliser ces simulations qui auront un coup de calcul élevé il est nécessaire 

d’examiner comment introduire une condition limite absorbante de type PML (Perfect Matched 

Layer) dans l’algorithme numérique afin de traiter de façon plus efficace le problème des 

réflections parasites introduites par les frontières du domaine de calcul. 

Une autre suite naturelle de ce travail de thèse est d’intégrer dans l’algorithme numérique 

des effets des hétérogénéités de type scalaire, notamment : les variations de densité et de 

température, ainsi que la stratification de l’atmosphère. Ce modèle numérique peut être alors 

utiliser pour l’analyse de la propagation des ondes acoustiques à longues distances. L’influence 

des vents transversaux et des effets de diffraction sur le champ acoustique dans des zones 

d’ombres acoustique peuvent être alors envisagée. Toutefois, afin de pouvoir examiner des 

situations réalistes de propagation il conviendra d’introduire une condition limite au sol pour 

prendre en compte les effets d’impédance. 

Finalement il est également très intéressant de poursuivre le développement des outils 

numériques de traitement de signal en vue de l’amélioration de la méthode de calibration des 

microphones acoustique dans les milieux dissipatifs en prenant en compte les phénomènes de 

relaxation. D’un point de vue expérimental, il convient de réaliser une source à étincelle plus 

stable. Ce travail offre des perspectives intéressantes pour la mise au point d’un microphone à 

plus large bande (fonctionnant jusqu’à 200kHz) dans l’air. 





 

LIST OF FIGURES 

Fig. 1.1 Fourier modes orientation in space..................................................................................38 

Fig. 1.2 Comparison of random velocity field distributions with Gaussian (a-c) and von 
 Karman (e-g) energy spectra. a) and e) – longitudinal components of medium velocity 
fluctuations, b) and f) transverse components, c) and g) – absolute value of velocity 
fluctuations, d) – longitudinal and transverse correlation functions, h) – comparison of 
Gaussian and von Karman spectra with the Kolmogorov’s law. ..........................................40 

Fig. 2.1  Geometry of the experimental setup...............................................................................44 

Fig. 2.2 Experimental setup to generate turbulent fields. 1- jet, 2- wooden baffles, 3-  
positioning system.................................................................................................................44 

Fig. 2.3. Photo and sketch view of the cross wire thermo anemometer........................................45 

Fig. 2.4 a) View of a Pitot tube (2) and anemometer (1) positioning in the potential cone  
during the calibration; b) calibration curve. Experimental data are well described by 
the 4th order polynomial law. ................................................................................................46 

Fig. 2.5 2D distribution of mean flow velocity a) in vertical XZ plane and b) in horizontal  
XY plane. ..............................................................................................................................46 

Fig. 2.6 The level of turbulent interfusion in the flow a) in ОZ axis and b) in ОХ axis. .............47 

Fig. 2.7. Comparison of the measured energy spectrum of turbulent fluctuations (low and  
high frequency parts) with the theoretical formulation of von Karman spectrum and with  
the «-5/3» Kolmogorov’s law for the inertial interval. Measurements were done at the 
distance Х = 3780 mm from the jet at the axis of the turbulent flow....................................48 

Fig. 2.8 Distributions of mean flow velocity jetmean UU /  a); root mean square values of  
turbulent fluctuations meanrms Uu /  b); and meanrms Uv /  c) in the plane of acoustic 
measurements at Х = 3780 mm from the jet at jetU = 40м/с. Contour lines show the  
areas of fully developed turbulence (levels of interfusion are 28.0/ <meanrms Uu  and 

24.0/ <meanrms Uv ). ...............................................................................................................49 

Fig. 2.9. Dependence of the root mean square and mean medium velocities on flow velocity  
at the exit of the jet ................................................................................................................50 



188  List of figures 

Fig. 2.10 Spatial spectra of u (left) and v (right) components of medium velocity fluctuations  
in different points of the acoustic measurement plane.......................................................... 51 

Fig. 2.11 View of the experimental setup for measuring the correlation function. 1 and 2 are  
the positioning systems, 3 are the mounted cross-wire probes. ............................................ 52 

Fig. 2.12 Correlation functions of the turbulent velocity field. .................................................... 52 

Fig. 2.13 Sketch of the experimental setup. Top view. All distances are given in millimeters.... 53 

Fig. 2.14 Signals, measured by microphones and by antenna in homogeneous air (a) and  
when the air turbine was switched on (b). ............................................................................ 55 

Fig. 2.15 Typical waveform a) and its spectrum b) measured at the distance 210 mm from the 
spark source in homogeneous air; the derivative of the time profile c); waveforms, 
measured with different microphones for the same spark at the distance 690 mm from the 
source d)................................................................................................................................ 56 

Fig. 2.16 Typical waveforms measured at different distances from the source in homogeneous 
air. ......................................................................................................................................... 57 

Fig. 2.17 Typical waveforms measured at the distance 2.19 m from the source after passing  
the turbulent layer. jetU = 30 m/s. ......................................................................................... 58 

Fig. 2.18. Waveforms measured by 4 microphones in the vicinity of the focusing zone at the 
distance 2.19 m from the source. jetU = 20 m/s .................................................................... 59 

Fig. 2.19 Mean distributions (red lines) of peak positive pressure a), rise time of the wave  
front b), and wave front arrival time c) depending on the flow velocity at the exit of the  
jet  Ujet (turbulence intensity)  at the distance of 2.19 m from the source.  Black points – 
data of individual measurements.  Vertical red segments are the standard deviations of  
each parameter. ..................................................................................................................... 60 

Fig. 2.20 Probability density distributions of shock wave peak positive pressure p+ at the 
distance 2.19 m from the source for various flow velocities Ujet at the exit of the jet. std – 
standard deviation abbreviation. Width of the class is 2 Pa.................................................. 62 

Fig. 2.21 Probability density distributions of shock wave rise time t0.1-0.9 at the distance  
2.19 m from the source for various flow velocities Ujet at the exit of the jet. std –  
standard deviation abbreviation.  Width of the class is 0.5 μs.............................................. 62 

Fig. 2.22  Distributions of peak positive pressure (a), rise time (b) and arrival time (c) of the 
shock wave, measured at distance 2.19 m from the spark source during its cold start. N  
is the spark consecutive number. .......................................................................................... 65 

Fig. 2.23 Dependence of mean peak positive pressure (a) and mean rise time of the wave  
shock front (b) on the distance of acoustic wave propagation in inhomogeneous  
turbulent medium of different intensity. ............................................................................... 66 

Fig. 2.24 Dependence of standard deviation of peak positive pressure (a) and rise time of the 
wave shock front (b) on the distance of the acoustic wave propagation in inhomogeneous 
turbulent medium of different intensity. ............................................................................... 66 



 List of figures 189 

Fig. 3.1 Dependence of mean acoustic wave parameters (tension pulse parameters) on the 
distance between the source and the microphone. (a) – mean peak positive pressure, (b) – 
mean half duration,  (c) – mean shock front rise time, (d) – mean relative arrival time.  
Points – measured parameters of individual pulses. .............................................................73 

Fig. 3.2. Initial N-pulse waveform (a) and its spectrum (b). Dependence of the sound speed (c) 
and absorption (d) on frequency due to relaxation in atmosphere. Characteristic relaxation 
frequencies of oxygen O2 and nitrogen N2 are shown with vertical dotted lines. .................75 

Fig. 3.3 Comparison of the numerical solution to the Eqs. (3.3) (blue line) with the analytical 
Polyakova solution for monorelaxing medium in the form of stationary wave (red line). 
Black line is the initial waveform (hyperbolic tangent)........................................................78 

Fig. 3.4. N-pulse waveforms calculated at the distance r = 6 m from the source with alternate 
account for different physical effects: ideal linear medium (no effects, grey line), 
nonlinearity only (red line), relaxation only (blue line), thermoviscous absorption only 
(green line), and all the effects (black line).  The waveforms are multiplied by the ratio 
r/r0 to exclude spherical divergence of the wave. .................................................................79 

Fig. 3.5. Dependence of the peak positive pressure (a) and half duration (b) of the N-pulse on  
the propagation distance. Peak positive pressure p+ is multiplied by the ratio r/r0 to  
exclude spherical divergence of the wave.............................................................................80 

Fig. 3.6 Linear fit for the squared half duration of the pulse. Correlation coefficient is equal  
to R=0.975. ............................................................................................................................81 

Fig. 3.7.  Measured (a) and calculated (b) N-waves at different distances from the source 0.15, 
0.3, 0.5, 1, 1.5, and 2 m.  Monotonic decrease of the pulse amplitude corresponds to the 
increase of the propagation distance. ....................................................................................82 

Fig. 3.8.  Averaged amplitude frequency response (a) and random sample of phase response  
(b) calculated for the total measuring system (blue line) and response of the microphone, 
provided by the manufacturer (red line)................................................................................83 

Fig. 3.9. Experimental (red line) and theoretical (blue line) N-pulse waveforms and 
corresponding spectra at the initial distance r0= 0.15 m (a, b) and at the distance  
r = 1.5 m from the source (c, d). Filtered theoretical waveforms and spectra are shown  
with the black lines................................................................................................................84 

Fig. 3.10. Dependence of peak positive pressure (a), half duration (b) and rise time (c) of the 
wave on propagation distance. Blue line – calculated results, red crosses – measured  
results, black circles – calculated results with filter applied. ................................................85 

Fig. 4.1 Comparison of nonlinear waveforms, calculated at the distance σ =157 using  
different numerical algorithms and varying the number of grid points per shock front  
of the wave. a) – implicit numerical algorithm built on the basis of the exact solution to  
the simple wave equation, b) – explicit finite difference conservative algorithm, c)  
Godunov type explicit conservative algorithm. ..................................................................103 

Fig. 4.2. (a) Sound speed map for a medium with a single scalar focusing Gaussian 
inhomogeneity with Δcmax/c0 ~ 3% and (b) corresponding distribution of peak acoustic 
pressure resulting from linear continuous wave (CW) propagation through the 



190  List of figures 

inhomogeneity.  с) distributions of the pressure amplitude, obtained along the symmetry 
axis by solving KZK type Eq. (4.6) and wide angle  parabolic equation (WAPE). ........... 106 

Fig. 4.3. Comparison of peak pressure distributions in the solution to wave Eq. (4.6) with  
the  distributions of acoustic rays obtained using geometrical acoustics equations for 
propagation of plane acoustic wave through the single scalar Gaussian inhomogeneities  
(a) of different sizes: R = 1.5λ (a,b),  R=3λ (c), R=5λ (d) and same disturbance  
amplitude  U0 = 0.06. .......................................................................................................... 108 

Fig. 5.1. (a) Longitudinal and (b) transverse components of the random velocity field with 
Gaussian energy spectrum. Characteristic length of inhomogeneities L = 3λ,   and root 
mean square velocity 5.2=rmsu  m/s. .................................................................................. 112 

Fig. 5.2. Spatial patterns of the peak positive pressure corresponding to (a) linear (N = 0) and  
(b) nonlinear (N = 0.05) propagation of an initially plane harmonic wave through the 
randomly inhomogeneous moving medium. (c) The result for nonlinear propagation 
(N = 0.05) in the presence of an additional transverse constant flow 0

⊥U  = 0.1. Vertical  
solid line shows the location for the transverse field presented in Fig. 5.6, dashed  
vertical line - for the transverse distributions shown in Fig. 5.3, and dashed horizontal  
line - for the longitudinal distributions in Fig. 5.4. ............................................................. 112 

Fig. 5.3. (a) Transverse distributions of the peak positive pressure at a distance x/λ = 24  
along the dashed segments shown in Fig. 5.2 for linear (N = 0, dotted line) and  
nonlinear (N = 0.05, solid line) propagation. (b) Linear and nonlinear waveforms at 
locations of maximum positive pressure x/λ = 24, y/λ = 21.3 (indicated as max in (a)).  
(c) Waveforms at the pressure minimum, x/λ = 24, y/λ = 23.15 (indicated as min in (a)). 113 

Fig. 5.4. (a) Longitudinal distributions of the peak positive pressure for linear (N = 0, dotted  
line) and nonlinear (N = 0.05, solid line) propagation along the dashed line y/λ =16.85 
shown in Fig. 5.2. (b) Linear and nonlinear waveforms at locations of maximum positive 
pressure, x/λ = 24, y/λ = 16.85 (indicated as max in (a)). (c) Waveforms at the pressure 
minimum, x/λ = 54, y/λ = 16.85 (indicated as min in (a)). ................................................. 113 

Fig. 5.5. Dependence on distance of propagation for the wave intensity averaged over the 
transverse coordinate for: linear propagation in a dissipative medium, nonlinear  
propagation governed by weak shock theory (WST), nonlinear plane wave propagation 
 in a dissipative medium (Burgers equation), and nonlinear propagation in moving 
inhomogeneous dissipative media governed by the nonlinear parabolic equation (NPE). 
Parameters of simulations are N = 0.05, А = 0.002, Nmax = 150.......................................... 114 

Fig. 5.6  Distributions of peak positive pressure along the transverse segments (solid lines) 
shown in Fig. 5.2b and Fig. 5.2c at the distance x/λ = 42. Black curve – propagation  
through random velocity field (Fig. 5.2b), red curve – analytic transformation of the 
numerical solution to account for additional constant flow, blue circles – full numerical 
solution in the case of the flow presence (Fig. 5.2c)........................................................... 116 

Fig. 5.7 a) – longitudinal component of a random inhomogeneous velocity field with  
Gaussian energy spectrum and 5.2=rmsu m/s, L=3λ.  b) – corresponding spatial  
distribution of peak positive pressure in the case of linear wave propagation and ray  
paths – grey lines – solutions of the eikonal equation. ....................................................... 117 



 List of figures 191 

Fig. 5.8: a) – longitudinal component of a random velocity field ( 4.7=rmsu m/s, L = 5λ)  
and b) – corresponding spatial distribution of the peak positive pressure (N = 0.1, 
А= 0.0052, Nmax=100 harmonics). Both longitudinal and transverse components of the 
velocity field are taken into account. ..................................................................................118 

Fig. 5.9 Peak positive pressure distributions in longitudinal direction along the line  
y/λ =39.5 (a) and in transverse direction along the line x/λ =17.5 (b) in both linear  
(N=0.0) and nonlinear (N=0.1) regimes. Calculations are done with account for both 
longitudinal and transverse components of inhomogeneous field (dotted curves) or  
only with account for the longitudinal one (solid curves)...................................................118 

Fig. 5.10. a) Spatial distribution of peak positive pressure and longitudinal component of 
medium velocity fluctuations (grey contour lines).  Dashed contours correspond to 

04.0/ 0 −=cux  level, and solid contours to 04.0/ 0 =cux  level.  b) peak positive pressure 
distributions along dashed line in Fig. 5.10a calculated for different value of turbulent 
fluctuations intensities: 4.7=rmsu m/s and 5.2=rmsu m/s....................................................119 

Fig. 5.11 Longitudinal a) and transverse b) components of the random velocity field with 
Gaussian energy spectrum. Characteristic fluctuation scale is equal to L=4λ, and mean 
square velocity is equal to 3=rmsu m/s ...............................................................................121 

Fig. 5.12 a) - acoustic rays distribution in inhomogeneous moving medium with Gaussian  
energy spectrum (Fig. 5.11), b) corresponding acoustic field pattern (peak positive  
pressure) with marked turbulence levels 0/ cux =± 0.009 (red – positive, blue - negative), 
 c) expanded view of the peak positive pattern with overlaid rays distribution and caustic 
locations (grey points – first caustics, red points – second caustics) comparison. Area of 
expansion is marked with black rectangle in Fig. 5.12b .....................................................122 

Fig. 5.13 Waveforms, measured at various locations along y/λ = 212 axis while passing  
through the caustic ..............................................................................................................123 

Fig. 5.14  Peak positive pressure spatial distributions corresponding to (a) linear (N = 0) and  
(b) nonlinear (N = 0.05) propagation of an initially plane acoustic N-wave through the 
randomly inhomogeneous moving medium (Fig. 5.11). Peak pressure distributions  
along dashed lines are shown in Fig. 5.15...........................................................................124 

Fig. 5.15.  Peak positive pressure distribution along horizontal a) and vertical b) dashed  
lines shown in Fig. 5.14a. c) – Maximum over y axis peak positive pressure distribution 
along x axis..........................................................................................................................125 

Fig. 5.16 Typical linear (N=0.0) and nonlinear (N=0.05) waveforms measured in different  
points of the acoustic pressure pattern including (a) focal zones and (b)-(d) shadow  
areas. Initial N-wave is shown with the blue curve.............................................................127 

Fig. 5.17.  Mean peak positive pressure (a), mean rise time (b), and mean arrival time shift  
(c) of an N-wave propagating in turbulent medium in linear (N=0.0 dashed lines) and 
nonlinear (N=0.05  solid lines) regimes. Red lines – standard deviations of considered  
wave parameters in turbulent medium. Green line – 2nd order approximation of  
geometrical acoustics for mean arrival time .......................................................................128 



192  List of figures 

Fig. 5.18. (a) Peak positive pressure probability density distributions at different distances  
from the source. Vertical red line is the mean value. Class width equals to 0.04. (b), 
(c), (d) – mean and standard deviation, skewness and excess parameters distributions  
over the propagation distance. Vertical dotted line is the prediction of the 1st caustics 
formation distance in the geometrical acoustics approximation......................................... 131 

Fig. 5.19. Shock front rise time (a) and arrival time (b) probability density distributions at 
different distances from the source.  Class width equals to (a) – 0.16, (b) – 0.09.  
Vertical red line is the mean value of the considered parameter. ....................................... 133 

Fig. 5.20 Peak positive pressure distributions calculated with or without account for the 
transverse component of the random velocity field. a) maximal over y axis distribution 
plotted along x axis, b) maximal over x axis distribution plotted along y axis ................... 134 

Fig. 5.21  Peak positive acoustic pressure distribution formed in inhomogeneous field with  
von Karman energy spectrum (Fig. 1.2e-g). Levels of turbulence intensity are marked  
with red – positive and grey –negative contours ( 0/ cu x =± 0.009). .................................. 135 

Fig. 5.22 Mean acoustic wave rise time distributions in random medium with Gaussian (solid 
lines) or Karman (dashed lines) energy spectra. Red curves – corresponding standard 
deviations. Black line – rise time in motionless medium. .................................................. 135 

Fig. 5.23. Peak positive pressure distributions calculated with or without account for the 
transverse component of random velocity field. (a) maximal over y axis distribution  
plotted along x axis, (b) maximal over x axis distribution plotted along y axis.................. 135 

Fig. 5.24 Comparison of characteristic scales in 2D modified von Karman energy spectrum  
of turbulent medium (L0 = 19.3 cm, l0 = 2 cm,  blue) with the spectrum of the modelled 
initial N-wave (λ = 0.85 cm, red curve, red y-axis) ............................................................ 137 

Fig. 5.25. Experimental (a) and modelled (b) relative peak positive pressure p+/< 0
+p > 

probability distributions obtained at distance of 2.19 m from the source. Flow velocity  
at the exit of the jet Ujet  varies from 0 m/s to 40 m/s. < 0

+p > is the mean value of the  
peak positive pressure, measured at the same distance in motionless medium.  Red  
dashed lines correspond to the mean value of the pressure amplitude in turbulent  
medium.  With designation std the standard deviation is shown.  Class width equals  
to 0.07. ................................................................................................................................ 138 

Fig. 5.26 Dependence of the peak positive pressure of the acoustic wave and its standard 
deviation, measured at the distance 2.19 m from the source, on the flow velocity at the  
exit of the jet Ujet (turbulence intensity). Red curve – experimentally measured values,  
blue curve – results of simulation, black curve – result of simulations, to which the 
measuring system frequency response was applied............................................................ 139 

Fig. 5.27 Dependence of the peak positive pressure of the acoustic wave and its standard 
deviation on the distance from the source (Ujet = 20 m/s). Red curve – experimentally 
measured values, which are multiplied by the r/r0 value to exclude the spherical  
divergence effects, where r0 = 150 mm.  Blue curve – results of the simulation. .............. 139 

Fig. 5.28. Experimental (a) and modelled (b) arrival time probability density distributions 
measured at distance of 2.19 m from the source varying the flow velocity at the exit of the 
jet Ujet (turbulence intensity). Red dashed lines correspond to the mean value of the arrival 



 List of figures 193 

time in turbulent medium.  With designation std the standard deviation is shown.   
Class width equals to 0.095.................................................................................................142 

Fig. 5.29 Dependence of the mean arrival time of the acoustic wave and its standard  
deviation, measured at the distance 2.19 m from the source, on the flow velocity at  
the exit of the jet Ujet (turbulence intensity). Red curve – experimentally measured  
values, blue curve – results of simulation using parabolic equation (PE), green curve – 
values given by geometrical acoustics approach (GA). ......................................................143 

Fig. 5.30 Dependence of the mean rise time of the acoustic wave and its standard deviation, 
measured at the distance 2.19 m from the source, on the flow velocity at the exit of the  
jet Ujet (turbulence intensity). Red curve – experimentally measured values, blue curve – 
results of simulation using parabolic equation, black curve – result of simulations, to  
which the measuring system frequency response was applied. ..........................................143 

Fig. 5.31 Cumulative probability Pc of normalized peak positive pressure calculated using the 
laboratory scale experiment data (a) and data from numerical modelling (b). Results are 
presented for different turbulence intensities. .....................................................................144 

Fig. 5.32 Cumulative probability Pc of peak positive pressure measurement, which two times 
exceeds the acoustic wave amplitude measured in motionless medium at the same 
propagation distance. Results are presented for different turbulence intensities. ...............145 

Fig. A1. a) an example of scalar Gaussian inhomogeneity with radius R=5λ and amplitude 
0/ ccM δ= ~0.06. b) acoustic ray paths and caustics corresponding to the plane acoustic 

wave propagation through presented inhomogeneity..........................................................155 

Fig. B1 Comparison of waveforms (b), longitudinal (c) and transverse (d) distributions of the 
peak positive pressure field (a), measured along dashed lines and calculated taking 256 
(dotted line) or 512 (solid line) time grid points per duration of the wave. ........................161 

Fig. C1 Exemple d'une réalisation du champ aléatoire de la vitesse du milieu turbulent avec  
un spectre énergétique Gaussien. a) - composante longitudinale des fluctuations de la 
vitesse, b) - composante transversale des fluctuations de la vitesse, et c) –  valeur  
absolue des fluctuations de la vitesse. .................................................................................168 

Fig. C2 Représentation schématique de la géométrie du dispositif expérimental ......................169 

Fig. C3 Comparaison de la densité spectrale des fluctuations longitudinales de vitesse  
mesurée avec les valeurs théoriques obtenues pour un spectre de von Kármán modifié  
et la loi de décroissance en puissance «-5/3» de Kolmogorov dans la zone inertielle de 
turbulence. Les mesures ont été faites sur l’axe de la buse et à la distance х = 3780 mm..170 

Fig. C4 Evolution du pic positif de la pression p+  , à une distance de 2,19m de la source,  
avec la vitesse axiale du jet Ujet  :  (а) valeurs moyennes et (b) distributions de la  
densité de probabilité ..........................................................................................................172 

Fig. C5 a) Distribution du champ acoustique (pression du pic positif) avec les iso-niveaux  
des fluctuations de la vitesse du milieu 0|| / cu =± 0.009 marqués par dessus, b) zoom  
sur la région focale (le rectangle noir sur fig.5а) avec en plus la distribution des  
trajectoires des rayons acoustique et les positions des caustiques. .....................................179 



194  List of figures 

Fig. C6 Formes temporelles d’ondes mesurées à diverses distances de la source le long de  
la ligne y / λ = 212 passant par une caustique..................................................................... 180 

Fig. C7 Evolutions avec la distance de propagation des distributions de la densité de  
probabilité de la pression du pic positif (a), du temps de montée du front de choc (b)  
et du temps d'arrivée relative de l'impulsion....................................................................... 181 

 



 

LIST OF REFERENCES 

                                                 
1   Hill C. R., Bamber J. C., ter Haar G. R.,  Physical Principles of Medical Ultrasonics, 2nd 

Edition, WILEY, 2004 

2   Tatarskii V.I., The effects of turbulent atmosphere on wave propagation, (in Russian), 
Moscow, Nauka (1967); English translation: IPST Keter Press, Jerusalem (1971)  

3   Blohintsev D.I., Acoustics of moving inhomogeneous media, (in Russian), Moscow : 
Science, 1981  

4   Ostashev V.E. Acoustic in moving inhomogeneous media, Ed. E&Fn Spon, London, 1997 

5   Plotkin K. J., State of the art of sonic boom modeling, J. Acoust. Soc. Am. 2002, 111(1), 
530–536 

6   Krasilnikov V. A., Linear and nonlinear sound propagation in turbulent and 
inhomogeneous media, Acoust. J. 1998, 44, 559–569 

7   Lipkens B., Experimental and theoretical study of the propagation of N-waves through a 
turbulent medium, Ph. D. Thesis, Mechanical Engineering Department, The University of 
Texas at Austin, 1993 

8   Chunchuzov I.P., Bush G.A., and Kulichkov S.N., On acoustical impulse propagation in a 
moving inhomogeneous atmospheric layer, J. Acoust. Soc. Am. 1990, 88(1), 455-461 

9   Brehovskih L.M., Ocean Acoustics, Moscow, Science, 1974 

10   Bass H.E., Raspet R., Chambers J.P., Kelly M., Modification of sonic boom wave forms 
during propagation from the source to the ground, J. Acoust. Soc. Am. 2002, 111(1),   
481-486 

11   Averiyanov M.V., Khokhlova V.A., Cleveland R.O., Sapozhnikov O.A., Blanc-Benon Ph., 
Nonlinear parabolic equation for acoustic wave propagation in inhomogeneous moving 
media, Acoust. Phys. 2006, 52(6), 623-632 

12   Godin O.A. An effective quiescent medium for sound propagating through an 
inhomogeneous moving fluid, J. Acous. Soc. Am. 2002, 112 (4), 1269-1275. 

13   Babich V.M., Buldirev V.S., Asymptotical methods in short waves diffraction problems, (in 
Russian), Moscow, Science, 1972. 

14   Kravtsov Yu. A., Orlov Yu. I., Geometrical Optics of Inhomogeneous Media, Springer 
Verlag, Berlin, 1990   



196  List of references 

                                                                                                                                                             
15   Kravtsov Yu. A., Orlov Yu. I., Caustics, catastrophes, and wave fields, Uspekhi Phys. 

Nauk. 1983, 26 (12), 1038-1058   

16   Rudenko O. V., Sukhorukova A. K., Nonlinear sawtooth-like wave in the inhomogeneous 
media, Acoust. Phys. 1991, 37, 753–757 

17   Rudenko O. V., Sukhorukova A. K., Nonlinear sawtooth wave in an underwater sound 
channel,  Acoust. Phys. 1991, 37, 512-514 

18   Blanc-Benon Ph., Juvé D., Comte-Bellot G., Occurrence of caustics for high frequency 
acoustic waves propagating through turbulent fields. Theoretical and Computational Fluid 
Dynamics 1991, 2, 271-278 

19   Karweit M., Blanc-Benon Ph., Juve D. and Comte-Bellot G., Simulation of propagation of 
an acoustic wave through a turbulent velocity field: A study of phase variance, J. Acoust. 
Soc. Am. 1991, 89(1), 52-62 

20   Rudenko O.V., Sukhorukova A.K., Sukhorukov A.P., Equations of high-frequency 
nonlinear acoustics for inhomogeneous media, Acoust. Phys. 1994, 40(2), 290-294 

21   Rudenko O.V., Sukhorukova A.K., Sukhorukov A.P., Full solutions of geometrical 
acoustics equations in stratified moving media, Acoust. Phys. 1997, 43(3), 396-401 

22   Rudenko O.V., Sukhorukova A.K., Sukhorukov A.P., Two-Dimensional Nonlinear Waves 
with Discontinuities in Stratified Media, Acoust. Physics 1995,41(2), 251-255  

23   Ostashev V.E., Juve D., Blanc-Benon Ph. Derivation of a wide-angle parabolic equation 
for sound waves in inhomogeneous moving media, Acta Acustica united with Acustica, 
1997, 83(3), 455-460 

24   Dallois L., Blanc-Benon Ph., Juvé D. A wide angle parabolic equation for acoustic waves 
in inhomogeneous moving media: applications to atmospheric sound propagation, J.Comp. 
Acoustic. 2001, 9 (2), 477-494 

25   Dallois L., Blanc-Benon Ph., Wide angle parabolic equation in moving media: Sound 
diffraction by a core vortex. AIAA,1-9, 2001 

26   Godin O.A., Wide-angle parabolic equation for sound in a 3D inhomogeneous moving 
medium, Doklady Physics 2002, 47(9), 643-646  

27   Godin O.A., Parabolic approximation in the acoustics of moving media, Acoust. Phys. 
1991, 37, 335–339 

28   Godin O.A., Wave equation for sound in a medium with slow currents, (in Russian), Dokl. 
Akad. Nauk 1987, 293(1), 63-67  

29   Ostashev V.E. Wide angle parabolic equation for sound waves in a refractive, turbulent 
atmosphere. 10th LRSP simposium, Grenoble, 2002 

30   Pelinovsky E.N., Freedman V.E., Engelbrekht U.K., Nonlinear evolution equations, (in 
Russian), Tallin, Valgus, 1984 

31   Blanc-Benon Ph., Lipkens B., Dallois L., Hamilton M. F.,  Blackstock   D. T., Propagation 
of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the 
parabolic approximation, J. Acoust. Soc. Am., 2002, 111 (1), 487- 498 

32   Ollivier S., Blanc-Benon Ph., Numerical simulation of «low level » sonic boom 
propagation through random inhomogeneous sound speed fields, Proc. of 19th ICA 
congress, Madrid, 2-7 September, 2007. (e-version) 



List of references 197 

                                                                                                                                                             
33   McDonald B.E., Kuperman W.A. Time domain formulation for pulse propagation 

including nonlinear behaviour at a caustic, J. Acoust. Soc. Am. 1987, 81(5), 1406-1417. 

34   Averiyanov M.V., Khokhlova V.A., Cleveland R.O., Blanc-Benon Ph., Nonlinear and 
diffraction effects in propagation of shock N-wave in randomly inhomogeneous moving 
media, Proc. XIX session RAO, Nizhniy-Novgorod, 24-28 September 2007,1, 147-151 

35   Averiyanov M.V., Khokhlova V.A. Propagation of nonlinear acoustic waves in 
inhomogeneous moving medium. Proc. of scientific school “Waves - 2004”, Moscow 
region, Zvenigorod, Russia, section 1, p. 23-24 (in Russian) 

36   Blanc-Benon P., Khokhlova V.A., Averiyanov M.V., Dallois L., Cleveland R.O., 
Propagation of nonlinear acoustic signals through inhomogeneous moving Media, Proc. of 
the Joint Congress CFA/DAGA’04, March, 22-25, 2004, Strasbourg, France, V.2, 1059-
1060. In Book of Abstracts: p.368 

37   Averiyanov M.V., Blanc-Benon P., Khokhlova V.A. and Cleveland R.O., Diffraction of 
Nonlinear Acoustic Waves in Inhomogeneous Moving Media, Proceedings of the Forum 
Acusticum, Budapest, Hungary,2005, 1403-1408 

38   Blanc-Benon Ph., Khokhlova V., Averianov M., and Cleveland R., Propagation of 
nonlinear acoustic signals through inhomogeneous moving media, In.: Proc. of 2nd 
International Conference "Frontiers of Nonlinear Physics" (July 5-12, 2004, Nizhny 
Novgorod - St. Petersburg, Russia) Ed. A Litvak.,674-678. In book of abstracts: p.75 

39  Khokhlova V.A., Blanc-Benon Ph., Averiyanov M.V., Cleveland R.O. Diffraction of 
nonlinear waves in randomly inhomogeneous moving media, In: Proc. of Joint Workshop  
RAS/SFA High intensity acoustic waves in modern technological and medical applications 
(14-18 November, Moscow, Russia), GEOS, 2005, 41-47 

40   Lipkens B., Blackstock D.T., Model experiment to study sonic boom propagation through 
turbulence. Part I: Model experiment and general results, J. Acoust. Soc. Am. 1998, 
103(1), 148-158 

41   Lipkens B., Blackstock D.T., Model experiment to study sonic boom propagation through 
turbulence. Part II: Effects of turbulent intensity and propagation distance through 
turbulence, J. Acoust. Soc. Am. 1998, 104(3), 1301-1309 

42   Lipkens B., Blackstock D.T., Model experiment to study sonic boom propagation through 
turbulence. Part III: Validation of sonic boom propagation models, J. Acoust. Soc. Am. 
2002. V. 111(1). P. 509-519 

43   Wright W.M, Propagation in air of N-waves produced by sparks, J. Acoust. Soc. Am, 
1983, 73(6), 1948-1955 

44   Ollivier S., Blanc-Benon Ph., Model experiment to study acoustic N-wave propagation 
though turbulence, AIAA-2004-2921, 10th AIAA/CEAS Aeroacoustics Conference, 
Manchester, United Kingdom, May 10-12, 2004 

45   Ayrault C., Bequin Ph., Legros M., Experimental study of a spark discharge as an acoustic 
source. Proc. of 19th ICA congress, Madrid, 2-7 September, 2007. (e-version) 

46   Qin Q. and Attenborough K., Characteristics and application of laser-generated acoustic 
shock waves in air, Applied Acoustics 2004, 65, 325-340 

47   Vinogradova M.B., Rudenko O.V., Sukhorukov A.P., Theory of Waves, Moscow, Nauka, 
1990,  2nd Edition, 432  pp 



198  List of references 

                                                                                                                                                             
48   Rudenko O.V., Soluyan S.I., Theoretical foundations of nonlinear acoustics, New York, 

Plenum, 1977 

49   Khokhlova V.A., Blanc-Benon P., Averianov M.V., and Cleveland R.O., Propagation of 
nonlinear acoustic signals through inhomogeneous moving media, Proceeding of the 2004 
IEEE UFFC, August 23-27, 2004, Montreal, Canada, 533-536. In: Book of Abstracts, p. 
494 

50   Blumrich R., Coulouvrat F., Heimann D, Meteorologically induced variability of sonic-
boom characteristics of supersonic aircraft in cruising flight, J. Acoust. Soc. Am. 2005, 
118, 707-722  

51   Piacsek, A. A, Atmospheric turbulence conditions leading to focused and folded sonic 
boom wave fronts, J. Acoust. Soc. Am. 2002, 111(1) Pt.2, 520-529  

52   Elmer K.R., Joshi M.C., Variability of measured sonic boom signatures, volume 1 – 
technical report, 1994, contract NAS1-19060 (e-version)  

53   Haering E. A., Ehernberger, L. J., and Whitmore S. A., Preliminary Airborne 
Measurements for the SR-71 Sonic Boom Propagation Experiment, NASA TM-104307, 
1995 (e-version)  

54   Lee R.A., Downing, J.M., Sonic Booms Produced by United States Air Force and United 
Sates Navy Aircraft: Measured Data, USAF AL-TR-1991-0099, Jan 1991 (e-version)  

55   Hilton D. A., Hubbard H. H., Huckel V., Maglieri D. J., Ground measurements of sonic-
boom pressures for the altitude range of 10,000 to 75,000 feet, NASA-TR-R-198, 1964 (e-
version) 

56   Fidell S., Silvati L., Pearson K., Relative rates of growth of annoyance of impulsive and 
non-impulsive noises, J. Acoust. Soc. Am. 2002, 111(1) Pt 2, 481-486 

57   Leatherwood D., Sullivan B. M., Shepherd K. P., McCurdy D. A., Summary of recent 
NASA studies of human response of sonic booms, J. Acoust. Soc. Am. 2002, 111(1) Pt 2, 
586 – 598 

58   Niedzwiecki A., Ribner H. S., Subjective loudness of N-wave sonic booms, J. Acoust. Soc. 
Am. 1978, 64, 1622–1626 

59   Maglieri D.J., Carlson H.W., The shock wave noise problem of supersonic aircraft in 
steady flight, NASA-MEMO-3-4-59L, 1959 

60   Haglund G.T., HSCT designs for reduced sonic boom, AIAA-1991-3103, 1991 

61   Morgenstern J.M., Arslan A., Lyman V. and Vadyak J., F-5 shaped sonic boom 
demonstrator’s persistence of boom shaping reduction through turbulence, AIAA-2005-
0012, 2005 

62   Pierce A.D.,  Acoustics: An Introduction to Its Physical Principles and Applications, 
Acoust. Soc. Am. New York, 1989 

63   Pierce A. D. and Kang J., Molecular relaxation effects on sonic boom waveforms, in 
Frontiers of nonlinear acoustics: Proceedings of the 12th ISNA, edited by M. F. Hamilton 
and D. T. Blackstock Elsevier Applied Science, London, 1990, 165–170 

64   Blanc-Benon Ph., Ollivier S., Model experiments to study acoustic N-wave propagation 
through turbulence, 11th Long Range Sound Propagation Symposium, Lake Morey Resort, 
VT, 1-3 June 2004 



List of references 199 

                                                                                                                                                             
65   Pierce A.D., Statistical theory of atmospheric turbulence effects on sonic boom rise times, 

J. Acoust. Soc. Am. 1971, 49, 906-924 

66   Thomas J.-L., Colouvrat F.,  Marchiano R., Baudoin M., Ganjehi L., Experimental 
simulation of the sonic boom at the laboratory scale, Proc. 19th  ICA, Madrid, 2-7 
September 2007  (e-version) 

67   Kulichkov S. N., Evidence for Nonlinear Atmospheric Effects in Infrasound Propagation 
from Explosions of Different Types and Yields. In Proc. of 18th international symposium on 
nonlinear acoustics, Stockholm, Sweden, 7-10 July 2008, pp.401-404 

68   Kulichkov S. N., Chunchuzov I. P., Bush G. A., and Perepelkin V. G., Physical Modeling 
of long-range infrasound propagation in the atmosphere. Izv. Atm. and Oc. Physics 2008, 
V.44(2),pp.175-186. 

69   Chunchuzov I. P., Kulichkov S. N., Otrezov A., and Perepelkin V.G., Acoustic pulse 
propagation through a fluctuating stably stratified atmospheric boundary layer. J. Acoust. 
Soc. Am. 2005, 117(4), 1, 186-198 

70   Kulichkov S. N., Long-range propagation and scattering of low-frequency sound pulses in 
the middle atmosphere. Meteorol. Atmos. Phys. 2004, 85, 47–60 

71   Kulichkov S.N., Chunchuzov I.P., Bush G.A., Perepelkin V.G. Physical Modeling of Long-
Range Infrasonic Propagation. Atmos. Izv., Atmos. and Oc. Phys. 2008, 44(2), 175–186. 

72   Ostashev V.E., Lando Liu, Wilson D.K., Moran M.L., Aldridge D.F., Marlin D., Starting 
equations for direct numerical simulation of sound propagation in the atmosphere. J. 
Acoust. Soc. Am. 2003, 113(4), 2312-2313 

73   Monin A. S., Yaglom A. M., Statistical Fluid Mechanics: Mechanics of Turbulence, 
Cambridge, Mass., MIT Press 1975, Vol. 2 

74   Kraichnan, R.H. Scattering of Sound in a Turbulent Medium. J. Acoust. Soc. Am. 1953, 25, 
1096-1104. 

75   Lighthill, M. J. On the energy scattered from the interaction of turbulence with. sound on 
shock waves. Proc. Camb. Phil. SOC. 1953, 49, 531-551 

76   Batchelor, G.K. Wave scattering due to turbulence. In Proc. 1st International Symposium 
on Naval Hydrodynamics, Washington, D.C., Washington 1956, 409–423 

77   Neubert J.A., Lumley J.L. Derivation of the stochastic Helmholtz equation for sound 
propagation in a turbulent fluid, J. Acoust. Soc. Am. 1970, 48, 1212-1218 

78   Wochner M.A., Atchley A.A., Sparrow V.W., Numerical simulation of finite amplitude 
wave propagation in air using a realistic atmospheric absorption model, J. Acoust. Soc. 
Am. 2005, 118(5), 2891-2898 

79  Pierce A.D., Propagation of acoustic pulses and sonic booms through small-scale 
atmospheric turbulence, 16th AIAA/CEAS conference, Munich, Germany 1995, paper 
number AIAA-95-105 

80     Gurbatov S.N. Nonlinear interaction and scattering of random waves in non dispersive 
media, Doctoral  thesis 1985, Nizhniy Novgorod, Russia (in Russian) 

81     Rudenko O.V. Nonlinear sawtooth-shaped waves, Physics – Uspekhi 1995, 38(9), 965-989 

82   Coulouvrat F., Focusing of weak acoustic shock waves at a caustic cusp, Wave Motion 
2000, 32, 233–245 



200  List of references 

                                                                                                                                                             
83  Coulouvrat F., Sonic boom in the shadow zone: A geometrical theory of diffraction, J. 

Acoust. Soc. Am. 2002, 111, 499–508 

84  Marchiano R., Coulouvrat F. and Grenon R., Numerical simulation of shock wave focusing 
at fold caustics, with application to sonic boom, J. Acoust. Soc. Am. 2003, 114, 1758–1771 

85  Marchiano R., Coulouvrat F., Nonlinear focusing of acoustic shock waves at a caustic 
cusp, J. Acoust. Soc. Am. 2004, 117, 566–578 

86  Coulouvrat F., Parabolic approximation in ray coordinates for high-frequency nonlinear 
waves in a inhomogeneous and high speed moving fluid, Wave Motion 2008, 
doi:10.1016/j.wavemoti.2008.02.002 

87   Dubrovskiy A.N., Khokhlova V.A., Rudenko O.V., Fluctuation characteristics of sonic 
booms traversing a random inhomogeneous layer, Acoust. Phys. 1996, 42(5), 623-628 

88   Gusev V.A., Rudenko O.V., Statistical characteristics of an intense wave behind a two-
dimensional phase screen, Acoust. Phys. 2006, 52(1) , 24–35 

89   Yuldashev P.V., Khokhlova V.A., Averiyanov M.V., Blanc-Benon Ph., Diffraction of 
nonlinear N-wave behind a random phase screen, Proc. of ICA congress, Madrid, 2-7 
September, 2007. (e-version) 

90   Yuldashev P.V., Averiyanov M.V., Briseva N.A., Blanc-Benon Ph., Khokhlova V.A., 
Statistical properties of an N-wave behind a random phase screen with account to 
diffraction effects and multiple caustics formation, Proc. XIX session RAO, 24-28 
September, 2007, 1, 147-151 

91   Rudenko O.V., Enflo B.O., Nonlinear N-wave propagation trough a one-dimensional 
phase screen, Acta Acustica 2000, 86, 229-238 

92   Shlenov S.A., Kandidov V.P., Filament beam formation during femtoseconde laser pulse 
propagation in turbulent atmosphere. Part1. Method, Optics of atmosphere and ocean 2004, 
17(8), 630-636 

93   Kraichnan R.H., Diffusion by a random velocity fields, Phys. Fluids1970, 13, 22-31 

94   Juve D., Blanc-Benon Ph., Wert K., Numerical simulation of sound propagation through 
time-dependent random media, Theoretical & Computational Acoustics 1997, World 
Scientific Publishing Co, pp. 653-665. 

95   Wert K., Blanc-Benon Ph., Juve D., Effect of turbulence scale resolution on numerical 
simulation of atmospheric sound propagation, AIAA/CEAS 1998, Paper N◦ 98-2245, 4th 
AIAA/CEAS Aeroacoustics Conference, Toulouse. 

96   Wilson D.K. A turbulent spectral model for sound propagation in the atmosphere that 
incorporates shear and buoyancy forcing, J. Acoust. Soc. Am. 2000, 108(5), pp. 2021-
2038 

97   Comte-Bellot G., Bailly C., Turbulence. CNRS, 2003 

98   Gutmark E., Wygnanski I., The planar turbulent jet,  J. Fluid Mech. 1976, 73 (3), 465-495 

99   Comte-Bellot G., Ecoulment Turbulent Entre deaux Parois Paralleles, Publications 
Scientifiques et Techniques du Ministere de l'Air No. 419, 1965 

100  Davy B.A., Blackstock D.T., Measurements of the refraction and diffraction of a short N-
wave by a  gas-filled soap bubble, J. Acoust. Soc. Am. 1971, 49, 732-737 

101  Yuldashev P.V., Averiyanov M.V., Khokhlova V.A., Ollivier S., Blanc-Benon Ph., 
Theoretical and experimental investigation of nonlinear spherically diverging wave 



List of references 201 

                                                                                                                                                             
propagation in relaxing media, Proc. XVIII session RAO, Taganrog, 11 – 15 September 
2006, 144-148 (In Russian) 

102  Barrera-Figueroa S., Rasmussen K., On experimental determination of the random-indice 
response of microphones,  J. Acous. Soc. Am. 2007, 121 (5), 2628-2637 

103  Averiyanov M.V., Yuldashev P.V., Khokhlova V.A., Ollivier S. and Blanc-Benon Ph., 
Nonlinear Propagation of Spark-generated N-waves in Relaxing Atmosphere: Laboratory-
Scaled Experiments and Theoretical Study, 13th AIAA/CEAS Aeroacoustics Conference 
(28th AIAA Aeroacoustics Conference), paper AIAA 2007-3676 

104  Yuldashev P.V., Averiyanov M.V., Khokhlova V.A., Ollivier S., Blanc-Benon Ph., 
Experimental and theoretical study of nonlinear spherically divergent shock waves 
propagating in relaxing medium, Acoust. Phys. 2008, 54(1), 40-50 

105  Ollivier S., Averiyanov M., Yuldashev P., Khokhlova V., Blanc-Benon Ph. Experimental 
and numerical study of the propagation of short duration acoustic N-waves in air,  8ème  
Congrès Français d'Acoustique, 24-27 avril 2006, Tours, pp. 925-928 

106  Ollivier S., Averiyanov M., Yuldashev P., Khokhlova V., Blanc-Benon Ph., Spark-
generated N-waves for laboratory-scale propagation experiments in air: measurements 
and modelling, Proc. of ICA congress, Madrid, 2-7 September, 2007. (e-version) 

107  Khokhlova V.A., Averiyanov M.V., Yuldashev P.V., Ollivier S., Blanc-Benon Ph., 
Modelling and measurements of nonlinear spherically divergent N-waves in air, J. Acoust. 
Soc. Am. 2006,120(5) Pt.2, 3121-3122. (4th Joint Meeting of Acoustical Society of 
America and Acoustical Society of Japan, 2006, November 28 – December 2, 2006, 
Honolulu, USA) 

108  Andreev V.G., Rudenko O.V., Sapozhnikov O.A., Nonlinear effects in the 10 MPa 
acoustic pulses propagating in water, Proc. of 12th ISNA 1990, Elsevier Science Publishers 
Ltd., London  

109  Andreev V.G., Karabutov A.A., Rudenko O.V., Method of wide band microphones 
calibration in ultrasound beams of finite amplitude, Vestnik of Moscow State University, 
ser. 3, physics,1984, 25(4), 74-77 

110  Romanenko E.V., Sound receivers and methods of their calibration, In book: Physics and 
techniques of intense ultrasound, edited by Rozenberg L.D., Moscow Science, 1967, 327-
377.  

111  Cleveland R.O., Hamilton M.F., Blackstock D.T., Time-domain modeling of finite-
amplitude sound in relaxing fluids, J. Acous. Soc. Am. 1996, 99, 3312-3318 

112  Kurganov A.R., Tandmor E., New high-resolution central schemes for nonlinear 
conservation laws and convention-diffusion equations, J. Comp. Phys. 2000, 160, 241-282 

113  Polyakova A.L., Soluyan S.I., Khokhlov R.V., Propagation of finite disturbances in a 
relaxing medium, Acoust. Zh. 1962, 8 (1), 107-113. (In Russian)  

114  Picaut J., Simon L., A scale model experiment for the study of sound propagation in urban 
areas, Appl. Acoust. 2001, 62, 327-340 

115  Cleveland R. O., Chambers J. P., Raspet R., Bass H. E., Hamilton M. F. and Blackstock D. 
T.,  Comparison of computer codes for the propagation of sonic boom waveforms through 
isothermal atmospheres, J. Acoust. Soc. Am.1996, 100, 3017-3027 

116  Lee Y.-S., and Hamilton M.F., Time domain modelling of pulsed finite-amplitude sound 
beams, J. Acoust. Soc. Am. 1994, 97, 906-917 



202  List of references 

                                                                                                                                                             
117  Khokhlova V.A., Souchon R., Tavakkoli J., Sapozhnikov O.A., Cathignol D., Numerical 

modelling of finite-amplitude sound beams: Shock formation in the near field of a cw plane 
piston source, J. Acoust. Soc. Amer. 2001, 110 (1), 95-108 

118  Filonenko E.A., Khokhlova V.A., Effect of acoustic nonlinearity on heating of biological 
tissue by high-intensity focused ultrasound, Acoust. Phys. 2001, 47(4), 468-475 

119  Kasheeva S. S., Khokhlova V. A., Sapozhnikov O. A., Averkiou M. A., and Crum L. A., 
Nonlinear distortion and attenuation of intense acoustic waves in lossy media obeying a 
frequency power law,   Acoust. Phys. 2000, 46, 211-219 

120  Averianov M.V., Basova M.S., and Khokhlova V.A., Stationary and quasi-stationary 
solutions of the Burgers-type equations, XIIth Scientific School “Nonlinear waves - 2004” 
abstracts (29 February – 7 March 2004, Nizhniy Novgorod, Russia), p.11. (In Russian)  

121  Averianov M.V., Basova M.S., and Khokhlova V.A., Stationary and quasi-stationary 
solutions of the Burgers-type equations, Proc. of the Joint Congress CFA/DAGA’04, 
March, 22-25, 2004, Strasbourg, France,1, 547-548. In Book of Abstracts: p.154 

122  Averiyanov M.V., Basova M.S., and Khokhlova V.A., Stationary and quasi-stationary 
solutions of the Burgers-type equations, Acoust. Phys. 2005, 51(5), 495-501 

123  Basova M.S., Averiyanov M.V., Khokhlova V.A., The effect of frequency dependent 
absorbtion on propagation of nonlinear acoustic waves with shocks, International 
conference «Lomonosov-2004», book of abstracts, section «physic», p.25. In Russian  

124  Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in 
FORTRAN, Cambridge U.P., New York, 1992 

125  Lee Y.S., Numerical solution of the KZK equation for pulsed finite amplitude sound beams 
in thermoviscous fluids,  PhD thesis (The University of Texas at Austin,1993); as sited by 
Dissertation Abstracts International, 54-12 (B), 6246 (1993) 

126  Jing Y. and Cleveland R.O., Modeling the propagation of nonlinear three-dimensional 
acoustic beams in inhomogeneous media, J. Acoust. Soc. Am. 2007, 122 (3), 1352-1364 

127  Naze Tjøtta J., Tjøtta S., and Vefring E. H. Effects of focusing on the nonlinear  interaction 
of two collimated finite amplitude sound beams, J. Acoust. Soc. Am. 1991, 89(3), 1017 -
 1027 

128  Cleveland R.O., Dallois L., Blanc-Benon Ph., Effects of nonlinearity on the propagation of 
acoustic pulses in random media, 144th ASA meeting, Cancun, J. Acoust. Soc. Am. 2002, 
Vol. 112, N◦ 5 Pt 2, p. 2214 

129  Khokhlova V.A., Averiyanov M.V., Cleveland R.O., Blanc-Benon Ph., Parabolic 
approximation versus geometrical acoustics for describing nonlinear acoustic waves in 
inhomogeneous media. J. Acoust. Soc. Am. 2005, 117(4) Pt.2, p. 2595 (149th Meeting: 
Acoustical Society of America joint with the Canadian Association, Vancouver 16-20 
May) 

130  Le Floch C., Fink M., Ultrasonic mapping of the temperature in Hyperthermia: the thermal 
lens effect, IEEE Ultrasonic Symposium, 1997, 1301-1305 

131  Hallaj I.M., Cleveland R., Hynynen K., Simulation of the thermo-acoustic lens effect 
during focused ultrasound surgery, JASA, 2001, 109(5), 2245 - 2253 

132  Blanc-Benon Ph., Juvé D.,  Ostashev V. E.,  Wandelt R., On the appearance of caustics for 
plane sound-wave propagation in moving random media, Waves in Random Media 1995, 
5(2), 183-199 



List of references 203 

                                                                                                                                                             
133  Iooss B., Blanc-Benon Ph. and Lhuillier C., Statistical moments of travel times at second 

order in isotropic and anisotropic random media, Waves in Random Media 2000, 10, 381-
394 

134  Averiyanov M., Khokhlova V., Ollivier S., Blanc-Benon Ph., Nonlinear propagation of 
sonic booms in turbulent atmosphere: laboratory scale experiment and theoretical 
analysis. In the programme to 18th ISNA, 7-10 July 2008, Stockholm, Sweden, p.32. 

135  Whitham G. B. Linear  and Nonlinear Waves, 1974, New York Wiley 

136  Candel S. M., Numerical solution of conservation equations arising in linear wave theory: 
Application to aeroacoustics, J. Fluid Mech. 1977, 83, 465–493 






	Remerciement 
	Abstract
	Nomenclature of main used notations
	Introduction      
	Chapter 1 NONLINEAR SOUND WAVES IN INHOMOGENEOUS MOVING MEDIA (REVIEW)                            
	§ 1.1 Sonic boom in turbulent atmosphere
	1.1.1 Ecological aspects of the problem
	1.1.2 Outdoor and laboratory experiments

	§ 1.2 Mathematical models for nonlinear sound waves propagating in inhomogeneous moving media
	1.2.1 Wave equations in acoustics of inhomogeneous moving media
	1.2.2 Parabolic approximation for nonlinear sound waves in media with scalar              inhomogeneities
	1.2.3 Equations of nonlinear geometrical acoustics

	§ 1.3 Theoretical modelling of turbulent media
	§ 1.4 Conclusion 

	Chapter 2 PROPAGATION OF NONLINEAR N-WAVES IN A TURBULENT VELOCITY FIELD (laboratory-scaled experiment)
	§ 2.1 Generation and measurement of fully developed turbulent field 
	2.1.1 Experimental setup
	2.1.2 Measurement of the turbulent field parameters

	§ 2.2 Acoustic measurements
	2.2.1 Experimental setup
	2.2.2 Characteristics of N-waves measured without turbulence

	§ 2.3 Analysis of the effects of turbulence on N-waves
	2.3.1 Typical measured waveforms. Estimation of the focusing zone width
	2.3.2 Effect of the turbulence intensity on the N-wave statistics, average and peak characteristics 
	2.3.3 Effect of propagation distance through turbulent medium on the statistics, average and peak characteristics of the acoustic N-wave

	§ 2.4 Characteristic scales: atmosphere and laboratory experiment
	§ 2.5 Conclusion

	Chapter 3 MEASUREMENT AND MODELLING OF SPHERICALLY DIVERGING SHOCK PULSES IN RELAXING AIR. CALIBRATION OF THE MICROPHONE. 
	§ 3.1 Acoustic measurements. Mean and peak characteristics of the N-wave parameters
	§ 3.2 Theoretical model 
	3.2.1  Modified Burgers equation for divergent waves in relaxing medium
	3.2.2 Numerical algorithm 
	3.2.3 Effects of nonlinearity, thermoviscous absorption and relaxation on the acoustic wave propagation 

	§ 3.3 Calibration of measuring system based on nonlinear effects
	§ 3.4 Amplitude and phase frequency characteristics of measuring system
	§ 3.5 N-wave characteristic parameters. Comparison of experimental data with the results of numerical modelling
	§ 3.6 Conclusion

	Chapter 4 NONLINEAR EVOLUTION EQUATION OF KHOKHLOV- ZABOLOTSKAYA TYPE FOR THE DESCRIPTION OF ACOUSTIC WAVE PROPAGATION IN INHOMOGENEOUS MOVING MEDIA
	§ 4.1 Theoretical model. Parabolic equation for nonlinear sound waves in inhomogeneous moving media.
	§ 4.2  Self similarity property of the KZK type equation
	§ 4.3  Numerical algorithms
	4.3.1 Frequency domain approach to model periodic waves with shocks
	4.3.2 Time domain approach to model propagation of single shock pulses

	§ 4.4 Benchmark solutions and validation of the model 
	§ 4.5 Conclusion

	Chapter 5 NONLINEAR AND DIFFRACTION EFFECTS DURING THE PROPAGATION OF ACOUSTIC SIGNALS IN RANDOMLY INHOMOGENEOUS MOVING MEDIUM(Numerical modelling)
	§ 5.1 Periodic waves
	5.1.1 Nonlinear versus linear effects of random focusing in an inhomogeneous moving medium
	5.1.2 Effect of the transverse component of turbulent velocity field: vector versus scalar contributions of inhomogeneities
	5.1.3 Diffraction effects: ray tracing and acoustic field patterns obtained with the KZK equation
	5.1.4 Effect of spatial correlation lengths and intensity of the turbulence on acoustic field characteristics

	§ 5.2 Acoustic pulses. N-waves
	5.2.1 Parameters of simulations, 2D patterns of randomly inhomogeneous velocity field
	5.2.2 Diffraction effects: ray tracing and acoustic field patterns obtained with the KZK equation
	5.2.3 Nonlinear versus linear effects on random focusing in an inhomogeneous medium
	5.2.5 Effect of the transverse component of turbulent velocity: vector versus scalar contributions of inhomogeneities
	5.2.6 Effect of spatial correlation lengths and turbulent kinetic energy distribution law on acoustic field characteristics

	§ 5.3 Comparison of numerical model results with experimental data
	§ 5.4 Conclusion
	CONCLUSION 
	Appendix A : GEOMETRICAL ACOUSTICS APPROACH
	Appendix B : NUMERICAL GRID STEPS
	Appendix C : SYNTHÈSE DES RÉSULTATS
	LIST OF FIGURES
	LIST OF REFERENCES





