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Résumé 

Dans le secteur de loisirs il y a un nombre considérable 

d’enregistrements numériques musicaux produits, diffusés et échangés qui 

favorise la demande croisante de services intelligents de recherche de 

musique. La navigation par contenu devient cruciale pour permettre aux 

professionnels et également aux amateurs d’accéder facilement aux quantités 

de données musicales disponibles. Ce travail présente les nouveaux 

descripteurs de contenu musical et mesures de similarité qui permettent 

l’organisation automatique de données musicales (recherche par similarité, 

génération automatique des playlistes) ainsi que l’étiquetage (classification 

automatique en genres). Ce travail s’intéresse au problème de la construction 

des descripteurs du point de vue musical en complément des caractéristiques 

spectrales de bas-niveau. Plusieurs aspects d’analyse musicale, telles que 

l’analyse du signal où une nouvelle technique de transformation fréquentielle 

à résolution variable est proposée et décrite. Le traitement de niveau plus 

haut touche aux aspects de l’extraction des connaissances musicales. Cette 

thèse présente les algorithmes de détection de coups (beats) et d’extraction de 

fréquences fondamentales multiples. Les deux algorithmes sont basés sur la 

transformation à résolution variable proposée. Les informations issues de ces 

algorithmes sont utilisées dans la construction des descripteurs musicaux, 

représentés sous forme d’histogrammes (nouvel histogramme rythmique 2D 

qui permet d’estimer directement le tempo, et les histogrammes de succession 

et profil de notes). Deux applications majeures qui utilisent les 

caractéristiques mentionnées sont décrits et évaluées dans cette thèse. 
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Summary 

As a major product for entertainment, there is a huge amount of digital 

musical content produced, broadcasted, distributed and exchanged. There is a 

rising demand for content-based music search services. Similarity-based 

music navigation is becoming crucial for enabling easy access to the ever-

growing amount of digital music available to professionals and amateurs 

alike. This work presents new musical content descriptors and similarity 

measures which allow automatic musical content organizing (search by 

similarity, automatic playlist generating) and labeling (automatic genre 

classification). The work considers the problem of content descriptor building 

from the musical point of view in complement of low-level spectral similarity 

measures. Several aspects of music analysis are considered such as music 

signal analysis where a novel variable resolution transform is presented and 

described. Higher level processing touches upon the musical knowledge 

extraction. The thesis presents algorithms of beat detection and multiple 

fundamental frequency estimation which are based on the variable resolution 

transform. The information issued from these algorithms is then used for 

building musical descriptors, represented in form of histograms (novel 2D 

beat histogram which enables a direct tempo estimation, note succession and 

note profile histograms etc.). Two major music information retrieval 

applications, namely music genre classification and music retrieval by 

similarity, which use aforementioned musical features are described and 

evaluated in this thesis. 



 

 v 

Acknowledgments 

There are many people who were accompanying me and made this 

dissertation possible, and whom I would like to express my gratitude. 

This work has been done at the Department of Mathematics and 

Informatics, Ecole Centrale de Lyon, France, during the period of 2003-2007.  

First of all I would like to thank my supervisor Prof. Liming Chen for 

giving me the opportunity to work in the research team of ECL and for 

supporting my work during the whole period.  

I would like to thank my master thesis supervisor Prof. Evgeny Bovbel 

from the Department of Radio Physics, Belarusian State University, Belarus. 

Thanks to him and other people from the Department I could join the 

research team of ECL. 

I would like to thank Gaël Richard from l’Ecole Nationale Supérieure 

des Télécommunications (ENST) and François Pachet from SONY CSL who 

were so kind as to agree to act as reviewers for this thesis. In the same 

context I would like to thank Myriam Desainte-Catherine from the 

Laboratoire Bordelais de Recherche en Informatique (LaBRI) for agreeing to 

take part in the examination jury. 

It was a great pleasure to work in the research team at the Department 

of Mathematics and Informatics in Ecole Centrale de Lyon. I would like to 

personally thank Hadi Harb for many constructive discussions. Dzmitry 

Tsishkou and Viacheslau Parshyn were my colleagues, friends, and bureau 

companions during the period of thesis. Their company was always a pleasure 

for me. I thank all MathInfo department members $ Christian and Colette 

Vial, Mohsen Ardebillian, Alexandre Saidi, Emmanuel Dellandrea and all the 

others. Special thanks goes to always helpful secretaries of the department: 

Franƒoise Chatelin and Isabelle San-Jose. 

I am very grateful to my friends for being who they are, especially Oleg 

Kotov for his valuable ideas in music signal processing, and Sergei 

Zhukovsky for helping with manuscript verifications. Finally I want to thank 

people who are the most important for me $ my parents Valery and Galina 

Paradzinets and my sister Tatsiana for all their love and warm 

encouragements. Though they are far away, they are always with me. Last 

but certainly not least, I would like to express my warmest gratitude to my 

dear wife Katsiaryna for her love, support and understanding. 

 



 

 

 

vi 

This page is intentionally left blank 

 



 

 vii 

Table of contents 

 

RESUME ......................................................................................................................................III 

SUMMARY .................................................................................................................................. IV 

ACKNOWLEDGMENTS ............................................................................................................. V 

1. INTRODUCTION................................................................................................................... 2 

1.1. RESEARCH TOPIC.............................................................................................................. 2 
1.2. PROBLEMS AND OBJECTIVES............................................................................................. 2 
1.3. OUR APPROACH AND CONTRIBUTIONS............................................................................... 3 
1.4. ORGANIZATION OF THE MANUSCRIPT................................................................................. 5 
1.5. LIST OF PUBLICATIONS......................................................................................................5 

2. PROBLEM OF MUSIC SIMILARITY AND RELATED WORK........ ................................ 7 

2.1. STATE OF THE ART............................................................................................................ 7 
2.1.1. Millions of audio features which are …similar......................................................... 9 
2.1.2. Spectral similarity................................................................................................. 11 

2.2. OUR APPROACH.............................................................................................................. 14 

3. MUSIC SIGNAL ANALYSIS............................................................................................... 17 

3.1. ABOUT MUSIC SIGNAL..................................................................................................... 17 
3.2. RELATED WORK.............................................................................................................. 19 

3.2.1. Fourier transform ................................................................................................. 20 
3.2.2. Wavelet transform................................................................................................. 22 

3.2.2.1 Continuous wavelet transform........................................................................................... 23 
3.2.2.2 Discrete wavelet transform................................................................................................ 25 

3.2.3. Other transforms and filter banks.......................................................................... 26 
3.2.3.1 Constant Q transform........................................................................................................ 26 
3.2.3.2 Other filter banks.............................................................................................................. 27 

3.2.4. Discussion: FFT vs WT for music signal analysis? ................................................ 28 
3.3. VARIABLE RESOLUTION TRANSFORM.............................................................................. 31 

3.3.1. Building Variable Resolution Transform ............................................................... 31 
3.3.1.1 The basis.......................................................................................................................... 31 
3.3.1.2 Logarithmic frequency sampling....................................................................................... 33 
3.3.1.3 Varying the mother function ............................................................................................. 37 

3.3.2. Properties of the VR transform..............................................................................38 
3.3.3. Computation......................................................................................................... 44 
3.3.4. Discussion ............................................................................................................ 45 

3.4. APPLICATION TO SPECTRAL SIMILARITY........................................................................... 47 
3.5. CONCLUSION.................................................................................................................. 48 

4. RHYTHM-RELATED SIMILARITY FEATURES................. ............................................ 51 

4.1. RELATED WORK.............................................................................................................. 51 
4.2. OUR VRT BASED APPROACH FOR BEAT CURVE EXTRACTION............................................. 54 

4.2.1. An intuitive approach............................................................................................ 54 
4.2.2. Procedure of beat curve extraction........................................................................ 56 
4.2.3. Discussion: VRT versus FFT based techniques...................................................... 57 

4.3. RHYTHMIC FINGERPRINT................................................................................................. 58 
4.3.1. 2D beat histogram ................................................................................................ 58 
4.3.2. Rhythmic similarity measure ................................................................................. 61 



 

 

 

viii 

4.4. A 2D BEAT HISTOGRAM BASED TEMPO ESTIMATION ALGORITHM AND ITS EVALUATION ......65 
4.4.1. A 2D beat histogram based tempo estimation algorithm .........................................65 
4.4.2. Experimental evaluations.......................................................................................66 

4.5. CONCLUSION...................................................................................................................71 

5. MELODY-RELATED SIMILARITY FEATURES................. .............................................73 

5.1. RELATED WORK ..............................................................................................................73 
5.2. OUR VRT-BASED MULTIPLE F0 ESTIMATION ALGORITHM ..................................................74 

5.2.1. Principle and procedure ........................................................................................74 
5.2.2. Experimental evaluation ........................................................................................78 

5.3. MELODY-RELATED SIMILARITY FEATURES........................................................................81 
5.3.1. Note profile histogram...........................................................................................82 
5.3.2. Note succession histogram.....................................................................................84 
5.3.3. Timbre histogram ..................................................................................................85 

5.4. CONCLUSION...................................................................................................................86 

6. APPLICATIONS AND EVALUATION ...............................................................................88 

6.1. AUTOMATIC GENRE CLASSIFICATION................................................................................88 
6.1.1. The problem ..........................................................................................................88 
6.1.2. Related work..........................................................................................................89 
6.1.3. Principle and architecture of our classification system...........................................90 

6.1.3.1 Single-classifier system .................................................................................................... 91 
6.1.3.2 Multi-expert classification system..................................................................................... 93 

6.1.4. Experimental results ..............................................................................................94 
6.1.4.1 Reference database........................................................................................................... 95 
6.1.4.2 Experimental results by single classifiers........................................................................... 96 
6.1.4.3 Experimental results by Multi-expert system ................................................................... 100 
6.1.4.4 Discussion...................................................................................................................... 104 

6.2. MUSIC SEARCH BY SIMILARITY.......................................................................................105 
6.2.1. The problem ........................................................................................................105 
6.2.2. Principle and architecture of our combination system of similarity measures........106 
6.2.3. Experimental results ............................................................................................107 

6.2.3.1 Evaluation method.......................................................................................................... 107 
6.2.3.2 Listening test evaluation ................................................................................................. 109 
6.2.3.3 Objective evaluation....................................................................................................... 113 
6.2.3.4 MIREX2007 Audio Music Similarity and Retrieval......................................................... 114 
6.2.3.5 Discussion...................................................................................................................... 118 

6.3. CONCLUSIONS...............................................................................................................119 

7. CONCLUSIONS AND OUTLOOK ....................................................................................121 

8. REFERENCES ....................................................................................................................124 

LIST OF FIGURES.....................................................................................................................132 

LIST OF TABLES.......................................................................................................................137 

 

 



 

 

 

 

 

 

 

 

 

 

Introduction 

 



 

 

 

2 

Music is what feelings sound like   

Unknown Author 

1. Introduction 

1.1. Research Topic 

As a major product for entertainment, there is a huge amount of digital 

musical content produced, broadcasted, distributed and exchanged. There is a 

rising demand for content-based music search services. Similarity-based 

music navigation is becoming crucial for enabling easy access to the ever-

growing amount of digital music available to professionals and amateurs 

alike. A professional user, such as a radio programmer, may want to search 

for a different interpretation of one song to include in a radio playlist. In 

addition, a radio programmer has the need to discover new songs and artists 

to help his listeners to discover new music. The music amateur on the other 

hand has different needs, ranging from active music discovery for the fans, 

to the simple seed song playlist generation of similar items. Such ways to 

organize musical collections as genre classification and title structuring are 

important as they facilitate music navigation and discovery. 

Manual indexing of audio content is highly time-consuming and usually 

not compatible with the huge amount of audio data. In order to make high 

quality annotations musical experts are required. The need for experts 

combined with the huge amount of data to be annotated makes manual 

indexing hard to realize. As a consequence, systems that use human expert 

judgments exist but they are not numerous (e.g. All Music Guide and Music 

Genome Project).  

The aim of this work is to develop new musical content descriptors and 

similarity measures which will allow automatic musical content organizing 

(search by similarity, automatic playlist generating) and labeling (automatic 

genre classification). We tried to consider the problem of content descriptor 

building from the musical point of view in addition to low-level spectral 

similarity measures. 

1.2. Problems and Objectives 

As compared to a vocal signal, a music signal is likely to be more 

stationary and posesses some very specific properties in terms of musical 

tones, intervals, chords, instruments, melodic lines and rhythms, etc. [TANG 

93]. While many effective and high performance music information retrieval 

(MIR) algorithms have been proposed [CAS 05; LOG 01; MAN 05; MCK 03; 

MEN 05; SCAR 05; TZAN 02; WEST 04], most of these works unfortunately 

tend to consider a music signal as a vocal one and make use of MFCC-based 
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features which are primarily designed for speech signal processing. Mel 

Frequency Cepstrum Coefficients (MFCC) was introduced in the 60’s and 

used since that time for speech signal processing. The MFCC computation 

averages spectrum in sub-bands and provides the average spectrum 

characteristics. Whereas they are inclined to capture the global timbre of a 

music signal and claimed to be of use in music information retrieval [FOOT 

97; LOG 00], they cannot characterize the aforementioned music properties as 

needed for perceptual understanding by human beings and quickly find their 

limits [AUCO 04]. Recent works suggest combining spectral similarity 

descriptors with high-level analysis in order to overcome existing ceiling 

[PAMP 06]. 

 The objective of this work is music retrieval by similarity and 

automatic labeling (music genre classification) by introducing an approach to 

high-level musical analysis.   

1.3. Our Approach and Contributions 

We propose an approach based on music features and corresponding 

similarity measures for music information retrieval. While popular spectrum-

related techniques tend to characterize music timbre properties, we propose 

to complete them by musical features which can help to overcome the 

existing limits and, hence, to enhance the performance of music information 

retrieval algorithms. In this work, we suggest extracting music properties 

such as rhythmic, melodic, tonality and timbre fingerprints for automatic 

music search by similarity as well as automatic classification.  

The Fast Fourier Transform and the Short-Time Fourier Transform 

have been the traditional techniques in audio signal processing. This classical 

approach is very powerful and widely used owing to its great advantage of 

rapidity. However, a special feature of musical signals is the exponential law 

of notes’ frequencies. The frequency and time resolution of the FFT is linear 

and constant across the frequency scale while the human perception of a 

sound is logarithmic according to Weber-Fechner law (including loudness and 

pitch perception). Indeed, as it is well known, the frequencies of notes in 

equally-tempered tuning system in music follow an exponential law (with 

each semi-tone the frequency is increased by a factor of 21/12). If we consider 

a frequency range for different octaves, this frequency range is growing as 

the number of octave increases. Thus, to cover a wide range of octaves with 

a good frequency grid large sized windows are necessary in the case of FFT; 

this affects the time resolution of the analysis. On the contrary, the use of 

small windows makes resolving frequencies of neighboring notes in low 

octaves almost impossible. The ability of catching all octaves in music with 

the same frequency resolution is essential for music signal analysis, in 

particular construction of melodic similarity features. Hence, as the basis of 

our work in music feature based MIR, we propose a new music signal 
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analysis technique by variable-resolution transform (VRT) particularly 

suitable to music signal. 

Our VRT is inspired by Continuous Wavelet Transformation (CWT) 

introduced 20 years ago [KRON 87] and designed in order to overcome the 

limited time-frequency localization of the Fourier-Transform for non-

stationary signals. Unlike classical FFT, our VRT depicts similar properties as 

CWT, i.e. having a variable time-frequency resolution grid with a high 

frequency resolution and a low time resolution in low-frequency area and a 

high temporal/low frequency resolution on the other frequency side, thus 

behaving as a human ear which exhibits similar time-frequency resolution 

characteristics [TZAN 01].  

The Algorithms proposed in this work are all based on our VRT and can 

be divided into 3 groups according to their purposes: 1) spectral features 

extraction (used in segmentation task in [PAR 05] and music structuring task 

as well, which are not considered in this thesis), 2) beat detection and 3) 

automatic fundamental frequency (f0) estimation. The beat detection 

algorithm issues a beat probability curve which is then transformed into 

rhythmic similarity features. The f0 estimation algorithm delivers f0 or note 

candidates as well as relative amplitudes of their partials.  This information 

constructs melodic, tonality and timbre similarity features. Since these 

features are presented in the form of histograms, we also consider and apply 

various simple and efficient histogram comparison techniques.   

Our similarity measures have been evaluated in several musical 

information retrieval applications such as automatic genre classification, 

listening test, reinterpreted compositions search and playlist relevance 

analysis. In the case of genre classification these similarity measures were 

combined with classical spectrum-based PGM-MLP [HARB 03] features and 

have shown a significant improvement of classification rates. 

The listening test had an objective of evaluating the quality for the 

automatically generated lists of similar musical titles. The overall evaluation 

score as well as the score distribution have been obtained for various musical 

similarity measures and their combinations. 

Playlist relevance analysis and reinterpreted compositions search are a 

kind of an objective evaluation of the similarity computation approaches. In 

playlist relevance analysis the number of musical titles in similarity playlists 

belonging to one artist or one genre were considered. 

Our VRT has also been used in other related applications such as audio 

track segmentation in video content analysis and has shown promising results 

[PAR 05]. However, the main drawback of VRT is the burden of heavy 

computation which was partly overcome by using low-level programmed 

algorithms. 
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1.4. Organization of the manuscript 

The thesis is organized into 5 major chapters starting from the definition 

of the problematic and description of related work in Chapter 2, then 

ascending different levels of musical signal analysis and finishing by its direct 

applications. 

The Chapter 3 starts from a description of musical signal specificity. In 

the relation to musical signal properties various approaches to signal analysis 

are discussed. Finally, the chapter presents a technique of variable resolution 

transform which is then used across the whole thesis. 

The next Chapter 4 passes from the signal analysis to extraction of 

rhythmical properties of a music signal. At this stage an algorithm of rhythm 

detection is presented and partly evaluated. The information delivered by the 

aforementioned rhythmic analysis algorithm is subsequently involved in the 

construction of rhythmical similarity features. A small evaluation of tempo 

estimation is carried out in this chapter. 

Chapter 5 touches upon melodic-related similarity aspects. The chapter 

starts with a description of a multiple-f0 extraction algorithm and its 

evaluation. The algorithm extracts pitch candidates together with their 

relative harmonic amplitude. The pitch candidates are then forming melodic-

related fingerprints such note succession histogram. 

Finaly, Chapter 6 is dedicated to applications of musical similarity 

measures. Two of them are considered $ automatic music genre classification 

and music retrieval by similarity. Evolutions of both applications are given. 

1.5. List of publications 

Most of the work presented in this thesis is not published yet.  The 

following conference publications only partially cover the various matters 

presented within this manuscript. Several journal papers are in preparation. 

• A Paradzinets, O. Kotov, H Harb, L. Chen., Continuous Wavelet-like Transform Based 
Music Similarity Features for Intelligent Music Navigtion.  Proceedings of CBMI07, 
Bordeaux, France.   2007. 

• Kotov O., Paradzinets A., Bovbel E. Musical Genre Classification using Modified Wavelet-
like Features and Support Vector Machines.  Proceedings of EuroIMSA, Chamonix, France. 
2007 

• Paradzinets A., Harb H., Chen L., “Use of Continuous Wavelet-like Transform in Automated 
Music Transcription”, Proceedings of EUSIPCO 2006 

• Parshin V., Paradzinets A., Chen L. Multimodal Data Fusion for Video Scene Segmentation, 
Proceedings of VIS 2005 

• Paradzinets A., Chen L., Bovbel E. (2004).  Histogram-Based Algorithm for Speaker 
Segments Regroupment in Audio Databases Indexing Applications. In proceedings of RIAO, 
pp 793-799,  April 26-28, 2004, Avignon – France, 2004 
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2. Problem of music similarity and related work 

The ocean of music similarity search application is immense. One can 

imagine a music expert, or just an amateur, browsing a many-thousand files 

music collection and wishing to find music of a particular kind or spirit. The 

meta-data which are present nowadays bring very poor aid in this case. 

Navigation by an artist or pre-defined genre can hardly cover needs of 

intelligent navigation. For example, a fan may be looking for music similar to 

the one he likes but interpreted by a different orchestra or group. 

One can imagine a radio-programmer, doing the same work but in 

different situation $ programming playlists which will follow a defined 

format of music. 

A music-selling online store is a direct application, where customers 

could be proposed to listen to/buy music which is similar to the music he or 

she has just purchased. There are means to use statistical information of a 

kind œthose who had bought this also bought thatB. These methods, however, 

need a great number of transactions in order to obtain meaningful statistics 

and hence to be effective. Moreover, these methods tend to be biased towards 
famous titles. 

Search by similarity can have its perfect place in portable mp3 players 

where it could be found behind an intelligent shuffle function. 

In general, similarity of music is based on subjective judgments, making 

it difficult to define. We can attempt to define the musical similarity as the 

feature that lets a human subject create a œplaylistB of music pieces based on 

his/her particular taste. Musical similarity can be expressed in musical terms, 

i.e. musical tones, intervals, chords, instruments, melodic lines and rhythms, 

etc. Additional music feature which can be mentioned is the timbre. The 

timbre is defined as the feature that permits humans to discriminate two 
sound objects having the same pitch. 

Automatic music similarity computation can be defined as the problem 
of musical feature extraction, building models and comparing them. 

2.1. State of the art 

There exists a lot of works in the literature dedicated to automatic 

computation of music similarity. The most popular approach consists of 

(Gaussian Mixture Modeling) GMM modeling of several MFCC-like 

characteristics. Pachet et al. within the framework of the CUIDADO project 

[PACH 03], propose a combination of similarity measurements based on GMM 

modeling and co-occurrence analysis.  [LOG 01] uses MFCC characteristics 

with GMM modeling and the distance œEarth Moving DistanceB to estimate 

the acoustic similarity between two segments of music.  Within a peer to peer 
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framework, [B AUM 03] uses basic characteristics: MFCC and GMM for the 

music search by similarity.  

All the previous works thus build their models over MFCC 

characteristics which only capture somehow the global timbre property of a 

music signal while mostly omitting other major music properties such as 

melody, harmony and rhythm. They differ in the way of computing similarity 
distances. 

 In a similar context, [TZAN 03] proposes to describe a segment of music 

by a texture annotation and values of averages and variances of the 

traditional characteristics like MFCC, spectral flux, spectral centroid and 

some musical context characteristics such as beat histogram and histogram of 

pitch. This approach is an interesting one since it tries combining implicitly 

spectral and pro-musical features. 

Another interesting approach [B ERE 03] proposes to make an anchor 

model for the music. A segment of music is characterized by a vector 

describing its membership to anchors.  The analysis of vectors describing the 

segments of music makes it possible then to measure the acoustic similarity 

between two segments. The problem of the approach is that it is still MFCC-

based.  

Cheng Yang presents in [YANG 02] an algorithm for selection of 

spectrum locations which are most likely to contain relevant information.  A 

spectral signature extracted from these locations is then used as the basis of 

a signature for the estimation of a similarity between two music segments.  

The author also shows that the problem of search for various interpretations 
of a work is a difficult problem which is unsolved by their algorithms. 

A pioneer work in this field is MuscleFish [WOLD 96] which make use 

of averages, variances and correlations of features such as loudness, 

brightness bandwidth and others to characterize a segment of sound.  The 

Euclidian distance is applied to estimate the similarity between two sound 

segments. The characteristics which are used are purely spectral and hence 
cannot bring any musical knowledge to similarity models. 

In more recent works, [AUCO 05] propose an interesting approach of 

timbre related music similarity using Gaussian Mixture Models. In this work 

authors propose to model the global timbre of musical pieces and compute 

similarity between models. Further evolution of these methods is presented in 

[PAMP 05]. Authors introduce two new descriptors œFocusB and œGravityB. 

However, a detailed consideration of these works confirms that the basic 

technique behind is always Mel-Frequency Cepstrum Coefficients. The 

novelty of these works is somehow the way for further processing, i.e. model 

building and their comparison. Indeed, the first work is a very popular one 

(based on classical methods). At the same time, the notion of global timbre is 

rather not clear while the timbre itself is related to the way in which two 
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instruments sound differently for a human listener. From the point of view of 

global timbre, a melody played by the same instrument but transposed by 

some number of intervals will have different timbre while for a human 

listener it is still the same instrument and the same timbre. The question of 

perceptual timbre similarity is discussed in [MCAD 92]. In their work the 

authors develop the notion of timbre distances with the aim of testing 

whether musician and nonmusician listeners used the relations defined by the 

perceptual space to perform an analogies task of the sort: timbre A is to 
timbre B  as timbre C is to which of two possible timbres, D or D'. 

Many other works propose various acoustic measurements to catch the 

different aspects of music similarity. B ut the difficulty is always that the 

perceptive similarity is semantic and holds a good part of subjectivity. It was 

suggested by authors in [AUCO 04] the pure acoustic or spectral similarity 

quickly finds its limits. Authors of state-of-the-art works generally agree that 

by using the majority of MFCC-based similarity features it is not possible to 
accurately describe musical similarity aspects [PAMP 06].  

Lots of other temporal, spectral and harmonic features are proposed in 
the context of sound description (see e.g. [PEET 04]).  

During the last few years scarce works appeared which try to describe 

musical signal using musical context descriptors. One of such works is 

presented in [GOME 06]. The work considers aspects of high level musical 

similarity by musical tonality. Algorithms of tonality induction and their 

evaluation are described. Authors tried to apply methods of tonality 

comparison to intelligent music navigation problem and confirmed the 

validity of such application. It reinforces the evidence that classical MFCC-

based and other related approaches must be complemented by musical-level 

descriptors in order to come closer to the human perception of music 
similarity. 

2.1.1.  Millions of audio features which are …similar 

Here we list some of the basic spectral features based on the magnitude 

of the FFT (STFT) spectrum. These features are widely known and their 
definition can be found in many works (see e.g. [TZAN 02a]) 

• Spectral Centroid 

The spectral centroid is defined as the center of gravity of the 

magnitude spectrum: 

[ ]
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here St[n] is the magnitude of the Fourier transform of the time t at 

frequency bin n. The spectral centroid has been shown to have a relation 

with musical instrument timbre. It was used for example in [WOLD 96] for 
sound classification or music genre classification [TZAN 02]. 

• Spectral Flux 

The spectral flux is defined as follows: 

[ ] [ ]( )∑
=

−−=
N

n
ttt nNnNF

1

2
1  (2.2) 

It is a squared difference of normalized spectrum Nt[n] between 

successive frames t and t-1. As the spectral centroid, the spectral flux has 

been shown to have a relation to the instrument timbre. In [HAWL 93] it was 

used for harmonic music detection. It was used in music genre classification 
tasks [TZAN 02] as well. 

• Spectral Rollof 

The spectral rolloff is a measure of spectral shape which denotes a 

frequency Rt below which 85% of the spectrum distribution is concentrated. 
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= =
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• Zero Crossing Rate 

Zero-crossing rate is the number of times when the signal changes its 

sign during one time period. It is used for example in such works on 

music/speech classification [SAUN 96] and in some works dedicated to music 
classification as well. 

• 4Hz Modulation  Energy 

This measure is mainly used to characterize speech. Speech has a 

tendency to have a 4Hz modulation [HOUT 73]. 4Hz modulation energy was 
found to be useful in speech detection [SCHE 97].  

• Mel-Frequency Cepstrum Coefficients (MFCC) 

We want to mention MFCC individually as nowadays a vast number of 
music information retrieval works are based on them.  

Mel-Frequency Cepstrum Coefficients are the most known from the 

family of cepstral characteristics. These are cepstral coefficients obtained 

from a spectrum filtered by Mel scale [STEV 40]. The Mel scale is a scale that 

reflects characteristics of human perception. It affirms that high frequencies 

are caught by a human ear with less precision in comparison to low 
frequencies.  

The MFCC are obtained as follows: 



2. Problem of music similarity and related work 

 

11 

1. Divide signal into frames. 

2. Compute the FFT to obtain the amplitude spectrum. 

3. Take the logarithm. 

4. Apply the Mel filter. 

5. Take the Discrete Cosine Transform. 

The MFCC are widely used in speech modeling and recognition. They 

also were claimed to be of use in music information retrieval [FOOT 97; LOG 

00]. The work [LOG 00] which is always referred as a basic work proving the 

applicability of MFCC in music modeling stays in the context of speech / 

music discrimination. It makes a suggestion that the application of Mel scale 
is at least not harmful for this task. 

MFCC was initially designed for speech signal analysis and describes the 

timbre aspect of a speech signal. As music signal is likely to be more 

stationary as compared to speech signals, its application for music analysis 

certainly also captures some timbre aspects of music signal. However, the 

other three major properties of a music signal such as rhythm, melody and 

harmony are not modeled by MFCC based features. As highlighted by several 

works ([HARB  03; PAMP 06] etc), further advances in music analysis or 

retrieval clearly needs to go beyond MFCC based features and to consider 

some other music based features for describing rhythm, melodic line and 
harmonic properties.   

A recent work [PACH 07] proposes a method of automatic construction 

of well-adapted solutions by using several elementary mathematical and 

logical operators to combine basic features like pitch, centroid, chroma etc., 

pointing out the fact that the number of all possible acoustic features is 

hardly calculable. Their proposed algorithms are able to search in a space of 

1020 features and to construct effective analytical features using samples 

from training database. However, such search space is constructed from 

possible combination of a very limited number of initial features. B y an 

initial feature we mean a characteristic which is extracted directly from the 

signal or its spectrum (like MFCC). All further derivatives of the kind 

AVG(FFT(FFT(MFCC())) are considered to have one origin and hence to be 
strongly related to it. 

2.1.2. Spectral similarity 

In most of the cases the spectral similarity is calculated in the following 

ways. First, spectral vectors are extracted by means of the Short Term 

Fourier Transform. The original spectrum is further filtered by a filter bank 
containing 20 filters distributed based on the Mel scale.    

In the work [HARB  01] the KullB ack-Leibler (KL) distance was used in 

audio segmentation, and it was found that this distance is suitable for the 
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problem of audio similarities. The reasons are that the segmentation is a 

similarity problem between consecutive windows and that KL distance 
enables the measure of dissimilarity between two spectral distributions.     

The KL distance originates from the information theory [COVE 91]. It is 

a distance between two random variables. The original KL distance doesn’t 

have the properties of a distance, but the symmetric KL is a distance. In the 

case of Gaussian distribution of the random variables the symmetric KL 

distance is computed by: 
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(2.4) 

With YXYX andµµσσ ,,,  are respectively the standard deviation of X and 

Y and the mean of X and Y. 

In the case of audio similarity, X and Y are sets of feature vectors 

obtained from window X, and window Y (several seconds for the two 

windows for instance). 

The long term similarity or the global similarity can be defined as the 

similarity that a human subject would find when listening to excerpts of 10 
to 20 seconds. Here are some long term similarities proposed by [HARB  03]. 

Two musical pieces A and B  can be segmented to twenty 1-second 

segments. Any segment from A can be similar to any segment from B , thus 

the Local Similarity (KL distance) can be calculated between all couples 

between B  and A. However, the problem is how to obtain a global similarity 
measure between A and B  based on their local similarities?  

The KL distances between all couples of segments from A, and B , 
constitute a Local Similarity Matrix: 

••••
•
•
•

=
ABABAB

ABABAB

ABABAB

BA
KLKLKL

KLKLKL

KLKLKL

LSM
3,33,23,1

2,32,22,1

1,31,21,1

,

 

(2.5) 

Six features from the LSM matrix and other KL-based measures can be 

extracted. These features are: Homogeneity (H), Local Similarity (LS), Min 

Distance (MD), Sum Distance (SD), Local Similarity for Low Frequencies 

(LSLF), and Local Similarity for High Frequencies (LSHF). Each of the 
features is aimed at providing one aspect of acoustic similarity.  

• Homogeneity (H) 

The aim of the H feature is to measure how much A and B  are similar 

in their homogeneity behavior. For example, theoretically a HipHop music 

piece will have different homogeneity behavior than a Metal music piece. 
These measures are computed as follows: 
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• Matching (M) 

The Matching (M) feature describes the distance between the minimal 

values and their diagonal counterparts in LSM.  For example, if the 

component 
AB

jiKL , is the minimal value in row œiB, we measure |j-i|, and M is the 
average of |j-i| for all rows and columns in LSM.  

• Local Similarity (LS)  

The LS measure seeks a dynamic comparison of A and B . It is based on 

similarities between one block from A (respectively B ), with other blocks 
from B  (respectively A), taking the local minimum for 3 neighbors.  
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(2.7) 

• Min Distance (MD) 

The MD is the sum of the three minimum values in the LSM Matrix. 

Denote BAMD ,
1

, BAMD ,
2

 and BAMD ,
3

as the three minimal values in the LSM 

matrix. Thus the MD is simply the sum of these values. 

BABABABA MDMDMDMD ,
3

,
2

,
1

, ++=
 

(2.8) 

• Sum Distance (SD)  

The SD measures the similarity based on all the components of the LSM 
Matrix: 

∑∑=
i j

AB
jiBA KLSD ,,

 
(2.9) 

• Local Similarity for Low Frequencies (LSLF) 

LSLF is the LS feature but based on the KL distance calculation for 

frequencies below 1 KHz. It is targeted at concentrating the similarity 
towards low frequencies. 
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• Local Similarity for High Frequencies (LSHF) 

LSHF is the LS feature but based on the KL distance calculation for 

frequencies between 1 and 4 KHz. The goal of this measure is to target the 
similarity towards high frequencies. 

2.2. Our approach 

The number of ways to compute the similarity features of musical 

compositions is hardly countable. The main goal of constructing similarity 

features is to come as closer as possible to humans perception. Instead of 

turning in all senses the MFCC based features which capture in a certain 

way the timbre property of a music signal, we propose to complement them 

by the features characterizing music properties such as rhythm, melody and 
tonality.  

Extraction of several groups of features requires lower-level algorithm 

of musical content analysis which touches upon all stage of processing. The 

idea can be visualized by the following diagram (Figure 2.1). 

Music-based similarity Classical audio-based similarity 

5 Applications ⇒ playlists, genres Applications ⇒ playlists, genres 

4 Similarity modeling ⇒ distances Similarity ⇒ distances 

3 Music features extraction ⇒ chords, tonality, 
melody lines, tempo, etc 

Modeling ⇒ GMM, fluctuation 
patterns, etc… 

2 Music info computation ⇒ notes, beats Spectral features extraction ⇒ MFCC, ZCR 

1 Signal processing ⇒ spectrum Signal processing ⇒ spectrum 

 Figure 2.1. 5-level music-based similarity analysis dataflow model compared to audio-based 
similarity dataflow. 

In the Figure 2.1 we show our vision of music signal analysis in a music 

information retrieval process which is represented by 5 levels of treatment. It 

is compared to an approximate model of popular music analysis known in 

literature. In this thesis we are interested in all stages of our model starting 

from signal processing. The classical way of doing it is to use the FFT in 

order to obtain the spectrum of a signal. The advantages and disadvantages 

of these two approaches as well as the VRT technique we propose are 
discussed in Chapter 3. 

The next stage is the stage of musical information extraction. In the case 

of classical way of musical signal analysis the phase of musical information 

extraction does not have any direct analogue; instead the spectral features 

are extracted directly. The role of higher-level features in that case is played 
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by descriptive models such as GMM. We focus at the second stage on beat 

detection and multiple f0 estimation algorithms we have developed. These 

lower level algorithms do not provide musical similarity features, yet they 

provide the underlying information necessary for the construction of such 

features. The process of their computation and comparison is covered by the 

stages 3 and 4 of the model, which chapters 4 and 5 of this thesis are 

dedicated to. The chapter coverage is illustrated in Figure 2.2. 

 

Music-based similarity Chapter coverage 

Applications ⇒ playlists, genres Chapter 6 

Similarity modeling ⇒ distances 

Music features extraction ⇒ chords, tonality, melody 
lines, tempo, etc 

Music info computation ⇒ notes, beats 
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Signal processing ⇒ spectrum Chapter 3 

Figure 2.2. 5-level music similarity analysis dataflow and chapter coverage. 
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3. Music signal analysis 

The primary stage in every kind of audio based music information 

retrieval is signal data analysis. Some algorithms perform analysis in the time 

domain as for example several beat detection algorithms. B ut the majority of 

music information retrieval algorithms perform their computation in the 

frequency domain, or a time-frequency representation, to be exact. So, the 

performance of all further steps of processing is strictly dependent on the 

initial data representation. 

This chapter gives an introduction to signal treatment. It gives a brief 

coverage of the classical FFT-based approach and its drawbacks. As opposed 

to the FFT, the chapter describes the wavelet transform as a novel and 

promising instrument in musical signal processing. The chapter explains the 

main principle of classic wavelet transform. A novel variable resolution 

transform, which is introduced in this work, is also presented in this chapter. 

3.1. About music signal 

Music is an art form consisting of sound and silence expressed through 

time. Elements of sound as used in music are pitch (including melody and 

harmony), rhythm (including tempo and meter), structure, and sonic qualities 
of timbre, articulation, dynamics, and texture.1  

Melodies are usually sequences of pitches that are created in Western 

music with respect to scales and modes and having a certain rhythm. Scales 

and modes are notions of music theory which describe a set of notes involved 

in the play. In Western music there are 12 notes. An interval between 

neighbor notes is called semitone.  

For better understanding of particularity of music signal, let’s consider 

the following Figure 3.1 containing a musical excerpt expressed in a form of 

pattern. 

 

Figure 3.1. Typical music pattern. 

                                   
1 http://en.wikipedia.org/wiki/Music 
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The term pitch is directly related to frequency, the higher is the pitch $ 

the higher is the frequency. The relation between pitch and frequency is 
logarithmic.  








⋅+=
Hz

f
p

440
log1269 2  (3.1) 

In music, pitch is the perceived fundamental frequency.  Sounds of real 

instruments do not have single-frequency spectra, but rather comprise a 

packet of frequencies $ the fundamental one and its harmonics. The Figure 3.1 
would represent a spectrogram of a musical signal if the instruments in it 
had a single frequency in their spectrum. 

As we have noticed, musical signal have two main properties $ temporal 

and frequency granulation. In reality, we don’t speak about frequency 

granulation of musical signal since there could be a singing voice or 

percussion instruments in it. Speeding up or slowing down the signal also 

leads to shifts of note frequencies from their theoretical values corresponding 
to integer pitches. 

In comparison to speech signals music signals can be assumed to be 

more stationary (during one note or one chord the spectrum of the signal 

does not change much). Duration of notes can be considered to be around 

120-250 ms for 1/8 - 1/16 (quaver - semiquaver) at the most popular tempo 

of 120 B PM (the minimal duration of a note which could be found in music at 

120 B PM is then 65 ms for 1/32). Nevertheless, music signals may contain 

percussion instruments rapidly changing in time or of a very short duration. 

Singing voice of one or many persons may be also present. The second 

characteristic feature of a musical signal is multipitch. Music is usually 

represented by multiple simultaneous note events, such as chords. A chord 

may contain from 2 to many (>10) pitches at the same time. Some 

instruments may already contain multiple pitches in one note. These facts 

make musical spectrum much more complicated in the meaning of frequency 

contents in comparison to speech signals. Such complexity can be referred as 

timbre of the musical sound. The timbre characterizes each voicing 

instrument defined by its spectrum (presence of harmonic and inharmonic 

components) and envelope. The timbre allows us to distinguish different 
instruments. 

Unlike voicing instruments, percussion instruments in music may not 

have their fundamental frequency. Thus, they are undetermined-frequency 

instruments (no pitch can be perceived). As an example we can mention snare 

drums, hi-hats and cymbals. These instruments have mainly noisy 

components in their sound which are then superposed to voiced instruments 
and form more complex spectrum. 
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We have briefly described some specificities of a musical signal. In order 

to be able to extract its musical properties, a well adapted analysis tool is 

required which will resemble somehow the human auditory system. Human 

perception of pitch is linear, thus, the tool should have a logarithmic 

frequency scale. It is also known, that human ear is more sensitive to rapid 

changes in high frequencies and less sensitive to rapid changes in low 

frequencies. A tool with similar characteristics might be better suited for 

analysis of musical signals.  

In this work we consider by different level of analysis, starting from 

obtaining a musical spectrum to extraction of musical features and finally to 

building similarity models for different musical features and applying them 

to high-level music analysis such as automatic classification or similarity 

search. In this context, we are interested to have a tool with both frequency 

sampling suitable for analyzing notes in equal tempered note system and 

good frequency resolution in high frequency area since harmonic resolution is 

important as well. The tool must also provide acceptable time resolution, 
suitable for beat/onset detection.  

3.2. Related work 

There are plenty of works in the literature dedicated to musical signal 

analysis. The common approach is the use of FFT (Fast Fourier Transform) 

which has become a de-facto standard in music information retrieval 

community. The use of FFT seems straightforward in this field and relevance 

of its application for music signal analysis is almost never motivated.  

There are some works in music information retrieval attempting to 

make use of wavelet transform as a novel and powerful tool in musical signal 

analysis. However, this new direction is not very well explored. [TZAN 02] 

proposes to rely on discrete wavelet transform for beat detection. Discrete 

packet wavelet transform is studied in [GRIM 02] to build time and 

frequency features in music genre classification. In [KADA 92], wavelets are 
also used for automatic pitch detection. 

Spectrum analysis tools with geometric frequency spacing are well 

known. One of classic examples is Constant Q transform, considered further. 

Many other custom filterbank techniques have been proposed in literature. 

These are bounded versions of constant Q transform [KASH 85], fast filter 

banks [LIM 92] having the goal of minimizing frequency bins dispersion, 

bounded constant Q filter banks [DINI 07]. In fact, there is no universal 

analysis tool with ideal frequency grid. It is ether fast transform with linear 

or quasi-linear (linear within octaves) frequency grid or it is logarithmic 

frequency heavy computational solutions. Depending on target application, 
different solutions may perform better. 
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Another class of approaches to signal analysis is an analysis by modeling. 

The aim of these approaches is to approximate a multi-sinusoidal model to 

the signal issuing frequencies and phases of separate harmonic components. 

An example of such approach is described in [B ADE 02]. Although these 

methods represent a great interest in musical signal analysis, we are 
concentrated on spectrum based approaches in our work.  

3.2.1. Fourier transform 

As it is well known, Fourier transform enables a spectral representation 

of a periodic signal as a possibly sum of a series of sines and cosines. While 

Fourier transform gives an insight into the spectral properties of a signal, its 

major disadvantage is that a decomposition of a signal by Fourier transform 

has infinite frequency resolution and no time resolution. It means that we are 

able to determine all frequencies in the signal, but without any knowledge 

about when they are present. This drawback makes Fourier transform to be 

perfect for analyzing stationary signals but unsuitable for irregular signals 

whose characteristics change in time.  To overcome this problem several 

solutions have been proposed in order to represent more or less the signal in 

time and frequency domains. 

One of these techniques is windowed Fourier transform or short-time 

Fourier transform. The idea behind is to bring time localization into classic 

Fourier transform by multiplying the signal with an analyzing window: 

( ) ( ) ( )∫
∞

∞−

−−= dtetwtxX tjωτωτ ,  (3.2) 

where w(t) $ is a windowing function (usually Gauss window, Hamming 

or Hann function and many others. The same principle is applied in the 

discrete short-time Fourier transform. 

( ) [ ] [ ]∑
∞

−∞=

−−=
n

njemnwnxmX ωω,  (3.3) 

The problem here is that the short-time discrete Fourier transform has 

a fixed resolution. The width of the windowing function is a tradeoff between 

a good frequency resolution transform and a good time resolution transform. 

Shorter window leads to smaller frequency resolution but higher time 

resolution while larger window leads to greater frequency resolution but 

lower time resolution. This phenomenon is related to Heisenberg’s uncertainty 

principle which says that 

f
t

∆
∆ 1

~  (3.4) 
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where ∆t is a time resolution step and ∆f is a frequency resolution step. 

A classical example illustrating weakness of Fourier transform is two 

signals with two sine waves in it (Figure 3.2). The signal on figure a) is a sum 

of two sine waves while figure b) represents a signal where two sine waves 

follow each other. It can be noticed that their Fourier transforms (figures c 

and d correspondingly) have very few differences enabling discrimination of 

these two signals. 

 
Figure 3.2. Fourier transform of two test signals. The signal a) is composed with two superposed 

waves with different frequencies, b) the same waves, but concatenated one after another, c) d) their Fourier 
spectrum 

Of course, this example cannot be used to illustrate the weakness of the 

Fast Fourier Transform in music analysis applications (Fast Fourier 

Transform is a fast version of the discrete Fourier transform). For example, a 

512-sample window in FFT applied on 16kHz-sampled signal gives about 

30ms of time resolution which is sufficient for most of music applications 

where duration of notes can be considered to be around 50-200 ms. However, 

the frequency resolution step of 512-sample FFT is about a semi-tone in the 

3rd octave, what is obviously not enough. Usually short notes are notes which 

are involved in melodic lines (average-to-high frequencies) while long notes 
stand more often for bass lines (low frequencies).  

Remember that in our work the main goal is music analysis. In this 

respect, we consider a rather music-related example which illustrates 

specificities of musical signals. As it is known, the frequencies of notes in 

equally-tempered tuning system in western music follow a logarithmic law, 

i.e. adding a certain interval (in semitones) corresponds to multiplying a 

frequency by a given factor. For an equally-tempered tuning system a 

semitone is defined by a frequency ratio of 21/12. So, the interval between 
two frequencies is  
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If we consider a frequency range for different octaves, it is growing as 

the number of octave is higher. Thus, applying the Fast Fourier Transform 

we either lose resolution of notes in low octaves (Figure 3.3) or we are not able 

to distinguish high-frequency events which are closer in time and have 

shorter duration. 

 

Figure 3.3. Mismatch of note frequencies and frequency resolution of the FFT. 

Time-frequency representation, which can overcome resolution issues of 

the Fourier transform is Wavelet transform. Wavelets (literally œsmall 

wavesB) are a relatively recent instrument in modern mathematics.  

Introduced about 20 years ago, wavelets have made a revolution in theory 

and practice of non-stationary signal analysis [KRON 87; MALL 99]. Wavelets 

have been first found in the literature in works of Grossmann and Morlet 

[GROS 84]. Some ideas of wavelets partly existed long time ago. In 1910 Haar 

published a work about a system of locally-defined basis functions. Now these 

functions are called Haar wavelets. Nowadays wavelets are widely used in 

various signal analysis, ranging from image processing, analysis and synthesis 
of speech, medical data and music [KADA 92; LANG 98].   

3.2.2. Wavelet transform  

Wavelet transform is a form of time-frequency representation. It is 

divided into continuous and discrete subclasses. Wavelets are functions 

satisfying certain mathematical rules which are used to represent data or 

other functions as it was done by Joseph Fourier, who has proposed to 

represent all periodic functions from 0 to 2π  with an infinite sum of sines 

and cosines. 

For many decades researchers wanted more appropriate functions than 

sines and cosines $ the basis of the Fourier analysis $ to approximate choppy 

signals and functions. Wavelets are localized functions and therefore well-

suited for approximating data with sharp changes. 

Frequency resolution 

Notes’ frequencies 
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Reference fundamental works on wavelets are [COHE 92; DAUB  92; 

GROS 84; MALL 89] and many others. A work explaining the use of the 
continuous wavelet transform in signal analysis is, for example, [LANG 98]. 

 

3.2.2.1 Continuous wavelet transform 

Continuous wavelets transform of a function f(t)∈ L2(R) is defined as 

follows: 

( ) ∫
∞
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, ψ  (3.6) 

where a, b ∈ R, a ≠ 0. 

In the equation (3.6) ψ(t) is called basic wavelet or mother wavelet 

function (* stands for complex conjugate). Parameter a is called wavelet scale. 

It can be considered as analogous to frequency in the Fourier transform. 

Parameter b is localization or shift. It has no correspondence in the Fourier 
transform. 

The wavelet transform, primarily, is a correlation of a signal being 

analyzed with mother wavelet function, which is shifted and zoomed on its 

time axis. Mother wavelet function usually, but not necessarily, looks like a 

wave, faded to zero on its sides. Therefore, the window of short-time Fourier 
or Gabor transform is somehow included. 

Inverse integral wavelet transform is defined as  
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where Cψ  - is a normalizing factor defined as follows: 

∞<
Ψ

= ∫
∞

∞−

ω
ωψ dC

2

 (3.8) 

Inequality (3.8) is a condition for the existence of the inverse transform. 

Here Ψ(ω) stands for the Fourier transform of ψ(t). To satisfy the 

aforementioned expression, the Fourier transform of ψ(t) at zero frequency 

must be equal to zero. Hence, we can rewrite it as follows: 

( )∫
∞

∞−

= 0dttψ  (3.9) 

In other words, ψ(t) must be a wave, i.e. it must satisfy to zero mean 

condition. 
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It is sometimes necessary that wavelet function satisfy an equality to 

zero of higher moments: 

( )∫
∞

∞−

= 0dttt mψ  (3.10) 

Center 〈t〉  and radius ∆t of a function can be used in order to estimate 

its localization. 
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Effective width of a wavelet is usually taken as 2∆t . The same 

expressions are also true for the frequency axis: 
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Let’s consider now some examples of wavelets functions. 

• Mexican Hat wavelet 

 

 

( ) ( ) 22 2

1 tett −−=ψ  (3.15) 

The name of this wavelet comes from its shape. This kind of wavelets is 

obtained by differentiation of Gaussian exponents. MHAT wavelets are well 

localized in time and frequency domain. 
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• Morlet wavelet 

 

( ) ( )422
00

22 ααψ ktikt eeet −− −=  (3.16) 

Morlet wavelet is a Gaussian-modulated flat wave. Parameter α defines 

Gaussian’s width and k0 stands for frequency (usually taken k0=2π ). 

Parameter α adjusts time-frequency localization and hence time-frequency 

resolution scale of the transform. 

3.2.2.2 Discrete wavelet transform 

Discrete wavelet transform is a sampled version of the wavelet 

transform where sampling points are selected following the system (am, namb) 

with integers m,n ∉ Z. 

The discrete wavelet transform is often calculated by a pyramidal 

algorithm by passing a signal x(t) through a series of low-pass (g) and high-

pass (h) filters related to each other. The filter outputs are then downsampled 
by factor 2. 
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(3.17) 

 

Figure 3.4. Block diagram of DWT filter cascade. 

The decomposition is repeated by cascading filter pairs in a form of 

binary tree for further increase of frequency resolution. This tree is also 
called a filter bank. 
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Figure 3.5. Example of DWT filterbank. 

Discrete wavelet transform is mostly used in signal coding and data 
compression. 

A variety of discrete wavelet transform is wavelet packet transform (see 

e.g. [CODY 94; MALL 99]). Wavelet packet transform can tile the frequency 

space in a discrete number of intervals. It can be represented as a binary 

tree, defining subspaces of details WL, as illustrated in Figure 3.6. 

 

Figure 3.6. Example of a valid wavelet packet tree. 

Wavelet packets can be adapted for music analysis for example by 

defining Heisenberg boxes matching musical octaves and musical notes 
[GRIM 02]. 

3.2.3. Other transforms and filter banks 

3.2.3.1 Constant Q transform 

The idea to adapt the time/frequency scale of a Fourier-related 

transform to musical applications is not completely novel. A technique called 

Constant Q Transform [B ROW 91]  is related to the Fourier transform and it 

is used to transform a data series to the frequency domain. Like the Fourier 

transform a constant Q transform is a bank of filters, but contrary to the 

Fourier transform it has geometrically spaced center frequencies b

k

k ff 20 ⋅=  

(k = 0; … ), where b is the number of filters per octave. In addition it has a 

x[n] 

 g[n] 

 h[n] 

↓2 

1st level coefficients ↓2 

 g[n] 

 h[n] 

↓2 

↓2 

 g[n] 

 h[n] 

↓2 

↓2 

2nd level coefficients 

3rd level coefficients 

… 

0
LW  

0
2+LW  

2
2+LW  

2
3+LW  3

3+LW  6
3+LW  7

3+LW  



3. Music signal analysis 

 

27 

constant frequency resolutions ratio
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−= b

fR . Choosing appropriately k 

and f0 makes central frequencies to correspond to the frequencies of notes.  

In general, the transform is well suited to musical data (see e.g. [NAWA 

01], in [ESSI 05] it was successfully used for recognizing instruments),  and 

this can be seen in some of its advantages compared to the Fast Fourier 

Transform. As the output of the transform is effectively amplitude/phase 

against log frequency, fewer spectral bins are required to cover a given range 

effectively, and this proves useful when frequencies span several octaves. 

The downside of this is a reduction in frequency resolution with higher 
frequency bins.  

The transform mirrors the human auditory system, whereby at lower 

frequencies spectral resolution is better, whereas temporal resolution 

improves at higher frequencies, and so this kind of analysis makes sense for 

musical signal.  

In addition, the harmonics of musical notes form a pattern characteristic 

to the timbre of the instrument in this transform. Assuming the same relative 

strengths of each harmonic, as the fundamental frequency changes, the 

relative position of these harmonics remains constant. This makes 

identification of instruments much easier. In this extent it is similar to log-

sampled continuous wavelet transform with sinusoidal mother function. Its 
advantages and disadvantages we described in section 3.3. 

3.2.3.2 Other filter banks 

B esides constant Q transform there are bounded version of it (B QT) 

which use quasi-linear frequency sampling when frequency sampling remains 

linear within separate octaves. This kind of modification allows construction 

of medium complexity computation schemes in comparison to standard CQT. 

However, making the frequency sampling quasi-linear (within separate 
octaves) renders the finding of harmonic structure much more complex task. 

Fast Filter B anks are designed to deliver higher frequency selectivity 

maintaining low computational complexity. This kind of filter banks inherit 
all disadvantages of FFT in music analysis applications (discussed in š3.2.4). 

More advanced techniques, described for example in [DINI 07] are 

medium-complexity methods which aim to overcome disadvantages of FFT 

and try to follow note system frequency sampling. However, octave-linear 

frequency sampling keeps the same disadvantage as in the case of bounded Q 
transforms. 
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3.2.4. Discussion: FFT vs WT for music signal analysis? 

Here we would like to focus on the windowed Fourier transform and the 

wavelet transform. One way to see the time-frequency resolution differences 

between the Fourier transform and the wavelet transform is to look at the 

basis function coverage (tiling) of time-frequency plane. Figure 3.7 shows a 

windowed Fourier transform. The window is square and it truncates the sine 

and cosine function of the transform by a particular width. B ecause the STFT 

uses the window of the same size for all frequencies, the resolutions is the 
same at all locations in the time-frequency plane. 

 

Figure 3.7. Fourier basis functions, time-frequency tiles, and coverage of the time-frequency plane. 

The main advantage of the wavelet transform is that the window size is 

not constant. It changes across the frequency axis. Figure 3.8 shows the 

coverage in the time-frequency plane with a wavelet mother function, 
namely Morlet wavelet. 

 
Figure 3.8. Morlet wavelet basis functions and time-frequency coverage. 
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One important thing is that the wavelet transform does not have a 

single set of basis functions like the Fourier transform. Instead, the wavelet 

transform utilizes an infinite set of possible basis functions. Thus, it has an 

access to a wide range of information including the information which can be 
obtained by other time-frequency methods such as Fourier transform. 

As explained in brief introduction on music signal, a music excerpt can 

be considered as a sequence of note (pitches) events lasting certain time 

(durations). B eside beat events, singing voice and vibrating or sweeping 

instruments, the signal between two note events can be assumed to be quasi-

stationary. The duration of a note varies according to the main tempo of the 

play, type of music and type of melodic component the note is representing. 

Fast or short notes usually found in melodic lines in high frequency area 

while slow or long notes are usually found in bass lines with rare exceptions. 

Let’s consider the following example in order to see the difference between 

the Fourier transform and wavelet one. We construct a test signal as 

containing two notes E1 and A1 playing simultaneously during the whole 

period of time (1 second). These two notes can represent a bass line, which, as 

it is well known, does not change quickly in time. At the same time, we add 4 

successive notes B 5 with small intervals between them (around 1/16 sec). 

These notes can theoretically be notes of the main melody line. Let’s see now 
the Fourier spectrogram of the test signal with a small analyzing window. 

 
Figure 3.9. Small-windowed Fourier transform (512 samples) of the test signal containing notes E1 

and A1 at the bottom and 4 repeating B5 notes at the top. 

As we can see from Figure 3.9, while high-octave notes can be resolved 

in time, two bass notes are irresolvable in frequency domain. Now we 

increase the size of the window in the Fourier transform. Figure 3.10 illustrates 
the resulting spectrogram. 
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Figure 3.10. Large-windowed Fourier transform (≥1024 samples) of the test signal containing notes 
E1 and A1 at the bottom and 4 repeating B5 notes at the top. 

As we can see, two lines at the bottom of the spectrogram are now 

clearly distinguishable while the time resolution of high-octave notes has 
been lost. 

Finally we apply wavelet transform to the test signal. Figure 3.11 shows 
such Morlet-based wavelet spectrogram of our test signal. 

 

Figure 3.11. Wavelet transform (Morlet) of the test signal containing notes E1 and A1 at the bottom 
and 4 repeating B5 notes at the top. 

Of course, the given example is quite artificial; however it explains well 

our motivation for a wavelet like time-frequency representation of a signal. It 

is also known, that human ear exhibits time-frequency characteristic closer to 
that from wavelet transform [TZAN 01].  

A crucial disadvantage of the wavelet transform is its heavy 

computational demands. There are fast algorithms for wavelet transform 

computation (E.g. [RIOU 91]). They are based on self-similarity of wavelets at 

different scales or on the fact of particular sampling of the scale axis of the 

wavelet. We overcome this problem by manually programming wavelet-like 

transform algorithms (including our implementation of VRT on which our 

work is based on) using fast vector arithmetic of modern CPUs (MMX/SSE 

instruction sets), which is usually never done automatically by high-level 
language compilers. 
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3.3. Variable Resolution Transform 

In this section, we introduce our Variable Resolution Transform (VRT) 

specifically designed for music signal analysis. Inspired by the wavelet and 

constant Q transforms, our VRT is a set of specially crafted filters with 

central frequencies following a logarithmic scale which only œresemblesB a 

wavelet transform and in reality does not appear to be a true wavelet 

transform (generally, all kinds of transforms as for example FFT, CQT can be 

considered as filter sets [SMIT 07]). Our VRT is a fundamental tool for music 

signal analysis in our work as it is used for deriving music features such as 

beat detection, multiple f0 estimation etc.. which, in turn, enable the 

construction of melodic, tonality and timbre similarity features. There are no 

œuniversalB and 100% efficient filterbanks suitable for all kinds of 

applications. Our tool is one of numerous possible solutions. We position it to 

be better adapted for harmonic structure extraction owing to its higher 
frequency resolution in upper frequency area. 

3.3.1.  Building Variable Resolution Transform 

Our Variable Resolutions Transform (VRT) is first derived from the 

classic definition of Continuous Wavelet Transform (CWT) given in š3.2.2.1 in 

order to enable a variable time-frequency coverage which should fit to music 

signal analysis better. The consideration of specific properties of music signal 

finally leads us to change the mother function as well and thus our VRT is 
not a true CWT but a filter bank.  

3.3.1.1 The basis 

We start the construction of our VR Transform from Continuous 

Wavelet Transform defined by (3.6). Thus, we define our mother function as 
follows 

( ) tjeltHt ⋅⋅= πψ 2),(  (3.18) 

where H(t,l) is the Hann window function of a length l with l ∈ Z as 

defined by (3.19). In our case l will lie in a range between 30-300 ms. Notice 

that using different different length values l amounts to change the mother 

wavelet functionΨ. 

( )
l

t
ltH

π2
cos

2

1

2

1
, +=  (3.19) 

Once the length l is fixed, function (3.18) becomes much more similar to 

a Morlet wavelet. It is an oscillating function, a flat wave modulated by a 

Hann window. The parameter l defines the number of periods to be present 

in the wave. Figure 3.12 illustrates such a function with l=20 waves. 
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Figure 3.12. Our mother wavelet function. A flat wave modulated by a Hann window with l=20. 

We can write according to the definition of the function (since l < ∞): 

( )∫
∞

∞−

∞<dttψ  and ( )∫
∞

∞−

∞<dtt
2ψ   (3.20) 

The function is oscillating symmetrically around its 0 value, hence 

( )∫
∞

∞−

→ 0dttψ  (3.21) 

Using (3.6) we write a discrete version of the transform for a sampled 

signal between the instants of time form t$l/2 to t+l/2. Applying the 
wavelet transform to the signal, we are interested in spectrum magnitude 
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Here W(a,b) is the magnitude of the spectral component for the signal 
s[t] at time instant b and wavelet scale a.  

The value of W(a,b) can be obtained for any a and b provided that b 

does not exceed the length of the signal. The equation (3.22) thus defines a 
Continuous Wavelet Transform for a discrete signal (time sampling).   

The scale of wavelet a can be expressed in terms of central frequency 

corresponding to it since our mother function is a unit oscillation: 

f

f
a S=  (3.23) 

where fS is the sampling frequency of the signal. 

A higher value of a stands for a lower central frequency. 
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3.3.1.2 Logarithmic frequency sampling 

First of all, the sampling of the scale axis is chosen to be logarithmic in 

the meaning of frequency. It means that each musical octave or each note 

will have an equal number of spectral samples. Such a choice is explained by 

the properties of a music signal, which is known to have frequencies of notes 

to follow a logarithmic law (following the human perception). Logarithmic 

frequency sampling also simplifies harmonic structure analysis and 

economizes the amount of data necessary to cover the musical tuning system 
effectively. 

A voiced signal with single pitch is in the general case represented by 

its fundamental frequency and the fundamental frequency’s partials 

(harmonics) with the frequencies equal to the fundamental frequency 

multiplied by the number of a partial. Hence the distances between partials 

(harmonic components) and f0 (basic frequency) in logarithmic frequency 

scale are constant independently from f0. Such harmonic structure looks like 

a œfenceB, depicted on Figure 3.13. 

 

Figure 3.13. Harmonic structure in logarithmic frequency scale. 

In order to cover the frequency axis form fmin to fmax with N frequency 

samples with a logarithmic law we define a discrete function a(n), which 

denotes the scale of wavelet and where n stands for a wavelet bin number 
ranging in the interval 0..N-1. 
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Now the transform (3.22) sampled in both directions gives 
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Expression (3.25) is the basic expression to obtain an N-bin spectrogram 

of the signal at time instant b. Thus, for a discrete signal of length S, 

expression (3.25) provides S×N values for each instant of time, N being the 

number of frequency samples. The expression (3.25) is still a sampled version 

of the Continuous Wavelet Transform where the sampling of the scale axis 
has been chosen logarithmic for N samples. 

Frequency dependency on the bin number has the following form (with 

fmin=50, fmax=8000, N=1000).  

( ) nCf

f

N

n

efefnf min

ln

min
min

max

==









 
(3.26) 

 

Figure 3.14. Equivalent central frequency of the wavelet according to its bin number. fmin=50, 

fmax=8000. 

In order to depict the time/frequency properties of music signals by this 

discretized wavelet transform with a fixed length value (l=20), let’s consider 

wavelet spectrograms of several test signals. Figure 3.15 shows the wavelet 

spectrogram W(n,b) of a piano recording. One can observe single notes on the 

left and chords on the right. Fundamental frequency (f0) and its harmonics 

can be observed in the spectrum of each note. As we can see from the Figure 

3.15, up to 5 harmonics are resolvable. Higher harmonics after the 5th one 

become indistinguishable especially in the case of chords where the number 

of simultaneously present frequency components is higher.  
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Figure 3.15. Wavelet spectrogram of a piano recording (wavelet (3.18)). Single notes on the left and 

chords on the right. Up to 5 harmonics are resolvable. Higher harmonics after the 5th one become 
indistinguishable especially in the case of chords where the number of simultaneous frequency components is 
higher. The main window illustrates our wavelet analysis tool developed within this thesis work. 

Good time resolution is important in such tasks as beat or onset 

detection for music signal analysis as we will see in the next chapter. The 

next example serves to illustrate the time resolution properties of the 

Variable Resolution Transform we are developing. In this example we 

examine a signal with a series of delta-pulses (Dirac) as illustrated in Figure 

3.16 which is a wavelet spectrogram of 5 delta-pulses (1 on the left, 2 in the 

middle and 2 on the right). As we can see from this figure, Delta-pulses on 

the picture are still distinguishable even if the distance between them is only 

8 ms (right case). In the case of FFT one need 64-sample window size in 
order to obtain such time resolution.   

 

Figure 3.16. Wavelet transform of a signal containing 5 delta-pulses. The distance between two 
pulses on the right is only 8 ms. 
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A quite straightforward listening experiment that we have carried out 

reveals that the human auditory system is capable to distinguish delta-pulses 

when a distance between them is around 10 ms. On the other hand, the 

human auditory system is also able to distinguish very close frequencies - 
4Hz in average1, and down to 0.1Hz (see the following figure). 

 

Figure 3.17. Human auditory system frequency resolution histogram for frequencies around 500Hz. 

 

To maintain a time resolution around 5-10 ms, the FFT requires a 

window size around 64-128 samples. Figure 3.18 illustrates a Fast Fourier 
spectrogram with 64-sample window of the same piano recording which 

clearly contrasts to the spectrogram in Figure 3.15. Neither fundamental 

frequencies nor partials can be extracted in this case. 

 

Figure 3.18. Fourier transform of the signal with notes played by a piano (the same signal with was 
used in previous wavelet experiment on Figure 3.15). Neither fundamental frequencies nor partials can be 
extracted. 

                                   

1 http://tonometric.com/adaptivepitch/ 
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3.3.1.3 Varying the mother function 

However, music analysis requires good frequency resolution as well. As 

we can see from the spectrogram in Figure 3.15, neither high-order partials  
nor close notes are resolvable, because the spectral localization of the used 

wavelet is too wide. Increasing the length parameter l in (3.18) or (3.25) of the 

Hann window would render our wavelet transform unusable in low-

frequency area since the time resolution in low-frequency area would rise 

exponentially. Thus, we propose in this work to make dynamic parameter l 

with a possibility to adjust its behavior across the scale axis. For such a 

purpose we propose to use the following law for parameter l in (3.25) instead 

of applying scale a(n) to parameter t in H(t,l): 
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where L is the initial window size, k1 and k2 $ adjustable parameters 

The transform (3.25) becomes: 
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The expression (3.27) allows the effectiveBwaveletB width to vary in 

different ways: from linear to completely exponential to follow the original 

transform definition. When
minf

f
L S= , k1=0 and k2=C⋅N, (3.28) is equivalent to 

(3.25). 

 

Figure 3.19. Various l(n), depending on parameters. From linear (left) to exponential (right). 

Doing so, we are now able to control the time resolution behavior of our 

transform. In fact, such transform is not anymore a wavelet transform since 

the mother-function changes across the scale axis. For this reason we call the 

resulted transform as variable resolution transform (VRT). It can be also 
referred as a custom filter bank. 
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As the effective mother-function width (number of wave periods) grows 

in high-frequency relatively to the original mother-function, the spectral line 

width becomes more narrow, and hence the transform allows to resolve 

harmonic components (partials) of the signal. An example of the spectrogram 

with new variable resolution transform is depicted in Figure 3.20. 

 

Figure 3.20. VRT spectrogram of the piano recording used in the previous experiment. Fundamental 
frequencies and partials are distinguishable (k1=0.8, k2=2.1). 

3.3.2. Properties of the VR transform 

Here we proceed to study the properties of our VR transform within the 
scope of the present work, i.e., with regard to music signals.  

A music signal between 50 and 8000 Hz contains approximately 8 

octaves. Each octave consists of 12 notes, leading to a total number of notes 

around 100. A filterbank with 100 filters would be enough to cover such 

octave range. In reality, frequencies of notes may differ from the theoretical 

note frequencies of equal-tempered tune because of recording and other 

conditions. Therefore for music signal analysis considered here, we are 

working with spectrogram size of 1024 bins $ 10 times the amount necessary 

which covers the note scale by 10 bins per note. It is important to know the 

size of the spectrogram because all spectral graphs and their derivates are 

represented in terms of spectral bin number n, which has a logarithmic 

relation with frequency behind it. The other reason of increasing the number 

of bins comes from the necessity to distinguish high-order partials. However, 

there is a tradeoff to be found as further increase of the number of bins 
renders the computation much too heavy. 
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Timbre is a one of major properties of music signal along with melody 

and rhythm. Let’s consider now a structure of partials of a harmonic signal 

(harmonic structure).  In Figure 3.13 we have depicted an approximate view of 

such structure in logarithmic frequency scale. According to the definition of 

the function f(n) (3.26), the distance between partial i and partial j in terms 

of number of bins is independent of the absolute fundamental frequency 

value.  

Indeed, according to (3.26) ( )
min

ln
1

f

f

C
fn =  and taking into account 

fi=i*f0 and fj=j*f0 we obtain: 
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Figure 3.21 illustrates these decreasing distances between neighboring 

partials i and i-1 when harmonic component number i increases, covering the 

first 20 harmonics. As we can see, the number of bins between the two first 

partials f0 and f1 are relatively high (128 bins). However, when the partial 

number of the harmonic increases, the number of bins decreases quickly but 
stays around 10 bins for high-order harmonics. 
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Figure 3.21. Dependency of the distance between partials form partial number. 

An accurate harmonic analysis of music signal implies that frequency 

resolution in terms of spectrogram bin number, as expressed by the spectral 

dispersion (3.14), should be always below the distance between neighboring 

components under consideration. Figure 3.22 illustrates an example of spectral 

dispersion for a wavelet transform (e.g. Morlet or another one defined in 

(3.18). It is computed by sweeping a sine wave by all frequencies across the 
wavelet scale axis and calculating the dispersion. 
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Figure 3.22. Spectral dispersion for a wavelet transform. It is taken in terms of wavelet number n on 
x axis. 

This flat dispersion comes from the fact that the frequency axis is in a 

logarithmic scale. As we saw in Figure 3.15, such a constant frequency 

dispersion over the frequency axis leads the situation where only 5 partials of 

a harmonic signal can be distinguished without peak intersection by such 

wavelet transform which is obviously not enough for majority of applications 

(higher order harmonic might be still resolvable while the step of the 

frequency resolution is still lower than the dispersion). Further improving 

frequency localization of such wavelet transform (lowering the dispersion) 

decreases its time resolution dramatically, causing the maximum time 

localization to grow exponentially. In the Figure 3.23 we can observe the result 

of such manipulation with Morlet wavelet which was used to transform a 
delta-pulse. 

 

Figure 3.23. Morlet wavelet transform with α2=200 of a delta-impulse. The maximum time 
localization exceeds one second bounds.  

Despite an unacceptable time localization at low frequencies, classical 

wavelet transform in logarithmic scale remains an attractive tool in analyzing 

rapidly changing signals. Together with impressive time resolution in high-

frequency area it has constant frequency localization because of the 
frequency axis sampling we have chosen is logarithmic.  
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Let’s return to our variable resolution transform. As it was described in 

š3.3.1.3, we can vary the effective window size using different laws 

independently from the main scale of the mother-function. With k2=2.1 and 

k1=0.8 we obtain the following spectral dispersion distribution as illustrated 

in Figure 3.24. 
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Figure 3.24. Spectral dispersion graph of VR transform with k2=2.1 and k1=0.8 for bins numbers 
from 30 to 900. 

Having the total width of 20-partial harmonic structure to be a constant 

around 600 points in terms of number of bins (n(f20) - n(f0)), we can establish 

that the frequency resolution of the obtained transform is large enough to 

resolve high-order partials we are interested in at all positions of the VRT 

spectrogram, especially for low octave notes. It means that a 20-partial 

harmonic structure starting from the beginning of the spectrogram will 

always lie above the dispersion curve. If we consider now the time resolution 

of the transform, we must recall Figure 3.19, where various dependencies on 

the effective width of filter were given. If we define the maximum effective 

window size to be 180ms (recall our musical signal properties) we obtain the 

following time resolution grid as illustrated in Figure 3.25. 

 
Figure 3.25. Time resolution dependency of VR transform with k2=0.8,  k2=2.1. 
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Final resolution plots of our variable resolution transform is given in 

Figure 3.26 and Figure 3.27 in terms of frequency in Hz and time in milliseconds 

(given for frequencies between 50 and 5000Hz where the most of notes 

frequencies are found). 
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Figure 3.26. Time resolution grid of our VR transform ms/Hz, estimated form the transform of 
a test signal. 
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Figure 3.27. Frequency resolution grid of our VR transform. The red curve stands for 

dispersion graph according to frequency; blue curve signifies a frequency step (Hz/bin) of the 
transform. Green curve on the picture stands for equivalent FFT frequency resolution (Hz/sample) as 
if it had a window size equal to that one from VRT (from Figure 3.26). 

To understand the previous figures better, let’s consider an example. 

The blue curve in Figure 3.27 corresponds to a spectral step size $ the 

difference of equivalent frequencies of nth and n-1th filter. Taking as example 

500Hz, we obtain a frequency step size around 3Hz. The same equivalent 

characteristic can be calculated for an FFT. What does it mean? If we take 

500Hz and look at Figure 5.5, we get an effective window size of VR transform 

to be approximately 70ms. We then imagine an FFT with window size of 

70ms (with 16kHz sampling rate it is going to be close to 1024 samples). The 

size of frequency step in 1024-sampled FFT is 8Hz, as can be observed by the 

green curve in Figure 3.27. It means that for an FFT with 1024-sample 
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window, frequencies of 500Hz and 508Hz cannot be resolved unlike the case 

of the VR transform, where the size of frequency step at 500Hz was equal to 

3Hz. However, the VR transform has considerable frequency dispersion $ 

around 18Hz at 500Hz point. Therefore, on the spectrogram, two frequencies 

of 500 and 508Hz will have an intersection as illustrated in Figure 3.28. 

 

Figure 3.28. Intersection of two close frequencies on VR spectrogram. 

The main point of the VRT is nonlinearity of time-frequency tiling 

which makes it possible to resolve rapidly changing high-frequency events 

and at the same time to have a constant number of spectral steps per 

semitone in all octaves in order to be well adapted to music analysis.  

Now let’s consider some wavelet spectrogram examples of real music 

excerpts. 

 

Figure 3.29. VRT spectrogram of an excerpt from Era – Flowers of the Sea, piano. 

Figure 3.29 is a VRT spectrogram for an excerpt from œEra $ Flowers of 

the SeaB. In this excerpt only one instrument is present $ a piano. B ars, 

measures and note events are distinguishable. As we can see, positions of 

notes on the frequency axis looks like (and actually is!) linear. This example 

contains about 800 frequency planes (calculation points), with 50ms step. 
Computing time on a PentiumM-1.4GHz was around 3 seconds. 
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The same excerpt was studied in a known sound edit software. The 

result is given in Figure 3.30. In this example the window size of the FFT was 
2048 points. Calculation time is also around 3 seconds. 

 

Figure 3.30. 2048-point FFT spectrogram of the excerpt from Era – Flowers of the Sea.  

As we can see from the figure, the main melody notes are crowded at 

the bottom of the spectrogram, but the œforestB of partials is very distinct.  

Another interesting fact is that frequencies of partials are not 

necessarily linear as n*f0. (See e.g. [KLAP 99]). Regarding to this aspect, our 

VR transform might be more advantageous as the logarithmic frequency 

scale will most probably œeatB the non-linearity of partials’ frequencies, and 

hence, non-linear partials will be situated not far away from their linear 

theoretical positions in terms of spectral bin number. 

3.3.3. Computation 

Regardless of the existence of relatively fast algorithms of continuous 

wavelet transform computation as for instance octave algorithm, we 

implement a direct scheme of computation as the most precise one. The 

choice of direct computation is imposed also by an absence of self-similarities 

in wavelet-like functions introduced in this work, and therefore, an absence 
of fast algorithms of computation. 

However, several efforts have been made in order to accelerate the 

computation procedure. First of all, we store previously crafted values of 

wavelet functions for all frequencies in memory arrays. Avoiding the sine and 

cosine calculation every time during wavelet analysis computation 

significantly increases the overall speed. Finally the procedure of computation 

is done via vector arithmetic of modern processors where a SIMD instruction 
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can operate many data at the same time (SIMD $ Single Instruction Many 

Data) (see [Intel 03]). Each integer 64-bit MMx register may contain 8 bytes 

(char), 4 words (short), 2 double words (int) or 1 quad word (int64 or 

longlong). SIMD instructions make arithmetic operations on all operands 

stored in MMx register simultaneously. More recent instruction sets 

manipulate 128-bit registers with packet integers or floating points. Some 
examples of packed arithmetic instructions are given on figure. 

 

Figure 3.31. Example of integer SIMD instruction from Intel’s MMX instruction set. 

Using Intel MMX technology it looks like 

movq MM2,qword ptr [esi] // take 4 samples of the signal 

movq MM3,MM2  

pmaddwd MM2, qword ptr [edi] // multiply and add pairs, real part 

paddd MM0,MM2 // accumulate 

pmaddwd MM3, qword ptr [ebx] // compute complex part 
paddd MM1,MM3 // accumulate 

The example of the computation code provides a gain of performance by 
about 5-8 times in comparison to a standard C++ implementation. 

3.3.4. Discussion 

Our Variable Resolution Transform is derived from the classic definition 

of Continuous Wavelet Transform given in 3.2.2. In our previous work, we 

referred to our VRT as œWavelet-LikeB or œPseudo-WaveletB transform  

[PARA 06; PARA 07]. Actually, our VRT is not a CWT even though they 

have many similarities. The main difference between VRT and CWT consists 

in the frequency axis sampling, as well as in the mother wavelet function 

which is changing its form across the scale (or frequency) axis in the case of 

VRT in order to have enough resolution details for high order frequency 

partials. This last property is not a wavelet transform, because in the true 

wavelet transform the mother function is only scaled and shifted making a 
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discrete tiling of the time-frequency space in the case of DWT or infinite 

coverage in the case of CWT. Our VRT can be also referred to as a specially 

crafted filter bank. Major differences between our VRT and a wavelet 
transform are: 

• no 100% space tiling 

• no 100% signal reconstruction (depending on parameters) 

• mother function changes 

Major similarities between our VRT and a wavelet transform are the 

following: 

• They are based on specially sampled version of CWT 

• with certain parameters they can provide 100% signal 

reconstruction 

• low time resolution and high frequency resolution in low 

frequency area and high time with low frequency resolution in 
high frequency area 

Comparison of our VRT to other techniques can be summarized by the 

following table.  

Table 3.1. Comparison of VRT to other approaches according to their properties 

Technique Frequency 
sampling 

Frequency 
bin 

dispersion 

Computational 
complexity 

Note 
resolution 

Harmonic 
resolution 

Temporal 
resolution 

FFT (small 
window) 

Linear High Low Very low Low High 

FFT (large 
window) 

Linear High Low Medium High Low 

FFB Linear Low Low Same as 
FFT 

Same as 
FFT 

Same as 
FFT 

CQT Log High High High Low High 

CWT 
(general) 

Variable Variable High High Low High 

BQT Linear in 
octaves 

High Medium High Medium High 

BQFFB Linear in 
octaves 

Low Medium High Medium High 

VRT Log High High High High Medium 
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In another comparison table we provide to summarize various 

approaches according to their applicability for different problems. 

Table 3.2. Comparison of VRT to other approaches according their applicability 

 Technique  Beat detection Note detection Spectral features 

FFT (small window) ++ - - + - 

FFT (large window) - - + - + + 

FFB Same as FFT + - Same as FFT 

CQT + + / - - + - / + + + + 

CWT (general) + + / - - + - / + + + + 

BQT + + + - + + 

BQFFB + + + ± + + 

VRT + + + + + + 

 

Generally, B QFFB  approach could be used for our music similarity 

retrieval application, but due to its specific frequency sampling, it complicates 
spectral modeling (distances between harmonic are not constant). 

3.4. Application to spectral similarity 

The following spectral similarity measure was proposed in one of our 

previous works [PAR 05] $ spectral ratio coefficients matrix. Coefficients are 

computed in the following way. First, the signal spectrum is obtained from 

the VR Transform. Then the filterbank of MEL frequencies is applied to 

absolute values of the spectrum (it is directly mapped to the VRT 

spectrogram). The spectral descriptor is then represented in a form of a 

matrix N×N, which is constructed as follows: 
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where N is the total number of spectral bands, Bi is the energy in the ith 
band. 

The matrix M is used as an initial spectral feature. A sequence of them 

can then be modeled by a set of Gaussian distributions (each element 
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independently). The distance between two sound excerpts is calculated as a 

sum of KL distances for distributions of each Mi,j.  

The feature we have presented does not have the disadvantage of 

volume dependency because only energy ratios are taken so it is more robust 

in acoustic similarity and it showed better results in audio segmentation issue 
of video segmentation context [PAR 05].  

A second spectral feature we have proposed is based on cutting the 

VRT spectrum into time-frequency rectangles (with the following dimensions: 

25ms × 1/8 of total frequency range) and computing histograms of values in 

each obtained rectangular area. The main principle is shown on Figure 3.32. 

 

Figure 3.32. Spectral feature extraction procedure. Wavelet or VRT spectrum is divided into time-
frequency tiles. Histograms of values are computed in each tile. Histograms are then serialized in form 

feature vectors. 

B ins of obtained histograms are then serialized and concatenated into 

one feature vector. The usage of this spectral similarity characteristic was 

found in genre classification problem [KOTO 07] where histogram is 
summarized by the mean values.  

3.5. Conclusion 

In this chapter we have introduced our Variable Resolution Transform 

as a novel signal processing technique specifically designed for music signal 

analysis. A music signal is characterized by four major properties: melody, 

harmony, rhythm and timbre. The classic Fast Fourier transform, a de-facto 

standard in music signal analysis in the current literature, has its main 

drawback of having a uniform time-frequency scale which makes it 

impossible to perform efficient spectrum analysis together with good time 

resolution. The wavelet transform overcomes this limit by varying the scale 

of mother-wavelet function and, hence, the effective window size. This kind 

of transform keeps frequency details in low-frequency area of the spectrum 

as well as time localization information about quickly changing high-

frequency components. However, the dramatic decrease of frequency 

resolution of the basic wavelet transform in high-frequency area leads to 
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confusion in high order harmonic components where a sufficient resolution is 

necessary for the analysis of harmonic properties of a music signal. We have 

thus introduced our Variable Resolution Transform in varying mother-

function. The law of variation is controlled by two parameters, linearity and 

œexponentialityB, which can be carefully chosen in order to adjust the 

frequency-time resolution grid of the VRT. Hence, our VRT takes advantage 

of the classic continuous wavelet transform and the windowed or short-time 

Fourier transform by diminishing the frequency dispersion in high-frequency 

area and therefore keeping the frequency resolution in high-frequency area 

good enough to resolve harmonic components of musical instruments. As 

compared to time-frequency characteristic of the Fourier and the wavelet 

transform, the major advantage of the VRT is the dynamic variability of 

time-frequency tiling in contrast to constant tiling in the case of the STFT. 

This ability to change the tiling allows a better description of a music signal 

while keeping a fixed number of frequency samples per octave and a good 

time resolution where it is necessary, i.e. in high-frequency area, where all 
rapid changes usually take place. 

As we will see in the next chapters, the families of music analysis 

algorithms introduced in this thesis are exclusively based on the 

aforementioned VR transform and their influence on the performance of MIR 
algorithms are also discussed.  
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4. Rhythm-related similarity features 

Rhythm is one of four major music properties along with melody, 

harmony and timbre. Automatic extraction of rhythmic pulse from musical 

excerpts has been a topic of active research in recent years. Also called beat-

tracking and foot-tapping, the goal is to construct a computational algorithm 

capable of producing behaviors that correspond to the experience of beat or 

pulse in a human listener. Rhythm as a musical concept is intuitive to 
understand, but somewhat difficult to define.  

Let’s define beats as a sequence of pulses and accents over a musical 

composition issued either by percussion instruments or by note onsets. In 

general, beats are forming musical tempo which is measured in beats per 

minute (BPM). While characterizing the rhythmic feature of a music excerpt, 

the tempo in B PM may not be enough in music classification and similarity 

search. For example a classical composition and at the same time a rock 

composition may have 140 beats per minute while these two compositions are 

from very different genres. On the other hnad, the perception of the tempo 

(foot-tapping) is ambiguous [MOEL 04] it may usually have an error of 2 or 
other multiples. 

4.1. Related work 

B eat detection-related or tempo estimation-related algorithms have 

found many implementations. They can be divided into two groups treating 

different problems: beat/onset detection algorithms and periodicity search 
algorithms. 

The first group of algorithms is designed to detect rhythmic activity 

such as percussion instrument beats, note onsets, accents, etc. Sounds of 

percussion instruments are generally non-voiced, strong attack, and noisy 

(although they can contain harmonic components), leaving considerable noisy 

traces in spectrum. Note onsets are less remarkable events and, according to 

the instrument, may be rather smooth.  Figure 4.1 depicts an energy envelope 
example of a note onset. 

 

Figure 4.1. Typical energy envelop of a note (piano-like instrument) 

attack 

decay 
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release 

onset offset 
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The easiest way to extract beats events is to use energy envelope 

directly from the raw signal with automatically adjusted threshold (Figure 4.2). 
This method is very fast and can be used as the first approximation in beat 

detection or for example visualizing applications. Unfortunately this method is 

very sensitive to the musical content $ there must be really strong beats 

represented by percussion instruments with light music on background. 

Moreover it is not suitable for onset detection, which has an equal importance 
in rhythmical analysis of a musical composition. 

 
Figure 4.2.  Beat detection from the raw WAV. The signal’s waveform is cut at certain energy level. 

The obtained peaks are considered as detected beat or high-energy events. 

Other deterministic methods work with time-frequency representation 

of the signal such as STFT spectrogram (e.g. [COLL 05]) and filter banks (e.g. 

[KLAP 99a]). An approach of beat detection using image treatment 

techniques applied to a spectrogram is presented in [NAVA 04]. An 

interesting work is presented in [ALON 03]. In their work the authors 

decomposes the signal into 12 subbands, each subband is processed separately 

by representing it in bi-component form containing sinusoidal signal plus 

noise (using Exponentially Damped Sinusoidal, described in [B ADE 02]). 

Attacks extraction and periodicity detection is done separately in these 
subbands.  

Another kind of methods are statistical methods are based on 

assumptions that the music signal can be described by some probabilistic 

model trying to guess locations in the signal where a potential accentuation 

event may occur.  Obviously, the detection performance of these methods is 
strongly dependent on musical content and on training data. 

The approach we present in our work is a deterministic one. It analyses 

the musical signal directly using VR Transform and processes the resulting 
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spectrogram as a grayscale image. No assumption on music nature or 

theoretical prediction of beat positions is made. 

The second group of algorithms concerns higher level processing in 

order to find periodicities. These algorithms can be divided into some sort of 
general classes:  

• Autocorrelation-based. This class of algorithms is based on 

computing of one or multiple autocorrelation functions from the 

signal, its spectrum or on sequence of feature vectors in order to 

find the most salient period and mainly used for tempo estimation. 

Such works can be mentioned as [B ROW 93; ECK 05; GOUY 03; 

PAUL 02]. In [PEET 05] authors  proposed a method for the 

automatic estimation of the tempo based on the reassigned 

spectral energy flux, a combination of DFT and Frequency 

Mapped autocorrelation function and a Viterbi decoding 

algorithm. 

• B ased on a mathematical model of resonator set (e.g. [KLAP 06; 

SCHE 97a]). The idea behind these methods is to find the most 

probable periodicity using multiple resonators or oscillators. Each 

oscillator has its own frequency and produces a probability output 
(resonance). Non-linear resonators are also known, e.g. [LARG 94].  

• Histogram building. One of rhythmical information representation 

is the beat histogram as used for example by George Tzanetakis 

[TZAN 02]. In his work the beat histogram accumulates peaks of 

autocorrelation function over the whole sound. Each bin of the 

beat histogram corresponds to a peak lag (i.e. the beat period in 

B PM $ beat per minute). This kind of representation is quite 

useful for example for genre classification as it carries information 

about the number of beats with different periods or tempo 

determination by finding the maximal value. There are other 

works known in the literature which are based on histograming. 

The work [AREN 01] proposes a simple time-domain method in 
order to extract the tempo in B PM. 

Other methods of periodicity detection are known. Authors of the work 

[ALON 06] use frequency domain methods, such as spectral sum and spectral 

product for periodicity analysis. 

Autocorrelation and resonator-based approaches are not suitable for 

music similarity analysis since they operate with periodicity detection and 

issue the main tempo of the play. We are interested in representing of 

rhythmic structure, thus we need a mechanism of periodic and non-periodic 

beat and also onset detection together with rhythmic fingerprint computation. 
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Non-periodic beat tracking and rhythmic-structure representation is 

described in the work [TZAN 02a]. In this work beat periods are organized in 

form of beat histogram allowing their rhythmic comparison. A disadvantage 

of the proposed method is the absence of beat strength information included 
into rhythmic-structure representation.  

Rhythm-related similarity characteristics are among a few numbers of 

semantic features which are quite well explored in literature. For instance, in 

the work of Eric Scheirer [SCHE 00], the question of beat related 

characteristics holds a dominant part. There are many other works on 

rhythm analysis in the context of automatic music retrieval. The work in 

[ALGH 99] proposes to achieve beat tracking and their hierarchical 

organization in order to obtain periodicity patterns. The beat tracking is done 

in low frequency area, therefore, not all beat events are theoretically 

detected since instruments like hi-hats or cymbals do not have low-frequency 

components. Another beat tracking system is presented in [GOTO 01] which 

describes a real-time system able to detect different rhythm-forming events 

such as beats, onsets or chord changes and to organize them hierarchically. 
Sound signal in this work does not require drum instruments in it.  

More recent works discuss questions of rhythmic similarity. The work in 

[FOOT 02] is based on œbeat spectrumB extraction and comparison. The goal 

of the work is automatic retrieval of musical pieces with similar rhythm. 

Some theoretical evaluation is also provided on a very small corpus. A 
theoretical aspect of rhythmic similarity is given in [HOFM 02]. 

In our work we focus on construction of rhythmic similarity feature 

which consists of two parts: 

a) beat detection 

b) fingerprint extraction 

Additionally, the fingerprint we obtain allows doing tempo estimation 
which is then evaluated and compared with other works. 

4.2. Our VRT based approach for beat curve extraction 

In our work, the beat detection relies on our previously defined VRT 
giving a time-frequency (spectral) representation of the signal. 

4.2.1. An intuitive approach 

  Consider a music excerpt as represented by our VRT. Figure 4.3 is a 
spectrogram of a musical segment obtained using the VR transform as 

described in paragraph 3.3. The musical segment comes from metal music 

with noisy instruments, distortion guitars etc. a priori, contrast between beats 
and the rest of the music is rather low. 
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Figure 4.3. VR transform representation of a musical excerpt (of metal genre). 

However, as we can discover from Figure 4.3, the VRT based 

spectrogram has remarkable elements in a form of vertical spots. These are 

drum events (bass drums and snare drums). In high frequency area they 

stand out against the background in a form of thin vertical lines.  

Since the information about beats and onsets is concentrated on vertical 

constituent, it is possible to make use of image processing technique, such as 

gradient filters, to mark out all fragments of this œspectral imageB more or 

less interesting in the meaning of beats and onsets. We thus propose to apply 

a Sobel operator in horizontal plane [SOB E 90], with its mask depicted on the 

next image. 

-1 0 1 

-5 0 5 

-1 0 1 

Figure 4.4. Sobel gradient operator in horizontal plane. 

The central horizontal line in the mask is directly responsible for 

emphasizing vertical lines and may be adjusted in order to give more 

importance to horizontal gradient. The values -5 0 5 are found during 
experiments to be more appropriate for further beat detection.  

The result of such treatment is shown in Figure 4.5. 
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Figure 4.5. Sobel-filtered VRT spectrogram for a muscal excerpt with detected beat strength curve at 
the bottom. 

After image enhancement all events we are interested in are now much 

clearer. Subsequently, the enhanced (Sobel-filtered) spectrogram W*(b, a) is 

treated by calculating a beat curve in the following way. A small window 

together with a large one is moved across the enhanced spectrogram. The 

value of the beat curve in each time moment is the number of points in the 

small window with values higher than a threshold which is obtained from the 

average value of points in the large window. Numerous beat curves may be 

computed separately by dividing the spectrum into bands. For the general 
question of beat detection only one beat curve is used. 

4.2.2. Procedure of beat curve extraction 

Figure 4.7 and Figure 4.6 summarize our procedure of beat curve 
extraction. 

 

Figure 4.6. Beat curve extraction procedure diagram. 

Input signal 

 

VRT 

 

Sobel filter  

Windowing 
(see Figure 4.7) 

-1 0 1 
-2 0 2 
-1 0 1 
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Figure 4.7. Beat detection windowing procedure. Beat probability or beat strength curve (at the 
bottom) is obtained by moving a sliding window and calculating number of spectrum points whose values are 
higher than the average value for bigger one.  

Sizes of windows as mentioned in our procedure are chosen in the 

following way. The small window should well cover a snare drum beat or 

tom. Its size was selected to be 50-100ms (depending on analysis step size). 

The length of the large window was chosen to be 20 times the size of the 

small window, i.e. 1-2 seconds. As the beat curve extraction procedure is 

aimed to be volume-independent, we thus assume that a music excerpt has a 

relatively constant volume during each interval of 1-2 seconds which appears 

quite reasonable. Moreover, these two windows are shifted every 10 to 30 ms, 
producing thus beat curve values accordingly. 

4.2.3. Discussion: VRT versus FFT based techniques 

Instead of VRT based spectrogram, we may also apply our beat curve 

extraction technique on a Sobel-filtered image from the FFT transform.  

Figure 4.8 illustrates the result obtained from a FFT spectrogram that can be 

compared with the one processed by our VRT on the same musical excerpt 

(Figure 4.9). 
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Figure 4.8. FFT spectral image (excerpt from “Nightwish – Come Cover Me”) 

 
Figure 4.9. VRT spectral image (excerpt from “Nightwish – Come Cover Me”) 

As we can see, VRT based beat curve extraction shows 100% detection 

of percussion instrument beats in the test excerpt. This example suggests that 
VRT tend to be better suited than FFT for beat detection. 

4.3. Rhythmic fingerprint 

4.3.1. 2D beat histogram 

In our work, we propose to improve beat histogram representation for a 

better characterization of rhythmic property of a music signal. Indeed, 

classical one-dimensional beat histogram (Figure 4.10) only provides some 

knowledge about the different beat periods while the distribution of beats in 

the meaning of their strength is not clear. At the same time beat detection 
algorithm and its parameters affect the form of the histogram. 
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Figure 4.10. Classical one-dimensional beat histogram from the work of G. Tzanetakis. 

A more accurate rhythmic property representation of a music signal 

should thus bring some knowledge about the strength of periodic beats into 

the histogram and avoid the dependency on the beat detection algorithm 

parameters. In this work, we propose a 2D form histogram which can be built 

with a beats period on the X axis and with amplitude (strength) of a beat on 

the Y axis (Figure 4.11). The information about beat strength in our histogram 

is included since the histogram is computed upon the threshold varying in Y 

axis. It is thus possible to avoid the disadvantage of recording conditions 

dependency (e.g. volume) and peak detection method. The range of threshold 

variation is taken from 1 to the found maximum-1. Thus, the beat strength is 
taken relatively and the volume or recording level dependency is avoided 
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Figure 4.11.  Example of two-dimensional beat histogram. Here the x axis represents beat period, y 
axis stands for threshold value used in peak detection on the beat curve. 
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As we can see, the histogram in Figure 4.11 contains several peaks. One 

of these peaks can be considered as main tempo peak, and the strongest peak 
is likely to represent tatum $ the pulse of the lowest metrical level. 

Such histogram characterizes rhythmic property of a music signal. It can 

thus be used as feature vector in music analysis applications such as genre 

classification or music matching. Figure 4.12 illustrates two 2D beat histograms 

for a dance composition (left) and a classical composition (right).   
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Figure 4.12. Two-dimensional beat histograms for dance (left) and classical (right) musical pieces. 

As we can see in Figure 4.12, the left histogram has sharp peaks, 

indicating that the rhythmic structure of the play contains strong rhythmic 

beats. The right histogram, on the contrary, is an evidence of absence of 

strong periodic events as expected since classical composition does not contain 

either percussion instruments or strong attack instruments. The difference in 

2D beat histogram shapes expresses different rhythmic properties of music 

signals and can then be used for music analysis applications such as music 
genre classification.  

The following experiment tends to prove the independence of our 2D 

beat histogram from recording conditions. A musical composition is filtered 

with treble and bass cut filters (telephone filter 300-3000Hz). As we can see 

in Figure 4.13, the resulting histograms of beats still have the same shape and 

peaks. Moreover, the absolute difference between these two 2D histograms is 
under 10%. 
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Figure 4.13. Beat histogram for “Rammstein – Mein Herz Brennt” without filtering (top) and after 

bass/treble cut filter (bottom). 

Our 2D beat histogram is used in our work as a rhythmic feature vector. 

The size of the 2D histogram in our case is 70×150 bins where 150 bins are 

devoted to beat period axis in order to maintain high temporal accuracy 
whereas 15 bins has been observed enough for the details of strength axis.   

4.3.2. Rhythmic similarity measure 

Rhythmic similarity of two music pieces is then based on comparison of 

their beat histograms. Several measures can be used for similarity 

comparison of two histograms H={hi} and K={ki}. They are classified into two 

categories: bin-by-bin similarity and cross-bin similarity measures. The bin-

by-bin similarity measure only compares contents of corresponding histogram 

bins while cross-bin similarity measure includes a comparison of non-

corresponding bins. Naturally, bin-by-bin similarity measures are more 
sensitive to slight variations of neighboring bins. 

In the family of bin-by-bin similarity measures, several distances can be 
mentioned: 
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• Minkovsky-Form Distance 
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• Jeffrey Divergence 

Jeffrey divergence is a symmetric form of Kullback-Leibler divergence. 
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The main disadvantage of bin-by-bin similarities is their sensitivity to 

slight variations in neighboring bins. In the case of beat histograms, small 

changes in rhythm may result in vast modifications in the distance between 

two histograms as we can see in Figure 4.14.  

 

Figure 4.14. Small rhythmic changes lead to large bin-by-bin beat histogram distance (at strength 
plane).  

A well known cross-bin similarity measure is the Earth Mover’s 

Distance (e.g. [RUB N 00]). The Earth Mover’s Distance (EMD) is based on a 

solution of transportation problem. It is a problem of suppliers and consumers 

where goods are to be transported from suppliers to consumers according to 

logistic costs. Stocks of suppliers are limited as well as consumers’ appetites. 

Thus, the EMD can be used to measure the necessary effort or cost to 

transform one thing (histogram, image, signature etc.) into another one. Figure 

4.15 illustrates its basic principle. 
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Figure 4.15. Illustration of EMD between suppliers and consumers. 

Transfer of goods from a supplier to a consumer has a transportation 

cost. The work done on the transportation is amount of goods transferred 

from supplier X to consumer Y multiplied by the cost of transportation. The 

goal of EMD computing is to minimize the total cost. It can be formalized as 

the following linear programming problem: Let A={(a1,wa1),…,(am, wam)} be 

the supplier grid with m suppliers (or histogram with m bins). Where ai is a 

bin representative (coordinate or bin number etc.) and wam is the weight of 

the bin. B={(b1,wb1),…,(bn, wbn)} is the second signature with n elements. 

D=[dij] is the ground distance matrix where dij is distance between elements 
ai and bj (transportation cost). 

The question is to find a flow F=[fij] where fij is the flow between ai 
and bj that minimizes the total cost 
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with the following constraints: 
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Once the minimization problem is solved, the Earth Mover’s Distance is 

defined as the normalized total cost: 
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The advantage of the EMD to allow all possible variations of rhythms in 

our case is œcompensatedB by the cost of EMD computation. Complexity of 

EMD computation is polynomial (~n3), it makes it hardly applicable for 

comparing large histograms that are in our case 70×150 bins and building 
complete similarity matrix of many-thousand musical files collection. 

While all the previous similarity measures can be used for comparing 

our 2D beat histogram and outputting a rhythmic similarity, we propose in 

our work a tradeoff between computation efficiency and robustness of 

similarity measure to slight tempo variation. Indeed, we assume that two 

songs having similar rhythmic structure is likely to have similar beat 

histograms except small tempo variations. On the other hand, a music 

retrieval system by similarity needs to give the impression of being real time:  

once fingerprints are calculated for the musical collection, the algorithm of 

similarity search should run quickly to issue the complete similarity matrix or 

to give a list of similar songs to a query song. We thus propose a modified 

version of bin-by-bin similarity measure so that it is insensitive to slight 
histogram changes while keeping its advantage of low computation cost. 

Our rhythmic similarity measure base on 2D beat histogram is defined 
as follows: 
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where 

H1, H2 $ beat histograms to compare 

N, M $ beat histogram size 

R $ tolerance area as for instance of the following form (Figure 4.16) 
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Figure 4.16. Tolerance area used in the similarity computation of two beat histograms. 

As we can see from Figure 4.16, the tolerance area R thus defines thus 

slight histogram shifts in beat period axis X and beat strength axis Y. 

4.4. A 2D beat histogram based tempo estimation algorithm and 
its evaluation 

While general evaluation of our 2D beat histogram and the associated 

rhythmic similarity measure will be made through their applications. These 

applications are automatic genre classification and music similarity search, 

which are described in chapter 6. We describe in this section a sideway 

product of our 2D beat histogram, namely a tempo estimation algorithm and 

also propose an evaluation of our algorithm as a first validation of our VRT-
based beat curve extraction procedure. 

4.4.1. A 2D beat histogram based tempo estimation algorithm 

As we can see from Figure 4.17,  peaks on our 2D beat histogram 

correspond to the tempo of the piece or the tempo multiples like 2x, 3x, 4x, 

or 1/2x, 1/3x, 1/4x. We thus derive a tempo estimation algorithm from this 
2D beat histogram.  

 

Figure 4.17. A 2D beat histogram. Main tempo and its 2x alias are marked on the image. 
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The basic assumption is that the true tempo can have its B PM value 

ranging from 65 to 200 (rarely past 200 and fewer than 60, see e.g. [ALON 

03]). Our algorithm proceeds first by seeking the maximal peak on the 2D 

beat histogram. If the value of its period hit the range of possible tempos, 

then the peak is considered as the found tempo. Otherwise, its multiples are 
examined in the following manner: 

1) find the first multiple with significant (non-zero) amplitude 

2) check if its period lies in the acceptable tempo range 

3) if in acceptable range return the obtained tempo, otherwise 

find the next multiple 

4.4.2. Experimental evaluations 

Two evaluations of this simple tempo estimation algorithm have been 
carried out using different databases.  

A detailed evaluation of our tempo estimation (and hence, beat 

detection) was conducted by Miguel Alonso form the research team of ENST 

Paris in the context of MusicDiscover project. Evaluation methods they used 

were pretty much the same as in known tempo induction contests (e.g. 

MIREX) with 8% of confidence window. The dataset which was used is the 

dataset of 474 30-sec. pieces annotated by Anssi Klapuri from Tampere 
University (Finland).  

Here are the results (algorithm from this work is referred as EC-Lyon in 

the tests). 

Acc1 $ exact tempo estimation within acceptance window 

Acc2 $ tempo with 2x and 3x multiples 

Acc3 $ tempo with 1/2x and 1/3x multiples. 

 
Figure 4.18. Performance comparison of two tempo estimation algorithms – EC-Lyon and ENST-

Paris. 
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Figure 4.19. Distribution of the tempo estimation accuracy as function of genre for ECL algorithm. 

 

 

Figure 4.20. Distribution of the tempo estimation accuracy as function of genre for ENST algorithm. 

The following figures concern tatum estimation. The tatum may be 

established by the smallest time interval between two successive notes, but is 

in general best described by the pulse series that most highly coincides with 
all note onsets. 
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Figure 4.21. Tatum estimation accuracy of two algorithms. 

The picture above shows an overestimation of tatum by our algorithm. 

It was extracted by our algorithm as a period of maximal peak on the beat 

histogram. The true tatum appeared to be two or three times the period 

obtained by our algorithm, according to the image since the measure Acc 3 
takes into account these multiples. 

 

Figure 4.22. Tatum estimation performance by musical genre. EC-Lyon algorithm. 
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Figure 4.23. Estimation performance by musical genre. ENST-Paris algorithm. 

 

As we can see from the previous figures, our tempo estimation 

algorithm has outperformed the algorithm of ENST-Paris [ALON 07] more 

than 10 points in exact tempo estimation accuracy. However, in the case of 

tatum estimation, our algorithm underestimates the exact tatum frequency 

and delivers values two or three times less than the actual tatum. This 

problem comes from the confusion between tatum and the declared tatum by 

our algorithm, i.e. the detected maximum peak in 2D beat histogram which is 

not necessarily tatum. For a better discrimination between tempo and tatum, 

a learning scheme on 2D beat histogram might be used to improve the 
previous result.  

The second experiment was based on database which consisted of a 

subset of musical files used in ISMIR2004 tempo estimation contest. Musical 

segments were selected from BallroomDancers collection. There were about 

100 30-second files in 6 genres: Cha-Cha, Quickstep, Salsa, Samba, Tango and 
Waltz. All files are sampled at 16kHz 16 bit. 

Precision metric A was taken as a percentage of tempos correctly 

estimated within 4% of absolute error. Precision metric B  was a percentage of 

tempos correctly estimated within 4% of absolute error and have its close 

multiples, i.e. 2x, 3x, 4x, 1/2x, 1/3x and 1/4x to be a correct estimation as 

well as it is done at common tempo estimation contests.  

The following results were obtained for 3 analysis window shifts - 10, 

15, 30ms (Table 4.1 - Table 4.4). The last table is shown here to indicate the 

fact that increasing the confidence area strongly influences the results. 
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Table 4.1. Tempo estimation results for 10ms analysis window shift. 

 ChaCha Quickstep Salsa Samba Tango Waltz Average 

A 100 0 66.7 0 33.3 0 33.3 
B 100 60 66.7 60 33.3 21.4 56.9 

Table 4.2. Tempo estimation results for 15ms analysis window shift. 

 ChaCha Quickstep Salsa Samba Tango Waltz Average 

A 100 0 55.6 0 60 35.7 41.9 
B 100 86.7 55.6 66.7 60 57.1 71.0 

Table 4.3. Tempo estimation results for 30ms analysis window shift. 

 ChaCha Quickstep Salsa Samba Tango Waltz Average 

A 92.9 0 22.2 66.7 66.7 28.6 46.2 
B 92.9 66.7 33.3 86.7 66.7 42.9 64.8 

Table 4.4. Tempo estimation results for 30ms analysis window shift, 10% confidence area. 

 ChaCha Quickstep Salsa Samba Tango Waltz Average 

A 100 0 78.8 66.7 93.3 78.6 69.4 
B 100 93.3 88.9 86.7 93.3 92.9 92.5 

The best result known in the literature for the complete 

BallroomDancers database (~3200 musical excerpts) is 67% (measure A) and 

84% (4% accuracy and 2x, 1/2x etc. tempos taken into account, measure B ). 

All results of ISMIR 2004 tempo induction contest is given in the Table 4.5. 

Table 4.5. Complete table of reference results from ISMIR2004 tempo estimation contest. 

4% accuracy 4% accuracy, w/ alias tempos 

1. Klapuri 66.91%  
2. Uhle 46.26% 
3. McKinney 44.89%  
4. Dixon_auco 38.66%  
5. Scheirer 37.70%  
6. Alonso_sppr 35.98%  
7. Dixon_indi 31.60%  
8. Tzan_medsumbands 30.94  
9. Tzan_medmultibands 30.72%  
10. Alonso_auco 27.38%  
11. Dixon_trac 26.53%  
12. Tzan_histsumbands 22.42% 

1. Klapuri 84.36%  
2. Dixon_auco 81.74%  
3. McKinney 80.68%  
4. Dixon_trac 74.14%  
5. Dixon_indu 72.98% 
6. Alonso_sppr 69.30%  
7. Uhle 68.02%  
8. Scheirer 67.73%  
9. Alonso_auco 56.92%  
10. Tzan_medsumbands 55.17%  
11. Tzan_medmultibands 50.48%  
12. Tzan_histsumbands 49.87% 

The experiment shows that our tempo estimation algorithm achieves 

comparable results on a partial randomly chosen subset of ISMIR 2004 
database.  

 These two experiments, while displaying acceptable performance of our 

simple 2D beat histogram tempo estimation algorithm, thus tend to show the 



4. Rhythm-related similarity features 

 

71 

soundness of our VRT-based beat extraction curves as they characterize 

rhythmic events in a music signal. The relevance of the derived rhythmic 

similarity measure for music genre classification or music retrieval by 
similarity will be further studied in chapter 6 dedicated to applications.  

The results of the second experiment we provide here are given as an 

indication only, since dataset we used is a small subset of the common 
database.  

4.5. Conclusion 

In this chapter, we have proposed some VRT-based solutions for 

characterizing rhythmic property of music signal and its similarity. 

Rhythmical features are first extracted from a VRT spectrogram as a beat 

curve using some basic image enhancing algorithms. The resulting beat 

strength curve can be assumed to be a beat probability-related curve. This 

beat curve is further summarized by a beat histogram in two-dimensional 

space. There are two advantages of such representation. First, the histogram 

is built with the second axis covering a range of thresholds in the beat 

detection algorithm, so the necessity of threshold choosing is omitted. The 

second advantage is that this histogram is therefore volume-independent as 
the range of thresholds is taken from 0 to maximum.  

The rhythmical similarity has been defined as the distance between two 

2D beat histograms. The main question is how to compare two beat 

histograms? Several most popular approaches to histogram comparison have 

been studied in this chapter $ from bin-by-bin to complete cross-bin 

comparison algorithms. We have proposed an intermediate solution which 

keeps the rapidity of bin-by-bin methods and add a tolerance to slight 
neighbor bin variations. 

B ased on our 2D beat histogram, we have also proposed a simple tempo 

estimation algorithm which has displayed, when evaluated by two 

experiments, comparable performance to other tempo estimation algorithms 
known in the literature.  

Our 2D beat histogram and its associated rhythmic distance measure 

will be further used as rhythmic features in music genre classification and 
music retrieval by similarity as we will see in chapter 6. 
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5. Melody-related similarity features 

We call melody-related similarity features a series of similarity measures 

based on melodic and harmonic properties of a music signal. The true melodic 

similarity metrics are used to compare melodies upon their score 

representation like MIDI (Musical Instrument Digital Interface). The question 

of score-based melodic similarity is well known and well explored in the 

literature (see e.g. [TOIV 02; TYPK 03]). A work providing a comparison of 
different approaches is for example [GRAC 02].  

Unfortunately, working with raw audio signal makes symbolic similarity 

algorithms useless since a general 100% effective signal-to-score translation is 

not yet available. Therefore, we do not focus here on score-based melodic 

similarity but rather on signal-based one. We propose in this chapter a VRT-

based approach for approximate extraction of multiple fundamental 

frequencies with relative amplitudes of their harmonics from the signal. 

Furthermore, based on these estimated multiple f0 and their harmonics we 

also derive several melody related similarity measures within the framework 
of music information retrieval.  

5.1. Related work 

A melody-related characteristic currently used in the MIR community is 

pitch. The notion of pitch is often related to monophonic pitch obtained using 

autocorrelation-based algorithms (see e.g. [MCKI 03]). However, this definition 

of pitch is not equivalent to converting a polyphonic music signal into note 

score. Pitch in musical signal is defined as fundamental frequency (f0) of a 

sounding voiced instrument.  

Early works on automatic pitch detection were developed for speech 

signal. (see e.g. [AB E 96; HU 01]). Much literature nowadays treats the 

monophonic case (only one f0 present and detected) of fundamental 

frequency estimation. In the monophonic case several approaches are well 

known. Autocorrelation based algorithms are among the most frequently used 

approaches for f0 estimation (e.g. [CHEV 02; TALK 95]). Operating directly in 

the time-domain, zero-crossing rate based methods are the simplest 

techniques for fundamental frequency estimation. Other techniques operate 

in frequency domain. For instance,  harmonic matching methods propose to 

extracting peaks in the spectrum which are further compared to predicted 

harmonics of each f0 candidate (see e.g. [DOVA 91; PISZ 79]).  

The previous works are mostly suitable for to speech signal analysis. 

Unfortunately, it is admitted that algorithms designed for monophonic or 
speech case are rarely usable for multi-pitch detection.  
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There are also works studying the polyphonic case of music signal in the 

literature. However, in most of these works the polyphonic music signal is 

usually considered with a number of restrictions such as the number of notes 
played simultaneously or some hypothesis about the instruments involved.  

The work [KLAP 99] presents a pitch detection technique using separate 

time-frequency windows. B oth monophonic and two-voice polyphonic cases 

are studied. Multiple-pitch estimation in the polyphonic single-instrument 

case is described in [LAO 04] where authors propose to apply a comb-filter 

mapping linear frequency scale of FFT into logarithmic scale of notes 

frequencies. As the method is FFT-based, the technique inherits drawbacks 

of FFT for music signal analysis as we highlighted in Chapter 3, namely 
requiring large FFT analysis windows thus leading to low time resolution.   

An advanced f0 detection algorithm is presented in [GOTO 01a] which is 

based on finding frequencies which maximize a f0 probability density 

function. The algorithm is claimed to work in the general case and have been 
tested on CD recordings. 

We can also mention many other recent works on multiple fundamental 

frequency estimation, for instance the ones in [LI 07; YEH 05]. B oth these 

works are probabilistic methods. The first one uses a probabilistic HMM-

based approach taking into account some a priori musical knowledge such as 

tonality. Variable results from 50% to 92% of recognition rates for different 

instruments in MIDI synthesized sequences are reported. The second 

algorithm is evaluated on synthetic samples where each file contains only one 

combination of notes (1 note or 1 chord). 

It is not evident how to compare these different multiple f0 estimation 

algorithms as assumptions or models on the polyphonic music signal are often 

not explicitly stated. On the other hand, there is no single evident way of 

multiple f0 detection. Some algorithms are strong in noisy environment; some 

algorithms require a priori training; others are able to detect inharmonic 

tones etc. The most popular approach to f0 estimation is harmonic pattern 

matching in frequency domain. Our multiple-f0 estimation algorithm makes 

use of this basic idea and relies on our VRT specifically designed for music 
signal analysis. 

5.2. Our VRT-based multiple f0 estimation algorithm 

5.2.1. Principle and procedure 

The basic principle of the f0 estimation algorithm consists of modeling of 

our VRT spectrum with harmonic models. Real musical instruments are 

known to have inharmonic components in their spectrum [KLAP 04]. It 

means that the frequency of the nth partial can be not strictly equal to f0*n. 
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The algorithm we describe does not take such inharmonic components into 

account, but it tolerates some displacement of partials in a natural way. 

A typical œflatB harmonic structure used to model the spectrum is 

depicted in the Figure 5.1. 

 

Figure 5.1. Harmonic structure. 

This fence is a vertical cut of VRT spectrogram calculated from a 

synthetic signal representing an ideal harmonic instrument. The width of 

peaks and space between them is variable because the VR transform has a 
logarithmic frequency scale. 

In the next step, these models are used to approximate the spectrum of 

the signal being analyzed in order to obtain a list of f0 candidates. 

 

Figure 5.2. Matching of harmonic models to spectrum. 

During every iteration of the algorithm, such harmonic fence is shifted 

along the frequency axis of the spectrogram and matched with it at each 
starting point.  

The matching of the harmonic model is done as follows. At every 

harmonic their amplitudes ai are taken from the values of the spectrogram 

for the frequencies of ith harmonics. As frequencies of harmonics do not 

necessarily have integer ratios to the fundamental frequency, we take the 

maximum amplitude in a close neighborhood, as it is explained in Figure 5.3.  

Harmonic models 

VRT spectrum 
F0 
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Figure 5.3. Procedure of extraction of harmonic amplitude vector. 

This procedure forms a function A(f) which is a norm of the vector a for 

the frequency f. The value of frequency for which the function A takes its 
maximum value is considered as an f0 candidate.  

Further, the obtained f0 candidate and the corresponding vector a of 

harmonics amplitudes is transformed into a spectrum slice like in Figure 5.1. 
The shape of peaks is taken from the shape of VRT spectrum of a signal with 

a sine wave with corresponding frequency. This slice is then subtracted from 

the spectrum under study. The iterative process is repeated either until the 

current value of harmonic structure A(f) becomes inferior compared to a 

certain threshold or until the maximum number iterations has been reached. 

We limit the maximum number of iterations to 4, and therefore the 

maximum number of notes that can be simultaneously detected is 4. As it 

was observed in preliminary experiments, increasing the number of 

simultaneously detected notes doesn’t improve the f0 detection performance 

significantly for high-polyphonic music, because after 3rd or 4th iteration the 

residue of spectrum is already quite noisy as almost all harmonic components 

have been already subtracted from it due to harmonic overlaps. The 

procedure of multiple f0 estimation can be depicted by the following 
algorithm: 

 
max_match = 0 
model_width = number_of_bins taken by N-harmonic model 
for starting_point = 0 to spectrum_size – model_width { 
 A[starting_point] = match model with the spectrum at starting_point; 
 if max A[starting_point] then max_match = starting_point; 
} 
f0_candidate = convert to pitch (max_match); 
subtract the model from spectrum at max_match; 

 

Spectrum 
Tolerance 
windows 

 a1,    a2,    a3,    a4  …  an 

maximal values 



5. Melody-related similarity features 

 

77 

if spectrum is not empty and max iterations is not reached then continue 
iterations;  

      

The matching algorithm can be described by the following function: 

 

Function match (starting_point) 
{ 
 for i = 0 to number_of_harmonics_in_model { 
  y = starring_point + disp[i]; // disp $ an array of relative harmonic positions, 

disp[0]=0 

  a[i] = max(W[y-1], W[y], W[y+1]); // W[0…spectrum_size] – current spectrum slice 
       // a tolerance window size of 3 bins is applied 

here 

 } 
 match = norm (a[…]); 
} 

 

The procedure of note extraction is applied each 25 ms to the input 

signal sampled at 16 kHz 16 bits. Hence, for the shortest notes with duration 

around 50-70 ms we obtain note candidates at least twice in order to be able 

to apply filtering techniques. Every slice produces a certain number of f0 

candidates; then, f0 candidates are filtered in time in order to remove noise 

and unreliable notes. The time filtering method used is the nearest neighbor 

interframe filtering. 3 successive frames are taken and f0 candidates in the 

middle frame are changed according to the f0 candidates in the side 

neighbors. This filter removes noisy (false detected) f0 candidates as well as 

holes in notes issued by misdetection. It can be explained by the following 
algorithm: 

 

for all f0 candidates at time t-1 { 
 if candidate absent at t-2 or candidate absent at t the remove candidate at t-1 
} 
for all f0 candidates at time t-2 { 
 if candidate present at t then add candidate at t-1 
} 

 

 B lock diagram of the note detection algorithm is shown in Figure 5.4. 
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Figure 5.4. Block diagram of note detection procedure. 

5.2.2. Experimental evaluation 

The easiest way to make basic evaluation experiments in automated 

music transcription is to use MIDI files (plenty of them can be freely found 

on the Internet) rendered into waves as input data. The MIDI events 

themselves serve as the ground truth. However, the real life results must be 

obtained from recorded music with true instruments and then transcribed by 

educated music specialists. 

In our work we used wave files synthesized from MIDI using hardware 

wavetable synthesis of Creative SB  Audigy2 soundcard with a high quality 

140Mb SoundFont bank œFluid_R3B freely available on the Internet. In such 

wavetable synthesis banks all instruments are sampled with good sampling 

rates from real ones: the majority of pitches producible by an instrument are 

recorded as sampled (wave) block and stored in the soundfont. In the 

soundfont we used, acoustic grand piano, for example, is sampled every four 

notes from a real acoustic grand piano. Waves for notes which are in between 

these reference notes are taken as resampled waves of closest reference 

notes. Therefore, signal generated using such wavetable synthesis can be 

considered as a real instrument signal recorded under ideal conditions. And a 

polyphonic piece is an ideal linear mixture of true instruments.  To make the 

recording conditions closer to reality in some tests we passed the signal over 
speakers and record it with a microphone.  

Figure 5.5 is a screen-shot of our note detection program which is used 

for note detection. With a capability of real-time input signal processing, our 

note detection program achieves candidate f0 detection and time filtering 

with 25 ms interframe time. It is capable to parse and play MIDI files and 

compare the result of note detection with the original music score. 

Input signal 

 

VRT 

 

Modeling 
 

 

 
 

 
F0 candidates 

 

Generated 
sines 

Models 

 

VRT 

 

 

Time filtering 
 

 

Note score 
 



5. Melody-related similarity features 

 

79 

 

Figure 5.5. Note recognition and evaluation program. 

Recall and Precision measures are used to measure the performance of 
the note detection. Recall measure is defined as: 

notesofnumberactualthe

detected notes correct number the
  Recall=  (5.1) 

 Precision is defined as follows: 

detecednotesallofnumberthe

detected notes correct number the
 Precision =  (5.2) 

For the overall measure of the transcription performance, the following 
F1 measure is used 

PrecisionRecall

PrecisionRecall
F

+
⋅⋅= 2

1  (5.3) 

All falsely detected notes also include those with octave errors. For some 

tasks of music indexing as for instance tonality determination, what is 

important is the note basis and not the octave number. For this reason, the 

performance of note detection without taking into account octave errors is 
estimated as well.  

Our test dataset consists of 10 MIDI files of classical and pop 

compositions containing 200 to 3000 notes. Some other test sequences were 

directly played using the keyboard. The following tables (Table 5.1 - Table 5.4) 
display precision results of our multiple pitch detection. Perf.Oct column 

stands for performance of note detection not taking into account notes’ 

octaves (just the basic note is important). The polyphony column indicates the 
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maximum and the average number of simultaneously sounding notes found 

in the play. 

Table 5.1. Note detection performance in monophonic case. Sequences are played manually using the 
keyboard. 

Name  of notes Polyphony Performance Perf. Oct 
  max / avg Recall Prec F1 F1 

Piano Manual 150 1 / 1  100 100 100 100 
Violin Manual 160 1 / 1 100 97 98.5 100 

Table 5.2. Note detection performance in polyphonic case. Sequences of chords are played manually 
using the keyboard. 

Name  of notes Polyphony Performance Perf. Oct 
  max / avg Recall Prec F1 F1 

Piano Manual 330 2 / 1.8 98.5 100 99.5 99.7 
Piano Manual 214 5 / 2.2 95.8 100 97.8 99.1 
Flute Manual 174 4 / 2 97.7 97.7 97.7 99.7 

Table 5.3. Note detection performance in polyphonic case. Classical music titles (single- and multi-
instrument, no percussion). 

Name   Polyphony Performance Perf. Oct 
 of notes max / avg Recall Prec F1 F1 

Fur_Elize 924 6 / 1.6 91.1 88.7 88.9 95.6 
Fur_Elize w/ microphone 924 6 / 1.6 88.1 86.9 87.5 95.4 

Tchaikovski 01 177 4 / 3.5 84.7 95.5 89.8 95.4 
Tchaikovski 16 186 4 / 2.6 86.5 100 92.8 97.2 

Bach 01 687 5 / 1.7 91.1 88.7 89.9 98.2 
Bach 03 549 5 / 2.1 98.9 91.9 95.2 96.8 

Bach Fugue 252 5 / 2.4 83.7 76.1 79.8 93.2 
Vivaldi Mandolin Concerto 1415 6 / 2.9 70.1 74.8 72.4 91.5 

Table 5.4. Note detection performance in polyphonic case. Popular and other music (multi-instrument 
with percussion). 

Name   Polyphony Performance Perf. Oct 
 of notes max / avg Recall Prec F1 F1 

K. Minogue 2545 10 / 4.7 40.6 37.1 38.8 64.3 
Madonna 2862 8 / 3.9 43.9 56.9 49.5 66.4 

Soundtrack f/ Godfather 513 9 / 4.1 88.7 67.2 76.5 90.4 

As we can see from these tables, our algorithm performs quite well in 

the monophonic case. Good results are also obtained in polyphonic case with 

classical music having a low average level of polyphony (number of notes 

simultaneously played). More complex musical compositions which include 

percussion instrument and have high polyphony rate have produced lower 

recognition rates. In our note detection algorithm, we have limited the 

maximal detectable polyphony to 4 while the maximal and average 

polyphony in the case of popular and other music is 10 and 4.7 
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correspondingly. The octave precision, however, stays high (perf. Oct F1 

field).  

For comparison purpose, we also implemented our note detection 

algorithm based on FFT with different window size instead of our VRT.  We 

carried out an experiment with a set of polyphonic classical compositions 

(~1000 notes) using this FFT-based note detection algorithm. Table 5.5 and 

Figure 5.6 summarize the experimental results. 

Table 5.5. Comparison of transcription performance based on different time-frequency 
transforms (the FFT with various window sizes versus  VRT). 

Transform FFT FFT FFT VRT 
FFT size or number of VRT 

frequency samples 
1024 2048 4096 1024 

Result (F1) 66.2 77.6 80.5 91.3 
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Figure 5.6. Note detection algorithm performance according to underlying spectral analysis approach. 

Further increase of the FFT window size lowers the time resolution 

down to 0.5-1 seconds so that note changes quicker that 0.5 seconds cannot be 

resolved anymore. 

These experimental results show the advantage of our VRT and its 

simple use performs multiple note detection quite well in the case of low 

average polyphony rate. 

5.3. Melody-related similarity features 

Let us point out that the main goal of this work is music retrieval by 

similarity which is quite subjective. As such, a 100% accurate note detection 

algorithm may not be necessary. In the following, we thus assume that our 

VRT-based note detection algorithm delivers partial transcription of a 

music signal on which we can build melody-related similarities. The basic 

idea is that for each window our multiple f0 detection algorithm issues a list 

of detected f0`s together with relative amplitudes of their partials. This 

information is then used for building several kinds of statistical 

characteristics (histograms). 
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5.3.1. Note profile histogram  

The simplest way to calculate a similarity distance is to calculate a 

distance between note histograms. Note histograms, or chroma profiles and 

chromagrams [PAUW 04] are well known and they are computed across the 

whole musical file or its part and serve for estimation of musical similarity by 

tonality as well as tonality estimation (musical key) itself.  

Tonality is a musical term denoting a system of relationships between a 

series of pitches (notes) that form melodies and chords. In simple words, 

tonality can be referred as describing a collection of pitches, used to build a 

musical piece. A tonality has a tonic $ a central note as its most stable 

element. Besides the tonic, one of the most important notes of a tonality is 

the dominant (the 5th note) and subdominant (the 4th note).  

Besides the tonic tonalities are distinguished by modes $ major and 

minor (natural, harmonic, melodic). Each of them has different musical 

characteristics regarding the position of tones and semitones. Figure 5.7 gives 
an example of two tonalities $ Do-major (C-major1 or C-dur) and Do-minor.  

 

Figure 5.7. Tonality. Do-Major and Do-Minor (natural) tonalities. 

These are parallel tonalities in respect of the tonic. There are also 

parallel tonalities in the meaning of notes used. For do-major it is la-minor. 

The note histogram or tonal profile has a close relationship with the 

tonality as tonality and its mode (minor/major) are related to the 

probabilities of notes that can be observed in the play. For example, for a 

song in Do-major it is not very probable to find Do# in it. An example of two 
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such tonal profiles (for C-major and C-minor) is given in Figure 5.8. In music 

analysis applications the tonality can be œguessedB using note histogram of 
the musical piece [CHUA 05; PEET 06]. 

 

Figure 5.8. Note profiles for major (C-major, left) and minor (C-minor, right) tonalities 
(approximate). 

In our work, we propose to utilize note profile histogram as a measure in 

order to characterize a tonal similarity between two musical compositions 

using Minkovski-form distance (4.1). Since a transposition in music does not 

change the perception of melody, the distance must be computed taking into 

account all possible transpositions. An illustration of the process is given in 

Figure 5.9. The algorithm makes a rotation of one of the two histograms. As 

the number of notes in histograms is 12, the rotation produces 12 variants. 

These variants of the first histogram are compared to the second histogram 

by computing a distance between histograms. The minimum value of 
obtained distances is used as the measure of tonal distance. 

 

Figure 5.9. Comparison of note histograms taking into account all possible transpositions. 

This tonal distance is assumed to be useful in finding the musical pieces 

which are similar in tonality, and therefore, probably similar in their mood $ 

music in a minor key is often claimed to sound sad whereas music in a major 
key is typically viewed as sounding cheerful1.  

                                   

1 http://en.wikipedia.org/wiki/Major-Minor 
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The variant of note histogram that we use is the multi-octave note 

histogram. In this type of tonal profile, octaves are not rolled up into one to 

produce a histogram, but histogram is produced from the absolute height of 

the notes. Comparison of such multi-octave histograms can be done by 

shifting them by up to ± ½ octaves with one semi-tone shift (melodies can be 

transposed and we want to accept such transpositions within one octave). 

Multi-octave tonal profile is mostly indicating the total distribution of notes in 

the spectrum, for example a balance between bass and melody lines can be 
extracted, etc. 

5.3.2. Note succession histogram 

Another musical similarity measure studied in this work is a similarity 

based on note successions histogram. Here the probability of 3-note chains is 

collected and its histogram is then used as a œfingerprintB of musical title. A 

musical basis of such similarity measure is that if passages are frequent in 

two musical compositions, it gives a chance that these two compositions have 
similarities in melody or harmony. 

The note successions histogram extracted from a music signal is 

computed as follows. First, note extraction over the whole piece is carried out. 

Then the detected notes are grouped in local note histograms in order to find 

a dominating note in each grouping window. The size of the grouping window 

may vary from 100ms to 1 sec. Finally, all dominant notes are extracted from 

local histograms and their chains are collected in the note successions 

histogram. The process is depicted in Figure 5.10. 

 

Figure 5.10. Procedure of note succession histogram calculation. 

The resulting histogram is a 3-dimensional histogram where each axis is 

one note of 3-note chain found in the musical piece under study.  
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Figure 5.11. 3D note successions histogram example. 

Figure 5.11 illustrates such a histogram where red cubes represent 

histogram bins. The bigger is the cube $ the higher is the value of the 

corresponding histogram bin. B ins are depicted in three-dimensional space 

since the histogram is three-dimensional. As each note axis has 12 positions 

(corresponding to notes), the whole histogram therefore comprises 123 bins. In 

the case of 4-note succession histogram, it contains 124 bins which would be 

too large and too sparse for good comparison as few notes in one play would 
fill the histogram. 

To compare the note succession histograms we apply the same principle 

as for one-dimensional note histograms. All rotations around 3 axes of the 

histogram are considered simultaneously and the minimum distance value is 
taken. 

5.3.3. Timbre histogram 

The third characteristic we extract from a musical piece is the timbre 

histogram. In general, œvoicedB instruments differ from each other also by 

their timbre $ profile of their partials. In our work we collect all detected 

notes with relative amplitude of their harmonics. Further, relative amplitudes 

of harmonics are reduced to 3-4 bits and attached together in order to form 
an integer number. Histogram of these numbers is then computed.  

 

Figure 5.12. Computing of timbre histogram. 
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Unlike the classical approach which consists of describing the timbre 

globally, our timbre features are first defined based on separate notes 

isolated by the multiple-f0 estimation algorithm and then they are 

summarized in a histogram. Comparing such histograms gives a similarity 
measurement, which is supposed to be somehow instrument-related. 

5.4. Conclusion 

In this chapter we have presented a VRT-based multiple-f0 estimation 

algorithm characterized by its simplicity, rapidity and high temporal 

resolution as opposed to the FFT-based methods. It performs pretty well in 

the detection of multiple pitches with non-integer rates. However, as other 

similar algorithms, our VRT-based multiple f0 estimation algorithm does not 

solve the following problem: two notes with a distance of an octave can 

hardly be separated, because the second note does not bring any new 

harmonics into the spectrum, but rather changes the amplitude of existing 

harmonics of the lower note, so some knowledge of the instruments involved 

in the play or instrument recognition techniques and multi-channel source 

separation is necessary to resolve the problem. 

Our note detection mechanism was evaluated in its direct application $ 

musical transcription from the signal. In this evaluation ground truth data 

was taken as note score files $ MIDI. These files from various genres (mostly 

classical) were rendered into waves using high-quality wavetable synthesis. 

The resulting wave files were passed as input for the transcriptions 

algorithm. The results of the transcription and the ground-truth data were 

compared and a performance measure was calculated, producing results that 

are reliable enough to be suitable for use of this partial transcription in 
similarity metrics. 

Several musical features and corresponding similarity measures have 

been proposed in this chapter. Some of them were already known in 

literature (the pitch class or note profile), some of them are newly presented 

in this thesis (the note succession histogram, the timbre histogram). All these 

music features are closely related to musical content. As we will see in the 

next chapter on music genre classification and music retrieval by similarity, 

they are precious as complementary features for previous purely spectral or 

timbre similarity features developed so far in the literature. 
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6. Applications and evaluation 

From the start, our basic assumption was that music signal analysis 

within MIR framework needs to go beyond pure acoustic or spectral features, 

as was also suggested by many works in the literature [AUCO 04]. 

Consideration of some music-specific features in addition to popular acoustic 

and spectral ones can improve the performance of music information 

retrieval algorithms, in particular music genre classification and music 
retrieval by similarity.  

In our work we consider the task of automatic genre classification as a 

tool of an objective evaluation of our previously defined music features and 
the associated similarity measures. 

While evaluation of the first application is rather clear, the evaluation of 

the second application presents a certain difficulty. The reason is the absence 

of objective ground truth data since the question of musical similarity is 

inherently a subjective one. Of course, the ground truth data can be found in 

some extent in the meaning of genre classification or artist identification. In 
this chapter we will discuss about it in details.  

6.1. Automatic genre classification 

Music genres are categories used by music editors and distributors. 

These categories facilitate the navigation in a large music collection. Genres 

are naturally used to categorize digital music collections. To date, genres are 

manually assigned by music editors, distributors and aggregators. Assigning 

genres to music titles automatically is becoming important for several reasons. 

The main reason is that, in the digital era the music unit is the title in 

contrary to the album in the physical era, meaning a clear increase in the 
number of units to be categorized. 

6.1.1. The problem 

The main practical difficulty in the problem of automatic genre 

classification is the absence of reliable ground-truth data. Definitions of 

genres are often ambiguous and unclear. Moreover, even if genres are well 

defined, their borders are still a question to discuss. There exist many musical 

pieces with transitional genres sharing multiple classes. 

It is known that even a human-based genre classification does not give 

100% of classification rates is known. The work [PERR 99] has provided 72% 

of classification that agrees with genres among 10 attributed by record 

companies. Another study [LIPP 04] has found inter-participant genre 

agreement rates of only 76%. With these facts one can assume the existence 

of an unavoidable ceiling on automatic genre classification performance. 
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Another fact which makes ground-truth data for automatic genre 

classification less reliable is that genres are often attributed to artists or 

albums while in general artists have songs belonging to different genre even 

within the same album. An example is easy to find. Quite a large number of 

Rock (Metal) albums can contain calm and romantic compositions which can 

be closely related to Ballad or Power Ballad to be exact. From listener’s point 

of view these songs are different from the original artist’s genre and the 

absence of detailed per-song genre attribution is sometimes confusing. From 

the point of view of automatic genre classification algorithms such exception 

songs may produce big disturbances in classification models since these songs 

will generate descriptors significantly different from those of the principal 
attributed genre.  

The aforementioned facts along with little observed progress during last 

years prevent the task of automatic genre classification from being given a 

precise definition.  Hence the utility of the automatic genre classification 

techniques can be disputed. However, there are works in literature which 
provide arguments in favor of using the genre concept (see e.g. [MCKA 06]). 

The automatic genre classification may be useful with re-defining the 

genres as sub-clusters of some low-level meta-genres which are closely 

related to styles of music instead of genres. In this case the genres would be 

presumably better defined form the viewpoint of acoustics or perception. At 

the same time musical files from the same genre would produce more 

homogeneous audio descriptors. So, this will increase classification rates as 

well. B ut this would also require detailed manual labeling of every song with 

the new genre taxonomy, which can be a time consuming procedure, 
especially in the case of large music collections. 

As we stated at the beginning of this chapter, we consider the task of 

automatic genre classification as a tool of an objective (to some extent) 

evaluation of our previously defined music features and the associated 

similarity measures. The goal here is thus to show that our previously 

defined music features and the associated similarity measures bring about a 

performance gain when they are used in addition to purely acoustic or 
spectral based features, even in the case of simple classifiers. 

6.1.2. Related work 

Several systems for automatic genre classification have been proposed. 

In their majority, these systems are an adaptation of a general audio 

classifier to the task of music genre classification. They use a signal-only 
analysis. 

[TZAN 02] uses frequency centroid, spectral flux, zero crossing rate, 

cepstral characteristics as well as characteristics of musical rhythm and other 

aspects. Proposed features are classified by GMM classifier. For six musical 
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genres: Classic, Country, Disco, Hip Hop, Jazz and Rock the results in terms 

of average classification precision were up to 62% for 30-second segments. 

[DAN 02] proposes to use peak valleys of spectral characteristics coupled 

with GMM for genre classification. For five genres of music (baroque, 

romantic, pop songs, jazz, and rock) the precision of classification up to 82% 

was reported for 10-second segments of their proprietary database 
constructed from 1500 pieces. 

A classical approach of genre classification, based on cepstral features 

(MFCC and delta MFCC) and GMM classifier was used in [PYE 00]. The 

author reports a precision of 92% in the classification of entire songs (musical 

titles) of the following genres: B lues, Easy Listening, Classic, Opera, Techno 
and Indy Rock. 

An original approach of temporal structure modeling of musical signals 

using neural networks is introduced in [SOLT 98]. This approach was 

evaluated in genre classification of four genres: Rock, Pop, Techno and 

Classic. The authors provide an average precision of 70% for 4-second 
segments. 

Recent approaches presented in literature use spectral features such as 

MFCC, ZCR etc. together with support vector machines [MAN 05] and 

AdaB oost methods [B ERG 06]. They reported nearly 64% and 69.5% of 

normalized raw classification accuracy respectively on Magnatune database at 
MIREX2005 Genre Classification Contest. 

Direct comparison of algorithms found in the literature is quite a 

complicated question since they were often evaluated on different databases 

with different genres. For example, similar approaches used respectively in 

[TZAN 02] and [PYE 00] have produced precision rates as different 64% 

versus 92%. In addition, the length of segments used for classification also has 

an influence on the results. It is very probable, for example, that one song 

could be correctly classified by major vote over all segments of the song 

when only 30% of its duration is classified correctly. 

6.1.3. Principle and architecture of our classification system 

The idea we present here is to apply musical similarity measures 

described in the previous chapters to the automatic genre classification 

problem. It is supposed that songs from the same genre should induce 

resemblances in musical and acoustic properties. Specifically, songs from the 

same genre must sound similarly to some extent (timbre, rhythm, melody, 
etc.). This assumption forms the basis of our genre classification system. 

In our work, two kinds of classifiers are considered. They are described 

in the following two sections. Each classifier (expert) is first investigated 

using some specific music feature and correlated similarity measure 
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previously defined. This respectively leads to four different experts, namely 

acoustic expert, rhythmic expert, timbre expert and tonality expert. Starting 

from the assumption that each expert gets some insight into the genre 

according to its specific feature, we also investigate a multi-expert 

classification system which further synthesizes these individual expert 

decisions into a global classification decision, thus making use of all acoustic 
and music features developed, so far.  

6.1.3.1 Single-classifier system 

The single classifier version of our genre classification system uses 

classical architecture where a universal supervised classifier which is trained 

on learning partition of the dataset produces n outputs equivalent to the 
probabilities of classes. 

 

Figure 6.1. General principle of classification 

For our system we have chosen the k-NN (k-Nearest Neighbors) 

classifier [AHA 91]. K-Nearest Neighbor classification is a very simple, yet 

powerful classification method. The main idea behind the k-NN is that 

similar observations belong to similar classes. Thus, one simply has to look for 

the class designators of a certain number (k) of the nearest neighbors for an 

unknown sample and weigh the values their classes’ appearance in order to 

assign a class to the unknown sample (Figure 6.2). 

 

Figure 6.2. The k-NN classification principle. 
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The choice of naïve k-NN classifier is motivated by its simplicity. 

B esides, our subsequent multi-expert system requires a class probability 

made by each individual expert that each music excerpt belongs to one of six 

genres, according to its specific expertise. Alternatively, popular classifiers 

such as neural networks with an appropriate architecture or SVM may also 
be used.  

Of course, we are aware that a major drawback of k-NN classifiers (as a 

downside to its ability to operate without the need for a separate learning 

procedure) is its heavy computational cost during classification because it 

requires all the available learning dataset. Alternative classification strategies 

may trade off learning complexity against computational demands during 
classification.  

Since the k-NN classifier does not need any special training, for each 

song to be classified it looks through the training data set, counts a 

distribution of classes of k closest samples and attributes the resulting class 
according to the most representative class of the closest samples. 

Here is the list of single classifiers: 

• Rhythmic classifier or rhythmic expert is a k-NN classifier which uses 2D 

beat histograms of musical pieces as feature vector and (4.10) as similarity 
measure. 

• Timbre expert is a k-NN classifier fed by timbre histograms (š5.3.3) as 

feature vectors. Minkosvki-form distance (4.1) is used in place of a distance 
measure. 

• Tonality expert is much like the other experts, taking note profile 

histograms (š5.3.1) as feature vectors and wrapped-around Minkovski-form 

distance using the principle described by Figure 5.9. 

• The acoustic classifier we used in our work is PGM-MLP (Piecewise 

Gaussian Model $ Multi Layer Perceptron) audio classifier [HARB  05]. PGM 

models the context effect by an auditory memory, supposing that the 

classification of a stimulus at the time instant t is based on the status of the 

memory at the time instant t. The auditory memory is supposed to be a 

Gaussian distribution of the spectrum in the past time window, called the 

Integration Time Window ITW. The auditory memory is therefore modeled 

by one Gaussian distribution for each frequency band. The frequency bands 

are chosen according to the MEL psychoacoustic scale in order to model the 

frequency resolution of the human ear. The auditory memory model is 

updated continuously by a new acoustic observation and hence by new 

spectral features. For the sake of simplicity it was supposed that the duration 

of the memory model is constant, which means that the ITW is constant. 

Also, the Gaussian distributions are described by their mean and diagonal 

covariance. The PGM features are then coupled to a Multi Layer Perceptron 
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(MLP) trained using the error back-propagation algorithm. The MLP has 40 

input neurons corresponding to the 20 mean values and the 20 variance 

values obtained from each ITW window. The MLP has 1 hidden layer with 

100 hidden nodes, 6 output neurons according to number of genres. The MLP 

estimates, after a training phase using the gradient descent algorithm, the 
probability of the audio classes given the PGM features of the ITW window. 

6.1.3.2 Multi-expert classification system 

As our previous single classifier makes use of different music features 

for music genre classification, we further consider the conjunction of these 

different music features by fusing the outputs of these single classifiers into a 

final classifier, thus leading to a multi-expert system. The intuition behind 

such architecture is that each single classifier uses its specific music feature 

and is more suitable for characterizing some music genres according to the 

feature chosen. A final classification result is needed to combine these very 
complementary single expert decisions. 

 

Figure 6.3. Multi-expert architecture of the classification system. Individual experts issue genre 
probabilities which are then mixed using the final combining expert. 

The usage of a mixture of experts is not entirely new. The properties of 

expert mixtures have been investigated in [JORD 94]. They have been 

successfully applied in a general audio classification system in Hadi Harb’s 

thesis work [HARB  03; HARB  05].    Multi-expert systems have shown good 

results in music genre classification (see e.g. [SCAR 05a]). They are known to 

divide the problem into sub-problems with reduced complexity, which 
improves the global accuracy. 

One of the experts constituting our multi-expert classification system is 

the expert of classification by acoustic analysis (the first expert on Figure 6.3). 
This expert (a classifier presented in [HARB  05]) is one or several Multi 

Layer Perceptrons (MLPs) having the perceptually motivated PGM 

(Piecewise Gaussian Model) features as input characteristics. Each MLP of 
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this expert is trained independently on the entire learning dataset or on a 

part thereof.  

All the other individual experts are naïve k-NN classifiers used in 

single-expert version of the system where they were applied on similarity 

measures like rhythmic, melodic (note profile and note succession histograms) 

and similarity by timbre. Since the k-NN classifier produces one class 

designator as a classification result, is was adapted to produce multiple 

probabilistic outputs standing for probabilities of a song being analyzed to 
belong to the corresponding class.  

∑
=

=
N

j
j

i
i

C

C
P

1

 
(6.1) 

In previous works by our team a weighted sum of individual classifiers 

was used for producing resulting probabilities [HARB  04]. However, a 

contribution of each classifier is not necessarily linear. Hence in this work we 

used a method of combining based on MLP as a generic non-linear classifier 

with the following architecture. Normalized outputs of individual classifiers 

form the input for the MLP. Six outputs of the MLP are probabilities that a 

song belongs to six genres. The MLP is trained on the testing set where 

target vectors for training are formed with one member value equal to 1 for 

the genre in question and 0-values for all the rest. The MLP which was used 

has one hidden layer with 24 neurons. Further increase of the number of 

neurons in the hidden layer leads to augmenting of the network complexity 

and requires more training data. It can therefore result in overtraining with 
bad generalization. 

The training algorithm used for the neuron network is back error 

propagation [RUME 86]. The function of activation was the sigmoid function. 

6.1.4. Experimental results  

One important difficulty to overcome in the development of an 

automatic music genre classification system is the constitution of a reference 

database. A reference database should be sufficiently representative of the 

real world situation in order to draw reliable conclusions on system 

architecture, features, classifiers etc. The database must also reflect the real 

needs in real world applications, especially in the definition of genres and the 

variability of music excerpts for each genre. In the following, we first 

introduce and discuss ECL-Music genre dataset which is used as reference 

database in addition to Magnatune dataset. Then, performances by single 
classifiers and multi-expert classifier are presented and discussed. 
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6.1.4.1 Reference database 

We have chosen six music genres for the reference database. The genres 

were chosen to be those generally found on several online music stores. The 

selected list of genres includes: Rock (Pop), Rap (HipHop, R&B ), Jazz (B lues), 
Classic, Dance (Disco, Electro, House), Metal (Hard Rock, Heavy Metal) 

Each of these œgeneralB genres consists of several sub-genres which 

have a more precise definition. For example, the Rap genre consists of such 

sub-genres as Rap, HipHop, R&B , Soul etc… Each sub-genre corresponds to a 

specificity which means that two songs of the given sub-genre are closer to 

each other (at least from the musical edition’s point of view) than two songs 

from different sub-genres. Unfortunately, a detailed genre taxonomy can be 

defined in multiple ways [PACH 00], which is a limit for the definition of 

universal musical genres taxonomy. Hence, we propose to well defined 

representative sub-genre form each œgeneralB genre. The choice of the most 

representative sub-genre is made according to the number of songs 

associated to it by a musical distributor, for instance fnacmusic. E.g. Rock  

Pop rock, Metal  Hard rock. 

For each representative sub-genre we have selected the list of artists 

associated to it on the music distributor store. This list was then used to 

capture music from webradios1. The musical segments were captured as 20-

seconds records starting from the 50th second of the play and saved as PCM 

8KHz 16bit Mono files. In total the reference database consists of 1873 titles 

from 822 artists which make 37480 seconds in total. 

It is crucial to note an important variability of musical titles in this 

reference database owing to a significant number of artists (see Table 6.1). As 

far as we know, this is the first reference database where the attribution of 

genres to each title is not made in subjective manner by one person but takes 

into account the musical distribution’s attribution. Also, in comparison with 

other freely available databases like magnatune (see Table 6.2) used in ISMIR 

2004 genre classification contest2, the current reference database is better 

balanced in the meaning of representation of classes (e.g., there are 640 

classic songs vs. 52 jazz songs in the case of magnatune). 

                                   

1 www.shoutcast.com 
2 http://ismir2004.ismir.net/genre_contest/index.htm 
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Table 6.1. Database details – number of songs per class, number of various artists per class etc. 

Genre Titles Artists Duration (seconds) 

Classic 214 113 4280 

Dance 335 226 6700 

Jazz 305 104 6100 

Metal 324 105 6480 

Rap 311 152 6220 

Rock 384 122 7680 

Total 1873 822 37480 

 

For the reason of comparison we also provide some results conducted on 

the magnatune (ISMIR 2004) database which is a known reference database. 

The magnatune database contains 1458 files of 6 genres and 138 artists. The 

database is heavily unbalanced $ there are 12 times less songs in Jazz genre 

than in Classic genre (see Table 6.2 for details). Better balanced datasets allow 

better training of classification models. An important issue with the  

mangatune database that needs to be addressed is the genre œWorldB which 

is a collection of genres not very well defined in a musicological way and 

doesn’t mention the acoustic definition. œ"World" is a common "catch-all" for 

ethnic/folk music that is not easily classified into another group and can 

contain such diverse music as Indian tabla and Celtish rockB.1 

Table 6.2. Magnatune database details. 

Genre Titles Artists 
Classic 640 40 

Electronic 230 30 
Jazz_Blues 52 5 
Metal_Punk 90 8 
Pop_Rock 202 36 

World 244 19 
Total 1458 138 

 

6.1.4.2 Experimental results by single classifiers 

In this series of experiments we separately apply single music feature-

based classifiers to make genre classification. The aim here is to show the 

relative performance achieved by an individual music feature and the 
associated similarity measure with regard to the music genre classification.    

                                   

1 http://www.music-ir.org/mirex2005/index.php/Audio_Genre_Classification 
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In the case of rhythmic and timbre classifiers every musical title in the 

testing set is compared to all titles in the learning set by the distance 

between their histograms. The learning set is taken as 50% of the entire 
database. The classifier used is the k-NN classifier with k=10. 

First we consider the Magnatune reference database for which 

classification results can be taken form the literature. We got the 

classification accuracies as follows. In the single classifier methods the two 

musical descriptors most important in genre classification were rhythmic 

similarity and timbre similarity. Note profile descriptors applied as the only 

ones do not distinguish well between genres since tonality cannot be related 

to a specific genre (we do not provide its classification confusion matrix - its 

mean classification accuracy was around 28%). For the classification by 

rhythmic similarity the result obtained was 68.1% of raw classification 

accuracy, which means that 496 songs from 729 were classified correctly. The 

result normalized with respect to the probability of classes is 54.6%. The 

confusion matrix of the classification result is presented in Table 6.3. 

Table 6.3. Rhythm expert classification result on Magnatune (normalized mean accuracy 54.6%, raw accuracy 
68.1%) 

 Classic Electronic Jazz-Blues Metal Rock-Pop World 
Classic 89.7 0.6 0.6 0.3 3.1 5.6 

Electronic 6.1 56.8 1.7 3.1 13.1 19.2 
Jazz-Blues 11.5 1.9 30.8 0 3.8 51.9 

Metal 4.4 3.3 0 46.7 30.0 15.6 
Rock-Pop 10.8 7.4 1.0 13.3 52.7 14.8 

World 23.0 9.0 0 0.4 16.8 50.8 

 

It can be noticed that the recognition rate is relatively high for classical 

songs. This result is expectable since classical music naturally does not have 

strong rhythmic structure and has high rhythmic dissimilarity with all the 

other classes except World. Regarding the class World one can conclude a 

significant confusion with other classes, especially with Classic and Pop. The 

results show that this class actually contains different types of music. Among 

the other classes, Metal and Rock-Pop have high cross-confusion rates as 
well.  

While displaying comparable ISMIR 2004 genre classification contest 

results, these experiments show that rhythm based music features influence 

music genre classification, and appear particularly efficient for discriminating 
classics from the rest of music genres. 

The second experiment concerns another musical similarity metric $ the 

timbre distance. A k-NN classifier based on this distance has performed with 

lower but still correct results. The raw classification accuracy obtained was 

52.2% which makes 380 songs from 729 to be classified exactly. The 
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normalized mean accuracy was 39.6%. The whole confusion matrix is given in 

Table 6.4. 

Table 6.4. Timbre expert result (normalized mean accuracy 39.6%, raw accuracy 52.2%) 

 Classic Electronic Jazz-Blues Metal Rock-Pop World 
Classic 75.6 1.9 0 2.5 5.0 15.0 

Electronic 16.6 17.0 0.4 14.0 15.3 36.7 
Jazz-Blues 19.2 0 5.8 3.8 13.5 57.7 

Metal 10.0 2.2 0 58.9 18.9 10.0 
Rock-Pop 23.2 2.0 0.5 24.1 30.5 19.7 

World 27.5 9.0 0 5.3 7.4 49.6 

 

As we can see from this table, the best distinguished classes are Classic 

and Metal owing to the characteristic nature of instruments involved. The 

percentage of recognition of Metal genre is even higher than in the case of 

classification by rhythmic distance. However, classes where songs are 

characterized mostly by their rhythmical structure such as Jazz-B lues and 

Electronic have weak classification rates. These results tend thus to suggest 

that our timbre feature and associated similarity measure are useful for 

distinguishing the kinds of music genres clearly characterized by the involved 

instrumentations such as classic and metal. 

Our baseline music genre classification system is the acoustic PGM-

MLP-based system [HARB  05]. When applied to Magnatune dataset, the 

acoustic PGM-MLP-based system has produced the following classification 

performance (Table 6.5). The raw classification accuracy was 53.6% with 390 

correctly classified songs out of 729. The normalized mean accuracy obtained 

was 49.6%, which is higher than in the case of the timbre distance-based 

classification but lower than in the case of the rhythmic similarity classifier. 

However, the acoustic classifier has outperformed both rhythm and timbre 
classifiers in the Metal genre.  

Table 6.5. Acoustic expert on Magnatune (normalized mean accuracy 49.6%, raw accuracy 53.6%) 

 Classic Electronic Jazz-Blues Metal Rock-Pop World 
Classic 69.6 3.4 6.9 0 3.8 16.3 

Electronic 6.6 33.6 5.7 11.4 28.4 14.4 
Jazz-Blues 11.5 3.8 53.8 0 15.4 15.4 

Metal 3.3 7.8 6.7 61.1 20 1.1 
Rock-Pop 9.9 14.3 10.3 11.3 44.3 9.9 

World 26.6 11.1 7.8 4.1 15.2 35.2 

 

It can be observed from these experimental results that each classifier-

expert is strong in classifying certain genres and rather weak in classifying 

the others which can be better classified by other experts. That reinforces 
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our hypothesis of necessity of multi-expert system and fits the assumption 

that non-linear combination of classifiers can improve global classification 
accuracy. 

For comparison we also provide here the best and the worst result of 

the ISMIR2004 genre classification contest1. 

The system of Dan Ellis & B rian Whitman has produced the following 

classification accuracy: raw accuracy of 64% and normalized 51.48% (Table 6.6). 

Table 6.6. Dan Ellis & Brian Whitman’s system classification result (51.48% mean and 64% raw). 

 Classic Electronic Jazz-Blues Metal Rock-Pop World 
Classic 97.8 0.9 0.3 0 0 0.9 

Electronic 36.2 33.8 0.8 4 15.3 9.6 
Jazz-Blues 18 1.6 21.3 8.1 31.1 19.6 

Metal 2.2 11.1 0 51.1 35.5 0 
Rock-Pop 19.8 18.8 1.9 7.9 51.4 0 

World 62.6 9.7 0 0.8 4.8 21.9 

 

Another classification system from the ISMIR2004 we reference here is 

the system of Elias Pampalk ([PAMP 06]). The system has shown very high 

classification accuracy (84.07% of correctly classified songs and 78.78% of 

normalized rate). The confusion matrix is given in (Table 6.7). 

Table 6.7. Classification accuracy by a reference system (E. Pampalk) (78.78% normalized accuracy 
and 84.07% raw). 

 Classic Electronic Jazz-Blues Metal Rock-Pop World 
Classic 97.8 0.3 0 0 0.6 1.2 

Electronic 0.7 62.2 0 16.2 14.8 5.9 
Jazz-Blues 7.6 3.8 80.7 0 3.8 3.8 

Metal 0 4.4 0 75.5 20 0 
Rock-Pop 2.9 9.9 0 4.9 77.2 4.9 

World 14.6 6.5 0.8 0 9.7 68.2 

 

The ECL database described in š6.1.4.1 was also examined. For this 

database the obtained classification rates were higher than in the case of the 

Magnatune database. It can be explained by the better quality of the ECL 

database where all classes are nearly equal in terms of representation and 

better defined (no such classes as World). 

                                   

1 http://ismir2004.ismir.net/genre_contest/results.htm 
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Both rhythmic and timbre k-NN classifiers were applied and the 

following results were observed. Table 6.8 gives the class recognition confusion 
matrix for the rhythmic classifier. 

Table 6.8. ECL_genres database classification results with rhythmic classifier (normalized mean accuracy 
71.4%) 

 Classic Dance Jazz Metal Rap Rock 
Classic 82.8 0.5 4.4 5.4 1.0 5.9 
Dance 0.3 76.8 2.1 4.6 7.9 8.2 
Jazz 5.5 3.8 68.9 1.4 10.0 10.4 

Metal 8.3 3.5 8.0 69.7 2.2 8.3 
Rap 0.0 6.0 10.7 3.3 75.7 4.3 
Rock 7.4 3.6 15.3 8.2 11.2 54.4 

 

As it was noticed before, the rhythmic classifier is stronger in classifying 

rhythmically bright genres of music such as Dance, Rap. Classic genre also 

belongs to this category since it doesn’t have strong rhythmic patterns. An 

absence of strong rhythm is a rhythmic descriptor as well. 

Table 6.9. ECL_genres database classification results by timbre (normalized mean accuracy 42.4%) 

 Classic Dance Jazz Metal Rap Rock 
Classic 49.3 3 13.8 17.7 4.4 11.8 
Dance 7.9 19.8 5.8 30.8 7.6 28.0 
Jazz 8.0 11.4 31.5 14.9 9.0 25.3 

Metal 5.1 3.2 1.6 85.7 0.3 4.1 
Rap 5.3 12.0 15.0 23.0 28.3 16.3 
Rock 12.3 7.9 6.0 30.6 3.6 39.6 

 

Table 6.10. ECL_genres database classification results by acoustic expert (normalized mean accuracy 
49.3%) 

 Classic Dance Jazz Metal Rap Rock 
Classic 53 5 12 2 5 10 
Dance 3 40 7 7 11 8 
Jazz 23 4 38 2 6 21 

Metal 7 24 15 75 16 19 
Rap 2 16 12 7 55 7 
Rock 12 11 16 7 7 35 

 

The classification by timbre and by acoustic classifier again shows a 

superiority of Metal recognition rate owing to a specific instrumentation used. 

6.1.4.3 Experimental results by Multi-expert system 

As explained in the section on architecture of classifiers, our multi-

expert system aims at fusing single music feature based-experts into a global 
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one for music genre classification. As the goal of this thesis work is the use of 

music features in a complementary way to purely acoustic features, we have 

also included a pure acoustic feature based classifier as one of our single 

classifiers as a baseline music genre classifier. Recall also that the fusion 

strategy is a Multi-Layer Perceptron having one hidden layer which 

synthesizes a global classification result from the outputs of single classifiers. 

The following Table 6.11 shows the result obtained for combinations of all 

experts on the Magnatune dataset. 

Table 6.11. All experts combined by MLP, (normalized mean accuracy 66.9%, raw accuracy 74.2%) 

 Classic Electronic Jazz-Blues Metal Rock-Pop World 
Classic 88.7 0.6 0 0.6 1.2 8.9 

Electronic 3.5 58.8 9.6 3.5 7.9 16.7 
Jazz-Blues 7.7 3.8 57.7 0 11.5 19.2 

Metal 0 8.9 0 66.7 22.2 2.2 
Rock-Pop 1 11.8 2 10.9 64.7 9.8 

World 13.9 8.2 2.5 0.8 9.83 64.6 

 

As it can be seen from the table, normalized mean accuracy rate is up to 

66,9%. Thus the combination of experts that uses music features in addition 

to purely acoustic feature based PGM-MLP expert, brings a significant 

improvement of classification precision as compared to the normalized mean 

accuracy rate of 49,6% achieved by the single PGM-MLP expert. Our multi-

expert system outperforms the single acoustic feature based PGM-MLP 

expert in each of considered six genres. The best improvements were 

achieved on Electronic and World genres, changing from an accuracy rate of 

33,6% and 35,2% for single PGM-MLP to 58,8% and 64,6% for multi-expert 

system, respectively. These two music genres presumably need more music 

features for a better discrimination due to their varieties.  

With the ECL Music genres dataset, which has a higher artist variability 

and generally better defined genres, our multi-expert system achieves even 

better results. Table 6.12 gives the classification results by our Multi-expert 

system.  Indeed, our multi-expert system displays a normalized mean 

classification accuracy rate up to 80.9% as compared to 49.3% achieved by the 

single PGM-MLP expert. 
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Table 6.12. ECL_genres database classification results (normalized mean and raw accuracy 80.9%) 

 Classic Dance Jazz Metal Rap Rock 
Classic 91.6 0 2 0 0 6.2 
Dance 0 69.2 1 3.2 6.5 19.7 
Jazz 1.1 8 71.2 0 3.4 16 

Metal 0 1 0 89.2 2.1 7.5 
Rap 0 4.6 2.3 4.6 80.2 8.1 
Rock 1.7 4.4 2.6 5.3 1.7 83.9 

 

Experimental results and final comparison can be summarized by the 

following figures. Figure 6.4 depicts the comparison of classification accuracies 

of separate classifiers and their mult-expert combination for both databases. 
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Figure 6.4. Comparison of classification results issued by different classifiers and their multi-expert 
combination for both databases. 

All classifiers behave quite similarly in the case of both databases except 

the rhythmic classifier which performed better on the ECL database. In both 

cases there is a significant increase of classification rates with combined 

experts. 

The next two figures (Figure 6.5 and Figure 6.6) show the performances of 

separate classifiers and their combinations for both databases according to 

genre. 



6. Applications and evaluation 

 

103 

0

10

20

30

40

50

60

70

80

90

100

Classic Electronic Jazz-Blues Metal Rock-Pop World

M
ea

n 
ac

cu
ra

cy
, % Acoustic

Rhythmic

Timbre

Multi-Expert

 

Figure 6.5. Performance of separate classifiers and their combination according to genre in the case of 
Magnatune database. 
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Figure 6.6. Performance of separate classifiers and their combination according to genre in the case of 
ECL database. 

Generally a superiority of Multi-Expert classification results is observed 

for the majority of classes except just two cases $ Classic of Magnatune 

database and Dance of ECL database. It can be explained by a tendency of 

the Multi-Expert configuration to average per-class accuracies together with 

a high Dance-to-Rock confusion in the latter case. 
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6.1.4.4 Discussion 

In the previous experiments, some parameters need to be tuned in order 

to achieve the best genre classification accuracy. Using the ECL music genres 

dataset and the rhythmic similarity measure, we studied the impact of two 

particular parameters on the classification accuracy, namely k in the k-NN 

classifier and the window moving step in beat detection algorithm. Figure 6.7 
illustrates the classification accuracy curve using different k values. As we 

can see, the best classification accuracy was achieved with k=9. 
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Figure 6.7. Dependency of the classification accuracy on the cluster size in the k-NN. 

On the other hand, when studying the size of the shifting window, we 

can see from Figure 6.8 that the best classification rate was obtained for the 
shift equal to 15 ms. Further increasing the shift size almost linearly 
decreases the classification performance. 
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Figure 6.8. Dependency of the classification accuracy on the window shift in the beat detection 
algorithm. 
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However, these experimental results can be considered as very primary 

ones showing the utility of music based features in music genre classification 

in addition to purely acoustic based features. Several directions need to be 

further investigated. Indeed, while simple k-NN classifiers are used in these 

experiments, one can also consider some other popular classifier such as 

SVM, neural networks and Bayesian classifiers. These may display better 

classification accuracy when using an appropriate learning scheme. Moreover, 

we also need to deepen our study with respect to the fusion strategy. In the 

previous experiments, the outputs of single classifiers are fused by a neural 

network into a global classifier. However, other fusion strategies might give 

better results. 

6.2. Music search by similarity 

Search for music by similarity is an interesting but difficult direction of 

the music information retrieval research. It is at the heart of such 

applications as intelligent music navigation automatic, playlist composition, 

music recommendation and others. 

6.2.1. The problem 

Unfortunately, music similarity is rather subjective and personal 

according to cultural background. Precise definition of music similarity is thus 

impossible. Unlike well-defined task with ground truth data, such as, e.g., 

automatic classification of audio signal, the task of intelligent playlist 

composition by musical similarity lacks the reliable ground truth $ 

construction of 100% ground-truth data cannot be possible. 

However, several attempts on evaluating the musical similarity 

algorithms have been made. In a work on artist similarity [ELLI 02] the 

authors have constructed ground-truth data by artist survey. Visitors of their 

web site were proposed to find similar artist for a given one. The authors in 

another work [PAMP 03] have used statistical information. They computed an 

average distance between all musical pieces and an average distance in 

groups (artist, genre, album, etc.).  The ratio between these two average 

distances was calculated. In that way a large-scale evaluation was performed 

without involving listening tests. MIREX evaluation contest1 uses listening 

test together with statistical information analysis in order to evaluate various 

musical similarity retrieval algorithms.  

In our work we based our evaluation on listening tests and analysis of 

statistical information. Reinterpreted compositions search was also performed 

and used as an objective evaluation. 

                                   

1  http://www.music-ir.org/mirex2006/index.php/Audio_Music_Similarity_and_Retrieval 
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6.2.2. Principle and architecture of our combination system of similarity 
measures 

While pure similarity metrics could be interesting for exact matching of 

musical pieces by certain criteria, a combination of them have in goal of 

building œgeneralB similarity metric like a human listener could do (e.g. 

finding a piece with the same rhythm and key type could issue two slow sad 
melodies which are judged similar by a human listener). 

In the previous problem of genre classification tests, the final 

combination was done by a multi-expert system where the combining system 

was operating on class probabilities. In the case of similarity search, distances 

must be combined in order to get the overall similarity score including 
various aspects. 

• Fusing similarities by a Linear combination 

To combine 4 distances (rhythmic, tonality, timbre and note succession) 

obtained with algorithms described in Chapters 4 and 5, we use a liner 

combination which as used in many other works. 

∑= ii dkD  (6.2) 

Alternatively, when source distances have œincongruousB physical 

nature, another version of liner combining could be applied $ namely, a 

weighted sum of ratings where a rating or position in a sorted list of similar 

titles is obtained for every kind of similarity being combined. Final distance is 

computed as a weighted sum of such ratings. In our experiments, these two 
kinds of linear combination are studied and compared.  

• Fusing Similarities by a Multi-layer perceptron 

These methods are non-linear methods that involve a neuron network 

trained on user feedback data. The choice of MLP is motivated by its relative 

simplicity and ability to approximate multi-variable functions. In our case the 

target function is a function of 4 distances described in previous paragraphs 

between any couple of music excerpts and the target values are similarity 
ratings (from 0 to 1) provided by listeners. 

The MLP used in our work had 4 input neurons (the number of input 

variables) and 4 neurons in hidden layer. Training and testing sets consisted 

of approximately 800 listeners’ votes. Training of the MLP was performed in 
two ways: 

1) direct training with target values of listeners’ votes; 

2) threshold training when listeners’ votes on similarity were divided into 
two category $ similar (>=0.5) and dissimilar (<0.5), the target values 
for the MLP being 1 and 0 respectively. 
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In both cases the difference between classification results on the testing 

set was not statistically significant. The total error rate in both cases was 

around 20%. Further increase of number of neurons in the hidden layer 

produced instabilities in the classification of the testing set and resulted in an 
increase of classification errors. 

The disadvantage of the MLP combining is its observed irregularity. 

Songs can hardly be sorted upon similarity measure issued by the neural 

network having a high error rate. In order to overcome this problem we 

propose to use a multi-cascade system where the linear similarity measure is 

controlled by MLP. The principle is the following: similar songs are searched 

using linear combination of distances and the final list is filtered by an MLP, 

which drops all non-similar songs according to its decision. In this case 

thresholds of the decision-making must be adjusted to have minimal false 

rejection rate. The principle of such architecture is depicted in Figure 6.9. 

 

 

Figure 6.9. Architecture of the combining system with linear distance combination controlled by a 
neural network. 

6.2.3. Experimental results 

6.2.3.1 Evaluation method 

We carried out preliminary experiments on musical similarity search. 

They consisted of three evaluation parts $ listening test, statistical analysis 
and reinterpreted pieces search. 

A database of approximately 1000 musical compositions of different 

artists, genres and rhythms has been collected. It was taken from private 

collections of music and contained musical pieces of various genres and 

different languages. The crucial point is to ensure existence of various close 

groups of music within the dataset. A small database containing musical 

pieces which are too different may result in unreliable evaluation results due 

to the absence of similar music excerpts. The Magnatune database could be 
used as a suitable one since it contains small variation of genres. 

The evaluation proceeds as follows. For each type of similarity metric 

(rhythmic, tonality, timbre and melodic) a similarity matrix 1000x1000 had 

Dist. 1 

Dist. 2 

Dist. n 

… 

+ 

 

×××× output 

Linear 
combination 

MLP 

Control  
“valve” 



 
 

 

108 

been computed. Then the system retrieved 5 most similar songs from the 

database for a given example by different combinations of similarity metrics. 

People from our laboratory and third-party people (men and women, not 

necessarily working with music) were asked to act as listeners. A dedicated 

website was build which enables listeners to rate queries from the database 

with scores from 0 (not similar) to 5 (very similar) according to similarity 

type shown (for example, in the case of similarity by tonality, the listeners 

had to indicate if tonalities (tonality modes) of proposed songs were sounding 

similar or not). Neither songs’ titles nor artist names were revealed to the 

listeners. Also with a probability of 50% the listeners were provided with 

randomly selected not similar music pieces and the listeners were not aware 

of this in order to avoid prejudice. The listeners had to rate the similarity for 

those random propositions as if they were retrieved by a true similarity 

algorithm. Further comparison of vote distributions of both similarity-based 

and random selections allows to rate the quality of search algorithms. The 

result is supposed to be reliable since such evaluation technique cannot be 
œtrickedB. 

In our experiments we have used 4 pure similarity metrics: rhythmic, 

tonality, timbre and melodic; and 4 mixtures where comb1 was a 

combination of tonality and rhythm metrics, comb2 was timbre and rhythm 

combination, comb3 was tonality + melody + rhythm respectively, comb4 $ 

timbre + melody + rhythm. For the mentioned mixtures two types of 

combinations were applied, namely, linear combination and combination by 

rating. We didn’t use a linear combination of all 4 distances because it is quite 

difficult to say in advance if mixing coefficients should be equal for all 

distances or not since these 4 distance have different nature. In the case of 
Multi-layer perceptron combination all 4 similarity measures were used. 

While the previous experiment is rather a subjective evaluation, the 

following ones are objective evaluations. Our second evaluation is 

reinterpreted pieces search. The aim of this experiment was the evaluation of 

melodic similarity measures. The test was based on composing of similarity 

playlists for musical titles that have multiple reinterpretations. For this 

purpose we have injected several musical pieces with multiple 

representations. The following reinterpreted pieces were included into the 
dataset. 

 

1. Ennio Morricone – “Chi Mai”, 3 interpretations 
2. Roxette – “Listen to Your Heart”, DHT – “Listen to Your Heart”, DHT – “Listen to Your 

Heart” (dance) 
3. Rednex – “Wish You Were Here”, Blackmore’s Night – “Wish You Were Here” 
4. Tatu – “Not Gonna Get Us” (Eng), Tatu – “Nas Ne Dogonyat” (Rus) 
5. Tatu – “All the Things She Said” (Eng), Tatu – “Ya Soshla s Uma” (Rus), Tatu – Remix 
6. Tatu – “30 minutes” (Eng), Tatu – “Pol Chasa” (Rus) 
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7. Archie Shep, Benny Golson, Dexter Gordon, Mike Nock Trio, Ray Brown Trio – “Cry Me 
a River” (ver.1 jazz instrumental) 

8. Diana Krall, Tania Maria, Linda Ronstadt, Bjork, Etta James, July London – “Cry Me a 
River” (ver. 2. vocal) 

 

In this experiment the different interpretations of the same title are 

automatically considered as œsimilarB. Playlists with 30 similar titles 

corresponding to each musical title from the list above were built. 

Appearance of our œa prioriB similar titles at the top of playlist was 
considered as successful similarity output. 

Finally as a third evaluation of our similarity system, we analyzed a 

relevance of the top 5 songs in playlists. We considered two types of 

relevance: the number of songs from the same genre and the number of 

songs from the same artists. As the database we took the ISMIR2004 genre 

classification database based on Magnatune collection since the musical pieces 

are classified by genres and there is no high variability in artist. The 
database contains totally 729 titles of 128 artists in 6 genres. 

6.2.3.2 Listening test evaluation 

Evaluation results obtained in our listening test experiments are 

presented in the Table 6.13. For each similarity type the mean and median 

values of totality of votes are given. The column œcorresponding randomB 

shows the mean and median of listeners’ votes for those cases when the 

listeners were proposed random songs rather than similar. Since listeners 

were not notified about this fact, they still had to evaluate how similar were 

the proposed songs. These data are used as background œun-truthB. All found 

multiple interpretations of songs were not filtered out and considered as 5 $ 
very similar.  

Table 6.13. Listening test results (mean / median). 

Similarity 
type 

Linear 
combination 

or single 

Rating 
combination 

Corresponding 
random 

rhythmic 2.92 / 2 n/a 0.40 / 0 

tonality 3.16 / 3  2.41 / 3 

timbre 2.16 / 2  0.81 / 0 

melodic 2.23 / 2  1.60 / 2 

comb1 3.55 / 4 2.06 / 3 0.94 / 1 

comb2 2.78 / 3 3.75 / 4 0.97 / 0 

comb3 3.85 / 5 1.80 / 1 0.75 / 0 

comb4 2.49 / 3 2.26 / 3 1.01 / 0 
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Figure 6.10 shows normalized distributions of votes for mentioned single 

similarity metrics. The upper histograms stand for distributions of votes for 
œrandomB similar songs.  

 
Figure 6.10. Histograms of listeners’ votes for pure similarity metrics. The upper row contains 

histograms of votes for corresponding randoms. 

Notice, that in the case of random similarity generation all histograms 

are different. It means that the notion of similar tonality class is not evident 

for all listeners. In addition, the mean error in the case of random selection 

should be around 50% since there are only two modes of tonalities $ minor / 

major. The difference in melodic similarity-selection voting against the 

corresponding random-selection one is insignificant. This does not allow an 

immediate judgment of the similarity search performance. On the other 

hand, some of similarity measures already perform quite well, for example 
the rhythmic one.  

All in all, examining histograms of the true similarity votes one can 

observe an evident positive bias of average score. It is also evident for the 
tonality case. 

On the next figure the normalized histograms of votes for composite 

similarities are depicted. Here the upper row is showing histograms of votes 

for random songs. Two other rows include the results for linear (lin) and 

rating-based (rt) combinations, as described above. Figure 6.11 shows the vote 

histograms for MLP combinations. Here comb1 is the combination of tonality 

and rhythm metrics, comb2 $ timbre and rhythm, comb3 $ 

tonality + melody + rhythm, comb4 $ timbre + melody + rhythm. 
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Figure 6.11. Histograms of listeners’ votes for linearly and rating combined similarity metrics. 

Considering the Figure 6.11 the following conclusion can be made: 

• There is a remarkable positive bias of votes in the case of combined 

(we can call them general or true) similarities, which is in fact higher than 

for pure similarity measures. This can be seen by comparing comb3_lin 
versus pure rhythmic similarity rating histograms. 

• Certain instability of results according to the type of combination is 
observed 

• The hypothesis that the combination of various similarity types by its 

rating in generated sub-playlists could be better adapted for measures of 

different nature did not find confirmation (except the case of comb2 

combination) 

• In some cases of similarity combination as for instance comb3_rt, 

comb4_rt, a big number of completely dissimilar (voted as completely 

unsimilar) songs in resulting playlists were observed in comparison to pure 

similarity measures where this fact was only present in timbre similarity. 

This can be an evidence of nonapplicability of linear or rating combinations of 

various similarity types. For example, two musical pieces close to each other 

by the tonality or melodic passages may have a certain difference in their 
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rhythmic structure. Since one of similarity measures issues a very low value 

of distance, another similarity measure may not bring any significant 

dissimilarity. So, the pair of songs is considered to be close to each other. 

However, a human listener may not pay attention to the melodic aspect of 

similarity, but only to its rhythmic aspect (which is in fact has closer relation 

with the genre of music). As a result, a socre provided by the listener is 
considerably low. 

• It can be stated, that the best two combinations for this particular 

dataset are comb3_lin and comb2_rt. The first case is a linear combination of 

rhythmic, tonal and melodic distances; the second case is a rating 

combination of rhythmic similarity and similarity by timbre. This can be 

explained by instability of combination of timbre similarity measure with all 
other measures. 

Two other similarity fusing configurations are also investigated. The 

first one consists of using an MLP for a non linear combination of similarity 

measures. The second configuration is the one with the neuron network used 

as an agent for ensuring quality of similarity measure from the best linear 

combination Comb3, found to be the best in previous studies. The outputs 

from the linear combination Comb3, involving tonality, melody and rhythm 

similarity measures, are further controlled by a MLP discarding dissimilar 

music excerpts. Table 6.14 shows votes distributions for multi-cascade 

configuration and a single MPL. As we can see, no large statistical difference 
in the results was observed for these two configurations. 

Table 6.14.  Listening test results for MLP combinations. 

Combination Type Score 

Comb3 + MLP 3.80 / 4 

MLP 3.25 / 4 

  

The decrease of the average similarity search quality in the case of pure 

MLP can be an evidence of a lack of statistical training data which makes the 

neuron network to behave in an unstable manner. The second source of 

instability is the subjectivity of the listener’s votes. Having multiple listeners 

vote to be different for the same titles in the same playlist leads to 
ambiguities in training data. 

Histograms of votes distributions are depicted in Figure 6.12.  
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Figure 6.12. Histograms of listeners’ votes for MLP combined similarities. 

The configuration with a neural network as a quality agent controlling 

the output of linear combination is more preferable in comparison to the 
single NN mixing agent. 

6.2.3.3 Objective evaluation 

In our objective evaluation experiment we have generated 30-title 

playlists for each musical piece in the database. Appearance of œa prioriB 

similar titles (see š6.2.3.1 for the list) at the top of playlist was considered as 

successful similarity output. The following Table 6.15 shows the result of 

playlist composition. It gives information about the position of similar titles in 
the associated playlist (1 $ is the original music file at the top of playlist).  

Table 6.15. Objective evaluation results of music comb3_lin similarity measurement. 

Original music composition Positions of appearance of similar titles 

Chi Mai (1), 2, 3 

Listen To Your Heart (1), 3, 12 

Wish You Were Here (1), 2 

Not Gonna Get Us (1), 2 

All the Things She Said (1), 2, 3 

30 minutes (1), 2 

Cry Me a River (ver. 1) (1), 2, 3, 4, 6 

Cry Me a River (ver. 2) (1), 2, 4, 7, 8, n/a (not appeared) 
 

 

 

As we can see from the table, all interpretation of songs are taking first 

positions in corresponding playlists regardless of the fact that some of song 

groups had quite distant versions like dance versions (Listen To Your Heart), 

or different artist, language, or instrumentation (e.g. Wish You Were Here, 
Cry Me a River). 

The second part of the objective evaluation consisted of playlist 

relevance analysis. For that purpose we moved on to analyze the relevance of 

the top 5 songs in the playlists generated for seed songs. We considered two 
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types of relevance: the number of songs from the same genre and the 

number of songs from the same artists. For the database we took ISMIR2004 

genre classification database based on Magnatune collection. The database 
contained totally 729 titles of 128 artists in 6 genres. 

The obtained results are as follows (Table 6.16). 

Table 6.16. Average number of songs in the same genre or from the same artist. 

Similarity type Same genre Same artist 

Comb2_lin 3.58 0.99 
Comb2_rt 3.48 0.89 
Comb3_lin 3.07 0.86 

The next picture (Figure 6.13) depicts distribution histograms of the 

number of songs in the same genre and from the same artist for the best 
combination which in this case is comb2_lin. 

 

Figure 6.13. Histogram of the number of songs in the same genre in TOP-5 (left), and from the same 
artist in (TOP-5) (right). 

Results of relevance analysis reported in literatures includes such 

numbers as average 1.43 songs in TOP-5 with the same genre as the query 

[AUCO 02], average 3.44 of similar genres and 1.17 of similar artist [LOG 01]. 

A result obtained from the same ISMIR’2004 database found in literature is 
an average 3.4 songs (67.9%) in TOP-5 with the same genre [POHL 06]. 

6.2.3.4 MIREX2007 Audio Music Similarity and Retrieval 

Having 7000 30-second audio clips drawn from 10 genres (700 clips from 

each genre) the MIREX evaluation contest1 has ran the audio music 

similarity and retrieval evaluation among the other MIR tasks. Two distinct 
evaluations were performed: 

 

                                   

1 http://www.music-ir.org/mirex2007/index.php/Main_Page 
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• Human Evaluation 

• Objective statistics derived from the resulting lists  

The primary evaluation involved subjective judgments of the retrieved 

sets by human evaluators. Given a search based on randomly selected 

queries, sets of results returned by all systems were provided to listeners. 

They had to rate the results by one of three classes (not similar, somewhat 

similar, very similar) and provide an indication on a continuous scale of 0 - 10 

measuring how similar the track is to the query. The songs by the same artist 

as the query were filtered out of each result list (artist-filtering) to avoid 
biasing an evaluator’s judgment. 

The second evaluation was the objective statistics derived from the 

distance matrix which is: 

• Average % of Genre, Artist and Album matches in the top 5, 10, 
20 & 50 results - Precision at 5, 10, 20 & 50 

• Average % of Genre matches in the top 5, 10, 20 & 50 results after 
artist filtering of results 

• Average % of available Genre, Artist and Album matches in the 

top 5, 10, 20 & 50 results - Recall at 5, 10, 20 & 50 (just normalizing 

scores when less than 20 matches for an artist, album or genre are 
available in the database) 

• Always similar - Maximum # times a file was in the top 5, 10, 20 
& 50 results 

• % File never similar (never in a top 5, 10, 20 & 50 result list) 

• % of 'test-able' song triplets where triangular inequality holds 

The algorithm we have submitted to the MIREX evaluation was the 

system, which toke into account only rhythmical distance.  

The final subjective judgment results are provided in Figure 6.14 where 

the system #9 is the system we have presented. 
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Figure 6.14. MIREX 2007 Audio Music Similarity and Retrieval subjective evaluation results (x-axis 

– team number, y-axis – average vote divided by 10). 

The histogram of listeners’ votes expanded to fit 5-level scale as we 

used in our work is given on the Figure 6.15 

 

 
0  1   2   3   4   5  

Figure 6.15. Histogram of listeners’ votes resulted by our system at MIREX contest. 

The experiment shows that rhythmic similarity plays an important role 

in global music similarity. However, both experiments (see also š6.2.3.2) prove 
that perceptual similarity is not limited to rhythmic similarity. 

Another observation was made from the MIREX results. For certain 

genres the rhythmic similarity was more important than for other genres. 

These genres are for example Jazz/B luez and Country. The complete ratings 

by genre of algorithms presented at MIREX are given on the Figure 6.16. 
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Figure 6.16. MIREX similarity contest result distribution by genres. 
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We have analyzed the correlation between equality of genres in query 

vs. retrieved samples and users votes. The average the votes for those queries 

which returned a piece of the same genre was 6.42 while for non-similar 

genres the average was 3.55 (Figure 6.17). 
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Figure 6.17. Average vote for query and result of the same or of different genres. 

According to our observation (6000 queries from all algorithms have 

been analyzed), the correlation between genre and similarity is quite strong, 

but the average of votes for non-similar genres in query/result pairs is high 

enough to conclude that the perceptual similarity is not only limited to the 
similarity of genre.  

6.2.3.5 Discussion 

The problem of œhubsB described in numerous works [AUCO 04; PAMP 

06a] was also analyzed for the proposed similarity metrics. A hub is a song 

which appears to be similar to a large number of other songs. In the results 

obtained by our similarity combination algorithm no extreme hubs were 

observed. The following Table 6.17 presents the maximum number of 

appearances of any single song in the TOP-5 rankings of all other songs 
showing the issue of œhubsB insignificant for our similarity measurements. 

Table 6.17. Maximum number of appearances of a song in top-5 rankings 

Similarity metric Rhythmic Tonality Timbre Melodic 
Number of appearances  24 19 124 101 

 Similarity metric Comb1 Comb2 Comb3 Comb4 
Number of appearances  25 41 39 66 

The maximum number of song appearance reported at MIREX’06 was 

24 to 61 [PAMP 06a]. One irregular result of 1753 appearances was also 
reported for one of the algorithms indicating the presence of hubs.   
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6.3. Conclusions 

In this chapter we have described two direct applications of music 

features and the associated similarity measures. The first application 

consisted of automatically classifying songs by genres. We have shown that 

single application of acoustic similarity or musical similarity features issues 

quite low classification accuracies while a combination of both approaches 
leads to a significant gain of classification performance. 

The second application, namely, music search by similarity was based 

solely on musical similarity features. The evaluation we have carried out 

consisted of subjective judgment (human feedback) and objective evaluation 

such as relevance analysis. Objective evaluation showed quite good, but 

rather unstable results when using linear or rating combination of similarity 

measure. We have also found the best two combined similarity measures 

which were combinations of rhythm/tonality/melody and rhythm/timbre. A 

surprising result was observed when putting timbre similarity measure 

instead of tonality in the first combination, producing lower results. However, 

putting all distances together in a neuron-network combination mechanism 
showed stable results but not higher than in the case of linear combinations.  

The objective analysis of similarity retrieval algorithm have shown very 

good similar genre rate $ 3.58 against the best rate found in literature (3.4) in 

TOP-5 playlists analysis based on the ISMIR’04 corpus. Promising results 
were also achieved in search for pieces with multiple interpretations. 
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7. Conclusions and outlook 

In this thesis we have considered the problem of automatic music 

analysis within such music information retrieval applications as music search 
by similarity (intelligent navigation) and automatic genre classification. 

We have started in Chapter 3 by developing an appropriate tool of 

musical signal analysis. We presented the variable resolution transform as 

such a tool. We have shown it to be better suited for our applications. The 

goal we have achieved is to obtain a single transform which can 

simultaneously cover the whole time-frequency scale in such a way that both 

pitch and rhythm information is gathered at the same time. The advantage of 

the tool we have proposed is that it has logarithmic frequency sampling in 

order to follow musical notes. In comparison to some classical approaches 

where the frequency sampling is also logarithmic, we have an improved 

frequency resolution in high frequency area, allowing us to better distinguish 
the high-order harmonics of the signal. 

Starting from Chapter 4 the questions of music similarity measures 

were discussed. In Chapter 4 we have presented and described an algorithm 

of beat and strong note onset detection based on the VRT and image 

treatment technique. In comparison to classical resonator-based or 

autocorrelation-based approaches, our algorithm is suitable for detection of 

any kind of beats with or without periodicities. The extracted beat 

information can be used to construct a rhythmic similarity measure in the 

form of 2D beat histograms allowing their direct comparison. A tempo 

induction method based on the 2D beat histogram was presented as 

evaluated as well. 

In Chapter 5 we have followed with a description of an algorithm for 

multiple fundamental frequency (f0) estimation based on the VR Transform. 

Like most of the classical approaches, this algorithm was based on harmonic 

pattern matching. Our contribution in this case is an application of note-

adapted variable resolution transform. An evaluation of the aforementioned 

algorithm was performed on waveteable synthesized musical signals. The 

chapter also discusses the aspects of musical similarity. For this purpose 

various f0-estimation derived or melodic features such as note succession 
histogram, note profile or timbre histogram were proposed. 

Direct applications of musical similarity features and estimation of their 

performance is presented in Chapter 6. In the case of automatic genre 

classification it was proved that combining musical and spectral similarity 

features leads to a considerable performance gain. The objective of the 

second application was an automatic construction of similar music playlists. 

The algorithms were based only on musical features and were evaluated by 

human feedback giving encouraging results. The objective analysis of 
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similarity retrieval algorithm have shown superior genre rate in TOP-5 

playlists analysis compared to the genre rate found in literature. 

The techniques described in the thesis are for the most part ready to be 

implemented and deployed in real-life applications. Music similarity search 

produces acceptable results and can be integrated in online music stores or 

media players. However, the work opens a large number of scientific 

questions. Of course, the first research direction is the improvement of 

musical similarity features as well as of methods of their combination. For 

instance, the k-nearest neighbors (kNN) classifier we applied in the problem 

of genre classification is very content-dependent and requires training data to 

be available all the time. Another disadvantage of the kNN classifier is its 

increasing complexity with increasing training data set size. Thus, an 

important direction for future work is to employ other types of classifiers 

potentially capable of producing better and more stable results. This also 

concerns the use of neuron network in combining of different experts in both 

genre classification and music similarity problem. Using stochastic approaches 
can also be promising in all kind of algorithms we have presented. 

Improving the musical features may require such algorithms as 

automatic instrument recognition which are outside the scope of in our work. 

Another question remaining open is the invention of truly efficient note 

transcription algorithms working well with all kinds of music. As a subject of 

future work we can envisage a development of musical object detection-

based approaches which would enable high semantic modeling and analysis, 

like it is presently done in image and video processing. 
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